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Abstract

Stability analyses of reinforced soil structures are traditionally based on limit equilibrium
calculations. Results from such analyses are sometimes ambiguous because of different assump-
tions made in addition to the limit state. It is shown in this paper that these ambiguities can be
removed if the kinematic approach of limit analysis is used, in which a rigorous bound to the
required strength of reinforcement is sought. The required strength of reinforcement is the
strength needed to maintain stability of the structure. Since limit analysis leads to a rigorous
bound on the reinforcement strength, limit loads, or a safety factor, the geometry of the failure
mechanisms considered can be optimized, so that the best bound is obtained (a solution closest
to the exact solution). A dual formulation of kinematic limit analysis is possible in terms of limit
force equilibrium, but the former is preferable since the kinematics of collapse mechanisms
appeals to engineering intuition more than the distribution of forces does. © 1998 Elsevier
Science Ltd.
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1. Introduction

This paper reviews an existing method of limit analysis in the context of design of
reinforced soil structures. The application of the method is also illustrated with an
example of a slope. However, there are some new elements: in particular, the contro-
versial issue of inclination of the reinforcement force at a failure surface is resolved
with a new conclusion. Also, results from a new experimental study on collapse of
a reinforced subgrade are shown. These results are presented here as an example of an
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effort to identify failure mechanisms of reinforced soil that can be used later in the
kinematic approach of limit analysis.

In the last 20 years or so there have been numerous efforts made to set guidelines for
calculations of stability of reinforced slopes, walls, and embankments. Such calcu-
lations need to be able to indicate what the safety margin of a given structure is, or
how much reinforcement is necessary to construct a new structure. As a result,
a number of different suggestions have been proposed in the literature. An example is
a multitude of results based on a two-block failure mechanism for stability calcu-
lations of reinforced slopes. One might expect that once the same mechanism is
selected, the required reinforcement strength calculated or the factor of safety should
be identical, but the literature shows otherwise. It seems useful then to introduce
a method of analysis that would remove ambiguities found in traditional techniques,
and, perhaps, to make it possible to assess the existing solutions.

This paper is written to illustrate and to clarify some of the aspects of limit analysis
of reinforced soil structures, and not to criticize existing methods. Many of the existing
approximate analyses for stability calculations of reinforced soil have served well in
design, and this paper is written to indicate how these calculations can be improved.
Stability considerations are only one aspect of what is a much broader design process,
which, in addition, must address such issues as constructability, drainage, possible
damage to geosynthetics prior to installation, etc. (see Koerner, 1998; Holtz et al.,
1997).

Limit analysis is an approach to stability calculations based on two theorems that
make it possible to find rigorous bounds (upper and lower) to unknown quantities,
such as the critical height of a reinforced slope, limit force on a footing (bearing
capacity), etc. Alternatively, for given structures and given loads an estimate of
material parameters necessary to maintain stability can be found. Thus, the technique
can be used, for instance, for calculations of the amount of reinforcement necessary to
maintain stability.

This technique was first suggested for reinforced soil analysis in the late 1980s, with
two approaches: (1) the continuum approach, where the soil and reinforcement are
first homogenized, and the anisotropic continuum is considered, and (2) the structural
approach, where reinforcement is considered as separate structural members. The
continuum-based approach can be found, for instance, in papers by de Buhan et al.
(1989), and Sawicki and Le$niewska (1989), while the structural approach was used by
Anthoine (1989), and de Buhan and Salengon (1993). The latter is often called a mixed
approach, since the reinforcement is considered as structural members and the soil is
considered as a continuum. A comparison of the two techniques was presented by
Michalowski and Zhao (1995). Only limit analysis as applied to the structural
approach is discussed in this paper.

A dual formulation of the kinematic limit analysis in terms of equilibrium of limit
forces is possible (Salengon, 1990). Application of the limit force equilibrium approach
can be found in papers of Leshchinsky and Boedecker (1989) and Jewell (1990). These
have been successfully used in practice. A review of techniques used for stability
analyses of reinforced soil structures (including force equilibrium), in the context of
seismic loads, was presented recently by Bathurst and Alfaro (1996). The author chose
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the technique based on the kinematic approach, since kinematics of the failure
mechanism appeals to engineering intuition more than the distribution of forces does.
The method of analysis is illustrated in this paper in examples of slopes, but it is
applicable to reinforced walls, embankments, reinforced subgrades, and unpaved
roads.

2. Limit analysis

Limit analysis was presented in terms of the theorems by Drucker et al. (1952), but
the concept was known earlier (Gvozdev, 1938; Hill, 1948). The material involved in
the analysis obeys a convex yield condition, such as the Mohr-Coulomb criterion

flo) = (o, + a)sing — /(6. — 0,)* + 413, + 2ccosp =0, (1)

where ¢ and ¢ are the cohesion and internal friction angle of the soil, respectively, and
its plastic deformation is governed by the normality (or associative) flow rule

ol = 1Y (o ,.), 220 ?f f=0, )
doy; A=0 if f< 0,

where A is a nonnegative scalar multiplier, f(c;;) is the yield criterion, and & and

o;; are the plastic strain rate and the stress tensor, respectively.

The upper bound theorem is based on construction of admissible collapse mecha-
nisms (or velocity fields), and it states that if a kinematically admissible mechanism is
found, then the limit load calculated by equating the rate of work of external forces to the
rate of internal energy dissipation is not smaller than the true limit load. 1t is useful to
write this theorem in a mathematical form

J‘ D(ﬁ,j)dV P j T,'V,'dS,) + J- T,'Vidst + J '})iV,'dV. (3)
v s, s, v

The left-hand side of inequality (3) represents the rate of work dissipation during an
incipient failure of a structure, and the right-hand side includes the work rates of all
the external forces. T; is the stress vector on boundaries S, and S,. Vector T; is
unknown (limit load) on S,, and it is known on S, (for instance, surcharge pressure).
v; is the velocity vector in the kinematically admissible mechanism, y; is the specific
weight vector, and V is the volume of the mechanism. Thus, the mathematical form of
the theorem in Eq. (3) states that the rate of energy dissipation is not less than the rate
of work of external forces in any kinematically admissible failure mechanism. Hence,
the inequality in Eq. (3) can be used to calculate the upper bound to the force on
boundary S,, if all the other terms in Eq. (3) are known. Notice that the total force on
boundary S, can be calculated only if velocity v; on this boundary is constant. On the
other hand, if all the loads acting on a structure are given, the material parameters
necessary to maintain the limit state can be evaluated from Eq. (3). A lower bound to



314 R.L. Michalowski/Geotextiles and Geomembranes 16 (1998) 311-331

one such parameter can be calculated from Eq. (3). For reinforced soil structures this
parameter may be the strength of the reinforcement. Alternatively, if the geometry of
the structure is given, and all loads and material parameters are known, the safety
factor can be calculated from Eq. (3). An application of Eq. (3) to a simple mechanism
of a slope failure will be illustrated later in this paper.

The static approach of limit analysis (leading to lower bounds on limit loads, or
upper bounds on the material properties necessary to maintain limit equilibrium) is
based on constructing admissible stress fields (see, for instance, Davis, 1968). The
static theorem is seldom used in geotechnical engineering since admissible stress fields
are difficult to construct.

3. Admissibility of collapse mechanisms

A crucial element in the application of the theorem in Eq. (3) is the construction of
an admissible failure mechanism. The flow rule in Eq. (2) leads to a well-defined
dilatancy in the deforming soil, and it is illustrated in Fig. 1(a). The rate of internal
work (or dissipation) in a unit volume of a deforming soil can be calculated as (see, for
instance, Davis 1968)

d=(é1 — €3)ccos @, @

where £; and ¢; are the major and minor principal strain rates. Thus, integrating
Eq. (4) over the deforming regions in a failure mechanism yields the left-hand side in
Eq. (3). Very useful mechanisms are those where rigid blocks are separated by velocity
discontinuities. The work is then dissipated only on interfaces between the blocks. The
associative flow rule (Eq. (2)) requires that the velocity jump vector be inclined to these
discontinuities at angle ¢ (Fig. 1(b)), and the work dissipation rate per unit area of

Fig 1. Example of admissible plastic deformation of granular material: (a) simple shear, and (b) velocity
discontinuity.
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such discontinuity surface can be found from
d=c[v]cosg (5)

where [v] is the magnitude of the velocity discontinuity vector.

An important part of constructing failure mechanisms is a hodograph. An example
of an admissible collapse mechanism for a slope is shown in Fig. 2(a). The kinematic
boundary condition here is v, — the vertical component of the velocity of the first (top)
block. The three blocks move with velocities vy, v,, and v, respectively. Since velocity
v, must be inclined to discontinuity AB at angle o, velocity [v];, is inclined at ¢ to
discontinuity BO, etc., the hodograph can be constructed with uniquely determined
velocities, Fig. 2(b). These velocities can be calculated numerically from the geometri-
cal relations in the hodograph. The mechanism in Fig. 2(a) belongs to the class of
translational mechanisms, since all blocks translate without rotation.

A kinematically admissible rotational mechanism is shown in Fig. 2(c). The entire
region ABC rotates as a rigid block with velocity & about point 0. Thus, the velocity
at any point in region ABC can be calculated as rc, where r is the radius from the
rotation center to the point considered. Since kinematical admissibility requires that
velocities are inclined at angle ¢ to failure surface BC, line BC must be a log-spiral.
Only if ¢ = 0 can failure surface BC be a circular arc, otherwise, a circular arc is
inconsistent with the rigid rotation velocity field.

Examples of kinematically inadmissible mechanisms used in the limit equilibrium
method are shown in Fig. 3. In the two-block mechanism the force between the blocks
is inclined to the interface normal at angle & < ¢. Such a mechanism is inadmissible
since the velocity discontinuity cannot occur along BD unless the Mohr-Coulomb
yield condition is reached (6 = ¢). To indicate quantitative consequences of assuming
§ < ¢, calculations were performed for a slope with f = 60° and ¢ = 35° (granular

Fig. 2. Kinematically admissible mechanisms of slope failure: (a) translational mechanism, (b) hodograph,
and (c) rotational collapse mechanism.
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(b)

(a)

Fig. 3. Inadmissible mechanisms: (a) yield condition not satisfied on surface BD, and (b) rigid-rotation
mechanism with circular arc failure surface in frictional soil.

soil), for a three-block mechanism (Fig. 2(a)) and a two-block mechanism (Fig. 3(a))
with angle 6 =0 on all ‘internal’ failure surfaces. The reinforcement is uniformly
distributed, and its strength is characterized by an average magnitude k,

ke =—+ (6)

where n is the number of reinforcement layers, T, is the tensile strength of a
single reinforcement layer (per unit width), and H is the height of the slope. The
inclination of all failure surfaces was taken such that the calculated magnitude of
k. was the maximum (since this approach leads to a lower bound on k,). The calculated
dimensionless average strength k,/yH (y being the unit weight of the soil)
is k,/yH = 0.0752 and k,/yH = 0.0663 for the three-block and two-block mechanisms,
respectively. These are approximate solutions which can be proved to be
neither upper nor lower estimates of the true solution. The term ‘true solution’
here relates to the exact solution to the limit state problem, which is subject to
constraints imposed by the boundary conditions and the soil model used
{Mohr—Coulomb failure criterion, associativity of the deformation process). The best
rigorous lower bound to k, /yH (the largest of those calculated based on all known
admissible mechanisms) is the one based on Fig. 2(c): k,/yH = 0.0570. Assuming ¢ = 0
leads to overestimation of the best solution to the necessary reinforcement strength
{32% and 16% for the three- and two-block mechanism, respectively). This does not
come as a surprise, since assuming 0 < @ is equivalent to reducing the actual strength
of the soil.

An example of another kinematically inadmissible mechanism includes rigid rota-
tion in a frictional soil with a circular arc failure surface (Fig. 3(b)). It is evident that the
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velocity discontinuity vector is tangent to the failure surface, thus it violates the
kinematic admissibility for dilative material (Fig. 1(b)).

It should be emphasized that both limit analysis and limit equilibrium are approx-
imate techniques. Rigorous limit analysis, however, yields a strict bound to the true
solution, and, if a number of realistic mechanisms are considered and optimized, then
a solution reasonably close to the true solution can be expected (this has been shown
for some geotechnical problems by achieving a small difference between the rigorous
upper and lower bounds, Michalowski and Shi, 1993). The solution to the necessary
reinforcement strength based on the mechanism in Fig. 2(c) happens to be the best
strict lower bound to the true solution, but it has not been proved to be the true (exact)
solution.

4. Failure of reinforcement

Application of the kinematic theorem to reinforced soils requires that, in addition
to the work dissipation in soil, internal work due to plastic failure (or pullout) of
reinforcement be calculated and included in the term on the left-hand side of Eq. (3).
A rigorous limit analysis solution for a problem with reinforcement will be obtained
only if the mechanism of collapse considered is admissible, i.e., the deformation of the
soil is compatible with the deformation of the reinforcement. Examples of such
deformation are shown in Fig 4. The schematic in Fig. 4(a) relates to collapse of
a flexible reinforcement (such as a geotextile or geogrid) when intersected by a failure
surface (velocity discontinuity). The failure surface is considered here as a finite-
thickness layer with a high velocity gradient. This reinforcement contributes to
stability only through its tensile strength. If the reinforcement fails after reaching its
tensile limit force T, , then the work dissipation rate during incipient failure can be
calculated (Michalowski and Zhao, 1995) by integrating the product of the limit force
and the elongation strain rate within section AB of the reinforcement (Fig. 4(a))

t{sinn
D= j T (&> dx = T,[v]cos(n — @), ()

0

where T, is the limit tensile force (taken as positive) in the reinforcement sheet per unit
width, and 7 is the angle of inclination of the reinforcement layer to the failure surface,
Fig. 4(a). The strain rate in the reinforcement is taken as positive in tension
(€ =[v]cos(n — @)siny/t,and {&) = 0 when  — ¢ > 7/2 (the ability of reinforce-
ment to resist compression is disregarded due to possible buckling and kinking). The
work dissipation rate can thus be calculated directly as the dot product of the limit
force and the velocity jump vector. This type of reinforcement failure is often referred
to as tensile rupture.

In rigid-block failure mechanisms, the work dissipation in reinforcement takes
place only within the shear bands between the blocks, since the strain rate within the
rigid blocks is zero. However, elasto—plastic deformation of reinforced soil takes place
prior to the instant of failure.
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Fig. 4. Collapse of reinforcement: (2) tensile failure of a flexible reinforcement, (b) shear failure of a soil nail,
and (c) plastic hinge formation.

Possible failure mechanisms of reinforcement with shear and fiexural strength, such
as soil nails, are shown in Figs. 4(b) and (c). In the first one the reinforcement shears,
and the second one is associated with the formation of two plastic hinges (see de
Buhan and Salengon, 1993). This paper will concentrate only on the reinforcement
with tensile strength.

The controversial issue of reinforcement force inclination was discussed by Wright
and Duncan (1991) in the context of the limit equilibrium method as applied
to reinforced slopes. Engineering intuition is often used to indicate that, after
a small deformation increment, the reinforcement is no longer horizontal at a failure
surface (Fig. 5(a)), and the direction of the limit force in the reinforcement
taken into the analysis is not well-defined. This ambiguity is easily removed by
using the kinematic approach of limit analysis: the most accurate solution (the
best bound) is one where the safety factor is minimized, or the required strength
of reinforcement is maximized. It follows then that the horizontal reinforcement
leads to the best limit analysis solution. This argument is disputable, however, since it
is not clear whether or not an arbitrary inclination of the reinforcement force is
admissible.

A more detailed argument is made below that the reinforcement force direction
should be taken as horizontal (direction of the reinforcement original placement).
First, the argument is made based on the limit equilibrium approach.
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(a)
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Fig. 5. Schematic for analysis of force inclination at failure surface: (a) small dispiacement of geosynthetic at
failure zone, (b) horizontal reinforcement, and (c) forces acting on displaced reinforcement.

Consider a portion of the failure layer as in Fig. 5(b). The resistance to shear along
that segment consists of the soil shear strength and the contribution of the reinforce-
ment. It will be shown that the reinforcement contribution to the shear resistance, F, is
independent of whether the reinforcing layer is horizontal (Fig. 5(b)) or its configura-
tion is altered due to a small shear along the failure surface (Fig. 5(c)).

If the force in the reinforcement reaches its limit, T,, the contribution of the
horizontal reinforcement to the shear resistance at the failure surface can be calculated
directly as

F = T,sinntang + T,cosy, (8)

where angle 5 is shown in Fig. 5(b), and T, is the tensile strength of the reinforcement
per unit width. Physically, some deformation is needed to mobilize the limit force in
reinforcement. However, Eq. (8) is consistent with the rigid-perfectly plastic material
(used in limit equilibrium method), which requires only infinitesimal deformation
before full strength is mobilized. The same result can be obtained using the kinematic
approach of limit analysis. The energy dissipation rate is given in Eq. (7), and the work
rate of the limit shear force F is

W = F[v]cose 9)

(see Fig. 4(a) for [v]). Now, equating the rate of dissipation in Eq.(7) and the work rate
in Eq. (9), and solving for F, the result is identical to that in Eq. (8).
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The limit equilibrivm method is based on the premise that the soil is in limit
equilibrium, and the reinforcement is in limit equilibrium, but the two do not interact
at the failure zone (Fig. 5(b)). Consequently, the resistance to shear of the two
components, soil and reinforcement, are directly additive. However, once the sliding
increment has occurred prior to failure, the interaction of the reinforcement and the
soil can no longer be ignored (Fig. 5(c)). Thus, if inclined limit force T, (in the direction
AB, Fig. 5(c)) is taken in the free body diagram in limit equilibrium calculations,
reaction R must also be considered. The contribution of the reinforcement to the shear
resistance along the failure surface now becomes

n+é
2

n+o
2

F = T;sindtan ¢ + T,cosé + Rcos tan¢@ — Rsin (10)
(see Fig. 5(c) for angle J). The magnitude of reaction R is now calculated from the
moment equilibrium of two force couples acting on the reinforcement, Fig. 5(c) (all

other forces acting on the reinforcement within the shear band are self-equilibrated)
— 9
R= 2T,sin'7—2~. (11)

Upon substitution of Eq. (11) into Eq. (10), Eq. (8) is recovered again, so the two
analyses yield the same result. Eq. (10) is more indicative of the true mobilization
process than is Eq. (8). The analysis shows that the resistance to shear is unique, but
taking the horizontal direction of the reinforcement force into the analysis is more
straightforward. Hence, the direction of the reinforcement limit force at the failure
surface considered in the analysis should be taken parallel to the original direction of
placement (typically horizontal). If it is taken as inclined, then an additional soil-
reinforcement interaction force needs to be taken into account, which is typically
ignored in limit equilibrium analyses. However, deformed reinforcement has an effect
on the stability analysis if it fails by pull-out. This is because the pull-out force
of curved reinforcement is increased due to the belt friction effect. Displacements of
reinforcement at a failure surface were studied by Gourc et al. (1986) in the context of
a ‘displacement method’. This paper does not make use of the results by Gourc et al.
(1986).

The argument from the limit analysis standpoint is similar to that given above. If
the mechanism includes the entire shear band, then the reinforcement force is horizon-
tal, and the energy dissipation rate can be calculated as in Eq. (7). If the mechanism
cuts through the inclined portion of the reinforcement (Fig. 5(c)), then the work
dissipation rate (left-hand side of Eq. (3)) increases due to inclination of the limit
reinforcement force, but the reaction force R now becomes an external force, and its
work needs to be included on the right-hand side of Eq. (3). In either case, the result is
the same.

In order to indicate quantitative consequences of including inclination of the
reinforcement force in stability analysis, but ignoring the soil-reinforcement interac-
tion force, calculations were performed to evaluate the amount of reinforcement
necessary to maintain limit equilibrium of slopes. The soil is granular (no cohesion),
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and the reinforcement strength is characterized by its average magnitude k, (see
Eq. (6)). The results are given in Fig. 6 in dimensionless form k,/yH (y being the unit
weight of the soil), for a range of slope inclination angles (#) from 40° to 90°, and for
internal friction angle (@) of 20°, 30°, and 40°. The mechanism in Fig. 2(c) was used in
limit analysis calculations, uniform distribution of reinforcement was considered, and
the reinforcement force inclination was assumed to be collinear with the velocity jump
vector along failure surface BC. The solid lines in Fig. 6 represent the rigorous lower
bounds to the strength of reinforcement necessary to maintain stability, and the
dashed lines indicate reinforcement calculated with inclined reinforcement forces and
disregarding the soil-reinforcement interaction. It is clear that ignoring the soil-
structure interaction forces leads to underestimation of the necessary reinforcement
strength. This underestimation is small for soils with a large internal friction angle.
For instance, it is 12% for a vertical slope and ¢ = 40°, and it becomes negligible for
slopes with an inclination angle less than 60°. However, this underestimation becomes
substantial when the soil internal friction angle is low (26% for a vertical slope and
¢ = 20°). Although the realistic internal friction angle for granular soils does not drop
below about 32°, lower values are likely to be used in design once the safety factor is
applied. Hence, assuming inclined reinforcement forces in the analysis may have an
adverse effect on the safety of designed slopes.

0
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0.3
0.25 horizontal //
——— inclined /

0.2 /1 e
kt /)90 / /
yH 015 T -

] o -
//’ /3//
o1 o "1~
¢/ o 0~
0.05——A / Z
/
0 5

0 60 70 80 30
Slope angle 8 (deg.)

Fig. 6. Comparison of the reinforcement strength for slopes assuming horizontal and inclined
reinforcement forces.
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The contribution of the reinforcement to stability of a structure is included in limit
analysis through the dissipative term on the left-hand-side of Eq. (3). The energy
dissipation needs to be integrated over all of the reinforcement layers, and for each
layer it needs to be summed over all of the intersections with rupture surfaces. For
instance, the dissipation rate in the second layer (from the top) in Fig. 2(a) is the sum of
the dissipation rates at rupture surfaces 4B, OB and EC. Similarly, in the limit
equilibrium method, the interaction force between the blocks must include the limit
force in the reinforcement. However, this is typically neglected, and the reinforcement
forces are only considered on the outer failure surfaces (for instance, AB and BC in
Fig. 3(a)). Neglecting the contribution of the reinforcement at some of the rupture
surfaces leads to kinematical inadmissibility, since the mechanism (for instance that in
Fig. 3(a)) cannot occur unless the reinforcement along all of the rupture surfaces
(including BD in Fig. 3(a)) is in the limit state. Consequently, the solution from the
limit equilibrium method, where the contribution of reinforcement is ignored at some
of the rupture surfaces, can be proved to be neither an upper nor a lower estimate of
the true solution.

The second mode of failure of tensile reinforcement is pull-out from the soil. The
work dissipation rate can be calculated for pull-out in a way similar to that for tensile
rupture, but with the tensile strength replaced by the pull-out force

D = T,[v]cos(n — o). (12)

Assuming the coefficient of friction between the reinforcement and the soil is y, the
pull-out force can be calculated as

T, = 2lyz*, (13)

where yz* is the overburden pressure, and , is the effective length of reinforcement (see
Fig. 2(c)). Coefficient u is often given as a fraction of the tangent of the internal friction
angle (1 = f, tan @). The pull-out force, T, should be taken in calculations of the work
dissipation rate whenever it is smaller that the tensile limit force, T,.

It should be noticed that the expression in Eq. (13) is approximate, since the stress
on the reinforcement is taken as being approximately equal to the overburden
pressure. While this is a reasonable (and generally accepted) method for calculating
the pull-out force, the estimate of the limit forces or reinforcement strength calculated
from Eq. (3) becomes an approximate solution, and not a strict bound.

Patterns of failure of other reinforced soil structures may not be as intuitively
obvious as those for slopes. Therefore, experimental studies may be useful for identify-
ing the collapse patterns for limit analysis calculations. Results from a study of
reinforced subgrade collapse are shown in Figs. 7 and 8 (Shi, 1996; Michalowski and
Shi, 1997). A small strip footing (width B = 32 mm) was loaded over a medium sand
bed reinforced with strips of geotextiles at a depth of 0.4B. The image of the sand
under the footing (plane strain) was recorded in small intervals with a digital camera.
The process of identifying the displacement field involved a computer technique,
referred to in computer science terminology as a correlation-based motion detection
technique, an alternative to stereophotogrammetry.
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Fig. 7. Near-failure stage of loading of reinforced subgrade: (a) vertical displacement increments,
(b) horizontal displacement increments, (c) shear strain increments, and {d) volumetric strain increments.

The pairs of record files (converted into sets of pixels with varying light intensity, or
gray scale) were processed, where a square template window with a fixed number of
pixels on one image was matched by a candidate match window on the second image.
When a successful match was found, the displacement vector was identified by
subtracting the coordinates of the corresponding windows. This process was per-
formed directly on the computer files, without printing the actual images.
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(a)
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Fig. 8. Post-failure stage of loading of reinforced subgrade: (a) vertical displacement increments,
(b} horizontal displacement increments, (c) shear strain increments, and (d) volumetric strain increments.

The pattern of vertical and horizontal components of displacement increments, at
the stage where the footing was close to failure, are shown in Figs. 7(a) and (b). The
color code used to depict the intensity of displacement increments did not convert well
to the gray scale; however, these images are shown here only to indicate the failure
patterns qualitatively. The maximum shear strain increments, calculated based on the
displacement increments, are shown in Fig. 7(c).
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As expected, the soil underneath the footing moves vertically down, and the soil on
both sides of the footing moves upward. The distribution of horizontal displacement
increments has an interesting feature: the sand moves approximately symmetrically
sideways, but the soil above the reinforcement moves horizontally only in the close
neighborhood of the footing. The reinforcement prevents horizontal displacements of
this layer (but not vertical displacements). Consequently, a clear shear band is formed
along the reinforcement (Fig. 7(c)). The pattern of shear strain increments is not quite
symmetric, with a larger extent of distributed shear on the left-hand-side, and with
a more distinct shear band propagating to the right. In the post-failure stage (Fig. 8)
the collapse becomes clearly nonsymmetric. The reinforcement is being pulled out
from the soil mass on the left-hand side of the footing. The shear band along the
reinforcement is associated with a clear dilation effect (Fig. 8(d)). The reinforcement
still prevents the horizontal displacements in the sand above, therefore the dilatancy
causes an upward movement of the sand layer above the reinforcement (see the
left-hand side of Fig. 8(a)).

The pattern of failure described is characteristic of strong reinforcement relative to
the stress level in the soil. For large footings, a different failure pattern can occur
where the reinforcement fails by rupture.

The above is an example of an effort to identify the mechanisms of failure which can
be used in the kinematic approach of limit analysis. Only the qualitative interpreta-
tion of the small-scale tests is useful.

5. Optimization of collapse mechanisms

Once a type of failure mechanism is selected for use in kinematic limit analysis, its
geometry need not be specified a priori. Instead, the specific geometrical parameters
should be found from an optimization procedure where the best bound is sought.
Examples of admissible mechanisms for a slope collapse are shown in Fig. 9. The first
one is the simplest possible mechanism where the collapse occurs along surface BC. The
specific geometry of the failure mechanism is described here by only one parameter:
angle 6. Let the height of the slope be given, the soil be cohesionless (c = 0), and the
amount of reinforcement necessary to avoid collapse be the unknown (T, n being the
number of reinforcement layers). Let the reinforcement be long enough so that
collapse occurs only through tensile failure, not pull-out. The work dissipation rate in
the soil is zero when ¢ = 0 (see Eq. (5)), and the energy is dissipated during collapse
only in the reinforcement (Eq. (7)). According to Eq. (3), equating the work dissipation
rate in the reinforcement to the rate of work of the weight of block ABC leads to the
lower bound on the amount of reinforcement necessary to avoid slope collapse.
Notice that the slope is not loaded on its surface, so the only nonzero term on the
right-hand side of Eq. (3) is the self-weight term. To illustrate the application of Eq. (3),
we write it here after substitution of the respective terms for the mechanism in Fig. 9(a)

yH?

nTycos(6 — @) = Sapcyvsin(@ — @) = T(cot() —cotf)vsin(d — @), (14)
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Fig. 9. Admissible slope failure mechanisms: (a) single-block mechanism, (b) multi-block pattern,
(c) rotational collapse — uniform reinforcement, and (d) varied spacing of reinforcement.

where n is the number of reinforcement layers, v is the velocity of block ABC, and
S 4gc 18 its area. Then the lower bound to the amount of reinforcement can be solved
for

nT, k, 1
= — 1
sz = JH 2 (cot 8 — cot f)tan(f — @), (15)

where k, is a convenient measure of the average reinforcement strength as introduced
in Eq. (6). Now, since the formula in Eq. (15) yields the lower bound to k,/yH, the
maximum of k,/yH is the best bound, and it can be found from the condition

(i)

a6

=0. (16)

This solution is not likely to yield a good lower bound (close to the true reinforce-
ment strength necessary for slope stability) because the mechanism considered is very
restrictive, with only one variable (6). The mechanism in Fig. 9(b) is more ‘flexible’
(with 5 variable angles), and it is likely to yield a much better bound. The velocities in
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this mechanism are related through the geometrical relations in the hodograph (which
can be constructed in a way similar to that in Fig. 2(b)). Both of these collapse patterns
are in the class of translational mechanisms.

A rotational mechanism is shown in Fig. 9(c). Block ABC rotates about point O,
and the reinforcement yields along failure surface BC. Such a mechanism is kinemati-
cally admissible only if surface BC is log-spiral r = r, exp{(8 — 8¢)tan ¢}, since only
then will the velocity jump vector along BC be inclined to it at angle ¢. The lower
bound to &,/vH can be fouad in the same way as for the simple one-block mechanism,
though the specific expressions for the work rates are more elaborate (see
Michalowski, 1997). Calculations of the best lower bound to the exact value of k,/yH
for a 60° slope (and ¢ = 359), using the three mechanisms in Fig. 9(a—c), yield
k/yH = 0.0378, k,/yH = 0.0433, and k,/yH = 0.0570, respectively (k,/yH = 0.0529 for
the mechanism in Fig. 2(a) where the rupture surfaces are not forced to originate from
point Q). Hence the rotational mechanism yields the best solution, since it gives the
highest lower bound.

Once the dimensionless strength of the reinforcement, k,/yH, necessary to maintain
stability is determined, one can use the relation k, = nT,/H to calculate the necessary
number of layers if reinforcement strength is given (or vice-versa).

This section can be concluded with the following remark: it is crucial in the stability
analysis that the mechanisms considered are kinematically admissible, and that they
are optimized to obtain the best bound possible. Assuming, for instance, that rupture
surface BD in Fig. 3(a) is vertical is a significant constraint on the mechanism, which
will lead to a poor estimate of the true solution. For instance, for a slope with f§ = 60°
and ¢ = 35° (and & = @), the mechanism in Fig. 3(a) yields the necessary strength of
reinforcement equal to k,/yH = 0.0426, while for the same type of mechanism but with
surface BD not being forced to be vertical, k,/yH = 0.0501. The latter is a much better
estimnate, yet not as good as the one based on the mechamism wm Fig. 2(c),
k,/yH = 0.0570 (all being lower bounds to the true value of k,/yH).

6. Length of reinforcement

Design of reinforcement entails both its strength and its length. Two failure modes
@re used i Umil andivsis O} Siopes and wadlls 1o determing ine pecessary Jengtd o
reinforcement: pull-out, and direct sliding over a single reinforcement layer.

Whenever the pull-out force (Eq. (13)) is lower than the reinforcement tensile
strength, the puli-out force should be taken in calculations of the rate of wark
dassypanonITe. 12D, Since Tne pul-ouY Ioree Depends op ineredorcemeny)engin ioe
lower bound to the necessary length can be determined from the theorem in Eq. (3).
THis metfiod’ss iilustrated’in thie example ot"the simple mechanism in Fig. Y(a).

With some layers being pulled out during the incipient slope collapse, the equation
in (14} takes the form

2

(i T, +(n— m)T,)v cos(f — @) = %(eot() — cot f)vsin(@ — @), 17
1
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where m is the number of reinforcement layers that are being pulled out, and n is the
total number of layers. Considering T, as expressed in Eq. (13), and T, = k,H/n, and
rearranging Eq. (17), one obtains

k,_ n
yH n—m

1 2# e *
|:—2—(cot 6 — cot B)tan(6 — @) — e ; 1z ], (18)

where z} is the overburden depth of layer i, and I,; is the effective length of layer i,
which, for the mechanism in Fig. 9(a), is

l,=L — (H — z))(cot§ — cot f), (19)

where L is the total length of reinforcement, and z, is its depth (Fig. 9(a)). Now, given
the length of reinforcement L, one can calculate the necessary strength from Eq. (18). If
the strength, k, /yH, calculated from Eq. (18), is less than that from Eq. (15), then the
reinforcement is longer than necessary. The reinforcement length is sufficient if the
strength from Eq. (18) is equal to that from Eq. (15). Increase of the length beyond this
length does not improve the safety of the structure.

The necessary length of reinforcement can thus be found from Eq. (18), where the
result from Eq. (15) is substituted for the left-hand-side. The maximum of L needs to
be found from Eq. (18) with & being variable. The specific forms of Egs. (18) and (15)
will be different for other failure mechanisms, but the method illustrated can be
applied to any mechanism. It needs to be noticed that the length of reinforcement
depends on the number of layers and their distribution.

The second criterion for calculation of the length of reinforcement in slopes and
walls is the direct sliding of the soil over one layer of reinforcement. Direct sliding
is consistent with translational mechanisms, and the one presented in Fig. 10 is

(a)

(b)

A B Vo

~

Fig.10. Direct sliding over reinforcement: (a) collapse pattern, and (b) hodograph.



R.L. Michalowski/Geotextiles and Geomembranes 16 (1998) 311-331 329

commonly used for slopes and walls. Blocks BCD and ABD move with velocities
vo and v,, respectively, and [v] is the velocity jump at interface BD. The associative
sliding rule on the reinforcement sheet requires that velocity v, be inclined to the
reinforcement sheet at soil-reinforcement friction angle ¢,. The soil-geosynthetic
friction coefficient for direct sliding is expressed here as fraction f; of the tangent
of the internal friction angle, ie., @, =tan” '(f; tang). Limit analysis leads
to the lower bound for the length necessary to prevent direct sliding. This length is
calculated from Eq. (3) in which the left hand side is replaced by the work dissipation
rate in the reinforcement layers intersecting failure surface BD, and the right hand side
represents the work rate of the weight of blocks BCD and ABD. Maximum of the
length should be sought from such balance (best lower bound), with angles & and
o being variable.

7. Distribution of reinforcement

Calculations using the kinematic approach of limit analysis are based on a work-
rate balance equation (Eq. (3)), which can be solved for one unknown only. This
unknown may be the lower bound to the necessary strength of reinforcement, or
upper bound to a limit load (or a safety factor). The technique does not permit
evaluation of the distribution of limit loads, distribution of forces in reinforcement,
etc. The same is true for the limit equilibrium technique. Both techniques are based on
the premise that both the reinforcement and the soil are in the limit state. Hence, it is
assumed that the forces in the reinforcement layers at failure surfaces all reach the
reinforcement strength. However, the distribution of the forces along a single rein-
forcement layer is not determined.

The influence of distribution of reinforcement layers (spacing) on the necessary
strength of reinforcement can be addressed using limit state techniques, provided
a realistic mechanism is considered in the analysis. An example is shown in Figs. 9(c)
and (d) where the same amount of reinforcement is used, but it is distributed
differently. The spacing in Fig. 9(d) is varied to match the triangular distribution of the
‘smeared’ strength. The energy dissipation rate due to reinforcement failure is different
in both cases since the velocity discontinuity vector along BC is not uniform (also, the
most critical failure surface is not the same in the two cases). The distribution in Fig.
9(d) is more effective, since it yields a larger energy dissipation rate. Consequently, the
calculated lower bound to the required reinforcement strength (k,/yH = 0.0497 for
B = 60° and ¢ = 35°) is smaller than that for the uniform reinforcement distribution
(k.,/yH = 0.0570).

In order to address the issue of the influence of the reinforcement distribution
(spacing) on the reinforcement amount/strength, safety factor, etc., the mechanism
considered must be sensitive to this distribution. Whereas it was already shown that
the distribution of reinforcement affects the energy dissipation rate for the rotational
mechanism (Fig. 9(c,d)), the dissipation for translational mechanisms in Fig. 3(a) and
Fig. 9(a,b) is independent of the reinforcement distribution. Indeed, these modes are
not very realistic.
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8. Final remarks

The kinematic approach of limit analysis constitutes a convenient tool for stability
analysis of reinforced soil structures. It provides a rigorous bound to the exact
solution (lower bound to the strength of reinforcement, or upper bound to the loads
causing failure). The method is based on the construction of kinematically admissible
collapse mechanisms, and the balance of the work rate in an incipient failure process.
A dual formulation of the kinematic limit analysis is possible in terms of the
equilibrium of limit forces. However, the kinematics is not made explicitly part of the
limit equilibrium method. Therefore, the mechanisms considered in the traditional
limit equilibrium analyses are not always kinematically admissible, and they lead to
solutions whose accuracy cannot be assessed easily. Limit analysis based on the
kinematic approach removes ambiguities that arise in traditional techniques. Limit
analysis yields a rigorous bound to an exact solution. Therefore, it is possible to assess
which among the admissible solutions is the closest to the exact one (even though the
exact solution is not known). Two very important aspects of limit analysis is assuring
that the collapse mechanisms considered in stability calculations are kinematically
admissible, and that their geometry is varied so as to obtain the best bound to the
unknown quantity (amount or strength of reinforcement, or limit load).

Both limit equilibrium and limit analysis were used to address the issue of the
inclination of the reinforcement force at a failure surface. Limit analysis indicates that
computations should be performed as if the direction of placement of the reinforce-
ment (typically horizontal) was not changed, since its inclination does not influence
the result for the tensile failure mode. Only after a more detailed limit force equilib-
rium analysis does it become clear that the reinforcement force direction should be
taken as horizontal.

Limit equilibrium solutions often suffer from assumptions that are not consistent
with rigorous limit state analysis (these assumptions affect the accuracy of solutions).
The two most common ones are: assuming inclination of interaction forces at rupture
surfaces at angles other than ¢ (to the surface normal), and ignoring the influence of
reinforcement at some rupture surfaces. From the limit analysis standpoint such
assumptions are kinematically inadmissible. Rupture surfaces cannot occur unless the
(Mohr—Coulomb) yield condition is reached, and the mechanism is not admissible
unless the reinforcement across any rupture surface fails by tensile collapse or pull-out.
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