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Associated and non-associated sliding rules in contact friction
problems

R. MICHALOWSKI (pozNaN) and Z, MROZ (WARSZAWA)

AN ANALOGY between dry contact friction and perfect plasticity implies that sliding rules of
rigid or elastic bodies along a contact surface can be derived by using the velocity rules asso-
ciated with the limit friction condition f= 0, or the other function g =0, by the gradiental
rule. The case of orthotropic friction is discussed in detail and it is shown that the model of
wedge asperities makes it possible to derive the non-associated sliding rules. The concavity of
the limit surface results from the non-associated character of a sliding rule. Further, it is shown
that the motion of granular materials can be described by using incremental relations similar
to plasticity relations for hardening and softening materials. Here, however, contact hardening
or softening oceurs. Constitutive relations for contact sliding with account for elastic and plastic
deformations are proposed in the last section.

W pracy wykorzystano analogi¢ zachodzaca pomigdzy prawami plynigcia teorii plastycznosci
a prawami ruchu sztywnych lub sprgzystych blokéw z kontaktasi ciernymi. W przypadku
anizotropii tarcia kontaktowego, rozszerzenie koncepcji stowarzyszonego prawa plyniecia
pozwala na proste wyprowadzenie ogélnych praw ruchu. Rozpatrujac jednak model powierzchni
z jednokierunkowymi nieréwnoéciami, otrzymuje sie niestowarzyszone prawa poSlizge kon-
taktowego. Niestowarzyszone prawo plyniecia prowadzi w efekcie do wklestosei powierzchni
granicznej w przestrzeni sil zewngtrznych. Na przykiadzie zbioru kul i walcow pokazano mozli-
wos¢ przyrostowego opisu ruchu ofrodkéw ziarnistych z uwzglednieniem ostabienia kontakto-
wego. Réwnania przyrostowe maja strukturg analogiczng do rownan teorii plastycznosei ma-
terialdw ze wzmocniepiem i oslabieniem. Rownapia konstytutywne dla poslizgdw kontakto-
wych z uwzglednieniem spreZystych i plastycznych deformacji podane sa w ‘ostatnim rozdziale
pracy.

B paboTe HcronsaoBana aHANOTHA HMEIOMIAS MECTO MECLY JAKONAMM TEUEMMS 1EODUM ILRac-
THUHOCTH B 3aMOHAMY MBIDKEHHA YECTHHEX WIH YOPYTHX GNOKOB ¢ (DPHKIHOMHBIME KOHTAK-
TaMi. B cnyuae aHM30TPONHM KOHTAKTHOTO TPEHHA DACIIMDEHME KOHIIGIIHHA 2CCONUIPORIH-
HOTO 3AKOH2 TEUCHUH NO3BOJIACT MPOCTO BHIBECTH 9aHOHB! ABIMKCHHS. PacCMATPHBAA OZHAKO
MOMens AOBEPXHOCTH € OfHOHANPABICHHBIME HEDOBHOCTAME, MONYUAIOTCA HEACCOLMMPO-

' BaHHBIC 3AKOHEI KOHTAKTHOTO CKONBXKeHus. HeacCONMHPOBAHMLIY 3aKOH TeweHRmsT MPHBOANT
B hipeKre K BOTHYTOCTH I'DAHMUHON NOBEPXHOCTH B IMPOCIPAHCTSE BHEIUHMX CHJI. Ha Opm-
MEpPE MHOMECTBA IIAPOR W LMJIHHAPOB IOKA3AHA BOIMOMKHOCTH ONHCAHUSA B NPHMPOCTAX JBH-
JKCHHA 3EPHUCTBIX CPCI © YYETOM KOHTAKTHOTO OC/AGneHnA, YPaBHCHHA B HPHDOCTAX HMEIOT
CTPYKIYPY AHAJIOIMMHYK) YP2BHCHHAM TEODHH IUIACTHUHOCTH MATCPHMANOB € VIDOUHEHHEM
H ocymabnenyem. Onpeensomue ypaRHCHHA IV KOHTAXTHEIX CROIBKEHHIT, ¢ YIETOM YRDYTHX
U OIRCTHYECKUX TedopMaunii, ApnBeReHbl B MOCIENHeH Tnase paGoTsl.

L. Perfect plasticity and contact sliding rules

THE MOTION of a rigid block on a rough surface is usually considered as a prototype of
a perfectly plastic material model [1]. In fact, the block motion can be assumed to visualize
progressive plastic flow after reaching the yield surface. Thus the velocity components
Vs, ¥y and the horizontal force components T, T, may be regarded as the analogues
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of generalized stress and strains Q and g for a perfectly plastic material. The associated
or non-associated flow rules

(1.1 ' q-:i_—a-%%”— (>0,
(1.2) q= ac;gz) (A > 0)

relate the strain rates with the yield condition F(Q) = 0 or the plastic potential G(Q) = 0
which, in general, may be different from the yield condition.

For the associated flow rule, Eq. (1.1), the inverse relations can be derived by using
the dissipation function D(q) = Q- q, which is a homogeneous function of strain rates
of order one. We have [2] '

1))
(1.3) Q= (q)
q . .
whereas for the non-associated flow rule, Eq. (1.2}, such inverse relation do riot occur
in general.

For the case of Coulomb friction. of a rigid block, the limiting friction condition on
the isotropic surface has the form

1
(14) f(Txy Ty: Q) = (T§+T§)E“NN =0 .
and the velocities V,, ¥}, ¥; can be expressed as follows:
(1.5) V_Ag P -, V—-j.a?‘; i b s Va=0,
(24T (TE4+ T35 '
where

1
A=(E+vhe.
Thus for the specified normal force N, the velocities ¥y, ¥, are derived by the potential
flow rules (1.5). But if we regard Ty, Ty, N and V., V,, V. as conjugate forces and veloc-
ities, the potentiality will not occur since the associated velocity rules would require that
(1.6) Vom dtm V,,=i—-?”—7, V.= —lu,
(T2+T7) (T2+ T3

that is, the block would have the normal separating velocity to the contact surface.

Hence the limit plasticity theorems cannot be extended to the case of dry friction as
this has been demonstrated by DRUCKER [3]. In order to make the kinematic theorem of
limit analysis applicable, we may introduce artificially the dilating layer at the contact
between the material and the rigid wall; this is equivalent to satisfying the relations (1.6).
Such extension of the limit plasticity theorems was discussed independently by MR&Z
and DrescHEr [4] and CoLLins [5].

There exists a class of contact problems where the normal force N is determined from
the equilibrium conditions and only tangential sliding of surface should be specified in
terms of friction forces at the contact surface In such problems the normal force can
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be regarded as a known one and the limit friction condition (1.4) together with the
velocity rules (1.5) provide the required contact conditions, Since the normality occurs
for Ty, Ty and V., V,, regarding N as fixed, we may easily invert the rules (1.5) by in-
troducing the dissipation function

1
(1.7 D(Ve, Vy, N) = Ty Vet T, Vy = uN(PZ+VHE.
Then the inverse relations are
ap Ve éD V.
(1.8) To=—— = pN T Ty= = pN —2
* Vi+vE? ? Vi+V3?

Regarding V., V, as small displacements, the function D defined by Eq. (1.7) can be
treated as-elastic energy due to contact action; the variational principles of elasticity can

Ty
N
N
s
f=0
Tx
b
Ty
v C \ig

T

T8y
I .
) ? 4 ¥
T k :// Vg
D=const
=0
N= const N=coenst

F16. 1. a) Coulemb limit condition in the force space T, 7y, N; b) orthotropic friction condition in the
plane N = const; ¢) dissipation function in the plane Ve, V.

be extended by adding the term (1.7) to the elastic energy of the body. Such variational
principles have been discussed by Duvaut and Lions [11], and reviewed by KALKER [12].
In [10] KALkER formulated the maximum dissipation principle for contact sliding which
is equivalent to the normality rule (1.5).

The case of anisotropic contact friction was discussed by HuBer [6] and MoszYNSKI
[7]. In [6] the analogy between the transformation of the plane stress tensor and force
acting on the block was applied, whereas in [7] a heuristic assumption was made claiming

L o e e e e nr———
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that the potential velocity rule (1.5) applies also when surface asperities have preferred
orientations.

Consider for instance the case of orthotropy and assume that the principal axes of
orthotropy coincide with the reference axes x, y. Let the limiting friction condition have
the form

2 T,

1.9 Tey Ty, Ny = 5+ 2 ~N2=0
(1.9) ATz, Ty, N) P
and the velocity components be

s df 52T, _ s 4f & 2T, _
(L10) Vx—,’.—a—T—x—}. 2 V””’lary“l"ﬁ’ V.=10,
where

. 1
(1.11) A= %N“[Qu:Vx)”O»y V)P
The dissipation function is expressed as follows:
3
(1.12) D = ToVet T, V, = 2AN? = N[(= V)2 + (uy VT2
The inverse relations are generated by the dissipation function, that is,
2 2

Wy To=Loay# oDy A

* [(}"x Vo + (:u.v vy Z]E Y [(x Vo) + (nu‘P Vy)?-]z

Denoting the inclination angle of the force T to the x-axis by § and that of the velocity
vector V by , Fig. 1, it follows, from Eq. (1.10) or Eq. {1.13), that

tgd  py
Let us denote by 7, the value of force T associated with the velocity vector V inclined
at the angle « to the x-axis. In view of Eq. (1.13) we have

2
(1.14) fgd _ K

1

picos?a+ uysin®o )2
2 2 2ein 2
M5CO8T e+ uysinca

(1.15) Ty = N, iy = (

where u, is a directional coefficient of friction. The value of g, defined by Eq. (1.15) is
different from that derived in [6], namely,

(1.16) Uy = fyCOS20+ t,8ina

or the value

1
(1.17 ta = (plcos?a- ulsina)?
following from the assumption that the limit condition (1.9} can be reduced to Eq. (1.4)
by using the transformed variables Ty = Ti/ux, Ty = T,/p, and applying the relation
(1.8), that is,

(1.18) m=L_y_ Y p-D_y

T m T
SN a6 AN A 5E

Yy
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Obviously, the relations (1.16)-(1.18) do not satisfy the normality rule in the sliding
plane and do not follow from any physical model of the contact surface. On the other
hand, the gradiental laws (1.10) and (1.13) can be generalized to any limiting conditions
S =f(Tx, T,, N) and any case of anisotropy and thus can be accepted as general sliding
rules. It remains an open question, however, if such normality rules as suggested by Mo-
szyfiski are theoretically or experimentally substantiated. To investigate this question we
consider a simple model of anisotropic asperities and show that potential flow rules in
the sliding plane are not valid in genreral. Thus the non-associated velocity rules should
be employed, using the potential function different from the limit friction condition.
Moreover, the concavity of the limit surface occurs and it is related to a non-associated
local sliding rule. In the next section we discuss two simple examples to illustrate this
property. Next, the configuration hardening and softening effects will be briefly discussed
and a phenomenological description of hardening or softening contact friction will be
presented.

‘2. Example: a simple model of surface with unidirectional wedge asperities

The phenomena occurring at the contact surface and within the boundary layer are
associated with large elastic and plastic deformation of randomly distributed asperities,
thus resulting in the so-called Amonton's or Coulomb’s laws of dry friction [14, 15]. In this
section we shall discuss a model where, besides “small” isotropically distributed asperities,
there exists a set of “large” unidirectionally orientated asperities on which the two sur-
faces slide, whereas the interaction of small asperities is simulated by the Amonton’s law
of friction. Thus the anisotropy of friction is simulated by the sliding mechanism on large
asperities and the global velocity rules will be derived as a result of both local isotropic
friction and sliding on inclined planes. Such a model has usually been used in simulating
the relative motion of two layers of spheres or cylinders in order to derive the effective
angle of friction (cf. Rows [13]). It is believed, however, that it is also applicable in
simulating anisotropy of machined metallic surfaces.

Let us consider a prototype model shown in Fig. 2. The rigid block of weight {0 rests

Z

F1G, 2. The coordinate system and the corresponding forces acting on the block resting on the inclined
plane.
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on the plane = inclined at angle « to the horizontal plane. It is acted on by a horizontal
force T whose components in the x, ¥ coordinate system in the horizontal plane are T,
7, and in the local system ¢, ¢, in the inclined plane are T, T,. Note that the ,-axis
coincides with the y-axis. The equilibrium conditions of the block require that

(2.1 T, = Tecose—Qsina, N = T.sina+Jcosa
and the limit friction condition {1.4) is expressed as follows:
(2.2)
AT, T3, Q) = Ti(cos®o— pu*sin®o) — T @sin2et(l + u?) + T2+ Q2 (sina— p?cos?e) = 0,

which is valid for N = Tysine+Qcosa > 0. The condition is represented by a conical
surface in the space T, 7}, Q, whereas in the plane Q = const we obtain an ellipse when
T T
7 7
angle of friction, ¢ = arctgu. Assuming that sliding occurs within the z-plane along the
maximal tangential force, we obtain

d+p < a parabola when a-+p = % and a hyperbola for e+g > —. Here g is the

@.3) v, =i Tycosa—Qsine o V=i . T, i
[(Tycosa—Qsina)?+ T2 [(Txcosa—Qsine)®+ T2E
and
Ve _ (Ticosa—Qsind)cosa
(2.4) 7, = T, .

It is seen that this ratio is different from that following from the associated flow rule,
namely,

@.5) Vi _ Ti(cos’x—p?sin®a) —Qsinacos a(l +p)?
' Ve T,
and the velocity potential has the form .
1
2.6) g(Tx, Ty, ©) = [(Tecosa—Qsina)? + T2 —-C =0
so that
‘ . Og : Og s 0g
2.7 e = A = i=—=, .= = A
@7 Vesdgr Vei=iap 30

The velocity potential is represented by the ellipse on the 7%, T, — plane. Figures 3a
and 3b show the elliptical and the parabolic yield conditions as well as the velocity po-
tential. Connecting the typical point P on the limit surface /= 0 with the centre of the
ellipse g = 0, we determine the associated point R on the velocity potential and the
horizontal velocity vector is directed along the gradient vector at R. Note that the poten-
tial (2.6) generates also-the vertical velocity ¥ and the “dilatation” angle is defined by
the relation

=

(T cosa—-Qsing)sina

@.8) siny = .
[(Tcoso—Qsin)* + T2

<

VI



ginTy =0

flz1)=0

P
30
p=0577

alfxly = o

Fi1G. 3. a) Elliptical yield condition f = 0 and the velocity potential g = 0; b) parabolic yield condition

f =0 and the velocity potential g = 0.

[265]
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Consider now the model of two rigid plates shown in Figs. 4a and b. The upper plate
is acted on by the horizontal force inclined at the angle o to the y-axis and the wedge
asperities at the contact are aligned along the y-axis. The three mechanisms of motion
may occur depending on the angle ¢: )

i) motion with active contact on the left lank of the asperity, N, > 0, N, = 0, ii) mo-
tion with active contact on the right flank, ¥, > 0, N; = 0, iii) sliding along the y-axis

a b

F16. 4. a) ; b) A simple model of parallel asperities; c) the forces acting on the single asperity,
with the two active asperity flanks, NV, > 0, ¥, > 0. The first two cases correspond to
the previous example and the limit condition takes the form
(29  filT:, T,, Q) = Ticos?o;—p2sin?o) — T Qsin2e,(1 + p2) + T2

' +0%(sin%e;~ p2cosy;) = 0,
where { = 1 when N, = 0 and { = 2 when N, = 0. In order to investigate the third

mechanism, consider the plate portion with single asperity shown in Fig. 4b. The %qlxi-
librium equations for this portion are

(2-].0) TI = Nl. Sindl “stindz, Ty = M(NJ. +N2), Q ] NICOSO:I —NZCOSOCZ
and since T, = Tsing, Ty = Tcose, from Egs. (2.10) we obtain

N, = T( cos s'inq:) _ sina, ,
u Slne, / sing +sino;,
(2.11)
N, = T( COS s.inqo) ‘ sina,‘
u simer, / sinety +sine,

and the limit condition can be expressed in the form

(212)  f3(T%, Ty, Q) = Tulcoso, +cosor) i+ Tysinluy — o) — O(sine +sine,)u = 0.
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The condition (2.12) applies when &, > 0 and N, > 0, that is, when

sine sina

(2.13) -2 < tgp < L
. P
The velocity potentials now are
1

(2.14) gi(Te, Ty, @) = [(Txcosa;—Qsing)* + TZE—-C =0, i=1,2
and
(2.15) g:(T, Ty, @) = T,¥C = 0.

Figure 5 presents the limit curve f = 0 and the velocity potential g = 0 on the plane
T., Ty (@ = const) for ¢y = %n, o, = %.‘E and g = 1.0,-and Figs. 6a and b show the
limit and potential surfaces in the space T, T, Q. The velocity potential in the Tk, T,

Ty

P =10

Eie. 5. The limit condition £ = 0 and the velocity potential g = 0 for single asperity.

plane is composed of two ellipses and two horizontal lines. Thus, sliding on one wedge
flank is represented by the elliptical potentials and motion along asperity by linear po-
tentials. '

It is interesting to note that the horizontal sliding along the y-axis, is also described
by the non-associated rule when a, # 180—g,, that is, when the wedge flanks are in-
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clined at different angles to the horizontal plane. The vertical component of velocity is
given by Egs. (2.7) and the dilatation angle for mechanisms i) and ii) is determined from
Eq. (2.8). In the case of the associated local velocity rule (1.6), the limit conditions 2.9
remain unchanged. It takes, however, a different form when simultaneous sliding on both
planes occurs. The equilibrium equations for N; > 0, N, > 0 can now be derived from

Q

£ Ty @1=0

41, T.0=0

i{T7,01=0

//“""‘"'—.—_A

Qzconst

alnm: =3 -
&= g M dy=aMp=10

0,(Tc T, Q)=0

9,(nFyQ)=0

9T 1y 0i=0

O =sconst

Fia. 6, a) Limit surface f == 0 in the space Ty, Ty, Q; b) velocity potential ¢ = 0 in the space T, Ty, Q.

the condition that the velocity vectors on both planes are parallel and the angle of inclina-~
tion of these vectors to the planes is ¢ = arctgu. The limit condition (for N, > 0, N; > 0)
can be expressed in the form

(2.16) fiT%. Ty, 0) = Tu{A+B)mp+ Ty(AC—-BDY—Q(C+Dympu = 0
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which applies when

(A V) —~_m—c:u <tggp' < %,

where
4 =cosoey—n pu, k; = kcosé+nsing,
B = cosay+nsp, #Hy = —ksinf+ncosé,
C=sinoy—kop, k;= —kcosétnsing,
D =sine, -tk p, n, = ksiné+ncosé,

and .

1
k =sindtge, m = arcsin(igdtgo), n = (1—k2—m?)2,
1 1
8 = 7(75-{-0!1—&2), &= ~2— (7?,’—011"-0{2), o = arctgu.

The limit condition computed for the associated local sliding rule (1.6) is shown in Fig. 7
where the limit surface corresponding to the non-associated velocity rule and defined by
Egs. (2.9) and (2.12) is presented by the broken line.

It is seen that the concavity of the limit surface, Eqs. (2.9) and (2.12), results from
the non-associated local velocity rule. Thus, whereas local convexity and normality result

Fia. 7. Limit condition f = 0 for associated and non-associated sliding rule (broken line).
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also in global convexity and normality in the force space, the departure from the normality
rule in local contact sliding results in the concavity of the global limit surface and the
non-associated sliding rule for the whole system, both in the sliding plane and in normal
direction.

3. Sliding of cylinders and spheres: contact “softening”

Figure 8 illustrates the mechanism of sliding of a cylinder on the layer of cylinders
of the same diameter. The coordinate axes are used to represent the displacement com-
ponents #x, u,, whereas the force components T, T, are represented in the local system
translating along the displacement trajectory. Points 1-6 correspond to origins of the

[e]
[S1E
L
<~

F1G. 8. Evolution of limit conditions in the displacement plane for a eylinder sliding on the layer of cylinders,

force reference system. It is seen that the limiting friction lines which are described by
Eq. (2.2) with varying o and constant Q undergo modification in the course of motion,
exhibiting the effect of contact “softening” due to varying «. Thus the force T acting
on the cylinder will be a decreasing function of the displacement |u].

Figare 9 shows the solution of a similar problem for a sphere sliding on a layer of
spheres of the same diameter (the combined rotation and sliding is not considered here).
Now the modification of the yield surface is more complex, and both its translation and
rotation are observed.

For a specified translation trajectory in the x, y-plane, the solution is obtained by
solving incrementally the sliding rules (2.7) and accounting for the varying limit condi-
tion due to the variation of the sliding plane tangential to both spheres.

Mathematically, the problem can be formulated in a similar way as incremental rela-
tions in the theory of plasticity with account for hardening and softening [2]. Now the
liroit friction condition can be expressed as follows:

(31) f(Ts Y u) =0,
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and the velocity potential is
(3-2) . g(T’ Y, d) = 0$

where o and p are the Euler angles of the vector normal to the plane tangential to both
spheres at the contact point with respect to the z and x axes. Note that « can be identified
with the angle of inclination of the tangential plane with the x, y-plane. In the previous

Uy 4

pf= . "

Oi i". r ~ Uy

F1G. 9. Evolution of limit conditions in the displacement plane for a sphere sliding on the layer of spheres.

example, both p and « were fixed; however, & now varies in the case of a sliding cylinder
and both y and « vary for the case of a sliding sphere. Hence we have

. . 6g N ag . ag
3.3 = A—c =1 5 SR -
(3.3 Va4 or,’ Vy =4 oT;’ & &0
and
B = AV, 4+ BV,
3.9 - ]
o = CVF,+DV,,

where 4, B, C, D are functions of T, «, and . The consistency relation

o o .,
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together with the relations (2.2), (2.6) and (3.3) form the system of equations which
enables to determine i. Since instantaneous motion occurs in the tangential plane, the
proper use of Egs. (2.2) and (2.6) is justified. In the case of a cylinder we have

» » Vx
(3.6) =0, a=-— Reoes
and

: Rcosa -
(3'7) ;" = af 6g fT’
B 6T
where
. af or -

(3.8) fr= T Tk T, Ty

and R is the diameter of the cylinder. The functions f = 0 and g = 0 are identical with
Egs. (2.2) and (2.6) with varying . The rate & can be expressed as follows:
| .__ fr
or, after using Eq. (2.2), in the explicit form
[2T.(cos2a—pu2sine) — Osin2a(l + p2)] o+ 27, T,

(3.10) == (1442 [sin20(Q% — T2)— 27, (0 cos 24]

The translation and shrinkage of the yield surface can now be computed for the given
increments dT, = Tudt, dT, = f‘,a’! when the active process is performed (see Fig. 8),
or increments of forces can be found for prescribed displacement increments du, = V. dt,
duy = V,dt(*). In the case of a sphere, the yield condition (2.2) must be written in new
coordinates Ty, T, where

(3.1 . T¢ = Ticosp—Tysiny, T, = Tysiny+T,cosy

and y is the angle between the vertical plane, perpendicular to the plane tangential to
both spheres, and the x-axis. Now we have

Rcosee Reosae 7
where
L V!
V) = (V23+¥V;22, & =arctg—,
VY

and R is the diameter of the sphere.
Using the consistency relation

& i
T ST+ Jo

LaeL g

(*) The rate formulation can be transformed into an incremental formulation by selecting any time
scale. Then dT, = T.dr, dT, = Todt, du, = Vedt, duy = V,dt, du, = V. dr.




ASSOCIATED AND NON=-ASSOCIATED SLIDING RULES IN CONTACT FRICTION PROBLEMS 273

together with Egs. (2.2), (2.6) and (3.3), we can determine J in the form

a7, aT, ( aT, aT) )
o1 . —(A 3T +2T, aT,)T A== T + 2T, 73

Rcoso,

[sm(w—}—é)— +cos(y+ 6)( 61; +2T,—~ BaT )]

where T, T, are derived from Egs. (3.11) and
A = 2T (cos?a— pu?sin®e) — Osin2a(l + p2),

aT.\* [T, 8T, 8T, 08T a:r,.) 2[(61“ )" (aT 2
2 bd
B [(ar,;) +(arf)]+2BT (aT o7z o om0 |\ Hlan
2 [
EX
COosS ¢

B = (T.cosa—(@sine)cosy

[

and

T eTy,
B T, + T aT;
T é7T,
Borr oT, +T” 0T,
Now, using Egs. (3.12) and the non-associated velocity rule (3.3) the modification of the
yield surface can be computed (see Fig. 9 where the solution is presented for the specified

trajectory of motion in the x, y-plane),

tgd =

.

~ 4. Elastic-plastic constitutive laws for contact sliding

The preceding discussion of sliding rules for rigid materials can be generalized by as-
suming that both elastic and plastic deformations occur at confact asperities together
with a sliding mechanism on “large™ asperities. Assume that normal and tangential rates

of displacement are decomposed into reversible (elastic) and irreversible (plastic) com-
\

gonents
@.1n Bu = B+ 02, b, = br+oP
with the corresponding constitutive laws

. 1 - 1 . . 1
(4.2) 55“—“?”1\’, fl*“E:Tu ‘5fz='k‘«r‘Tzs
(4-3) 5#2 }Lgn, 5511 = igrlr .fz = lgrzs

where &,;, d;, are tangential displacement components in the orthogonal system 1,2
and 9, denotes the normal displacement component; K, and K; are the elastic stiffness
moduli of the contact layer. The contact yield condition has the form

(44) f(N: Tf: TZ:x:ﬁ)=0:
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where the hardening parameter » describes the contact hardening due to tangential sliding
and § describes the hardening and softening due to variation of the effective contact area,
Acont. = BAioar. Let us postulate that

(4.5) 5= (P GRE, f = B@E,
where B(f) > 0. Differentiating the relation (4.4), we obtain
f Loof
(4.6) f'l‘ 'q-(gu +gt2) +—=5 ET B(B) ;gn =0,
where
. a . Bf f
fr= 6NN+6T T‘+6T2T2
From (4.6), we have
@D A= 7 Ir 7 il
[ (gt +g:z)"+ P B(ﬁ)gn]

and the friction hardening modyius H is expressed by the denominator of Eq. (4.7). The
value of this modulus is thus governed by two processes: hardening due to tangential
sliding on asperities with associated plastic deformations which are localized in the sur-
face layer, and variation of the effective contact area manifested macroscopically by the
normal displacement component with associated hardening and softening.

A more particular form of the relations (4.3) is obtained by postulating that the
sliding is governed by the normality rule, that is, normal and tangential rates of transla-
tion are proportional to components of a vector normal to the surface f = 0, that is,

_ _ o _ o
(4.8) En = TN’ 811 _6_Tl’ £z = 5"1:"2*

These sliding rules correspond to the isotropic contact surface. Whereas » increases with
translation, the parameter § may increase or decrease depending on the rate of change
of the normal component 62 which represents plastic deformation of asperities during
compression.

Figure 10a presents the yield surface in the space T,, T, N. In particular, it may
be assumed that this surface is a rotational ellipsoid whose expansion or contraction
and translation along the N-axis depend on one parameter, for instance,

(4.9) SN, Ty, Ty #, B) = (N—A)? +~&_+T—2—A2 ~0

with the constant ratio of semi-axes m = ¢fa = b/a = tgp. The parameter 4 may depend
on both » and 8, and this dependence is schematically shown in Fig. 10b.
Using Eqs. (4.8), the relations (4.3) and (4.7) take the form

; 1 . N 1 27, . 1 2T,
(4-10) o =F2(N—A)f:r, o E?[—W;frs of, =‘IT m:f:r
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AlA)

A

p

Fi1G. 10 a) Proposed yield surface in the space Ty, 7>, N: b} variation of characteristic contact function
A(B, %) with § and =; c) tangential force — displacement curves for fixed values of N.

where, according to Eq. (4.7),
af of { T3+13 V"

(4.11) H= 2[6_/3 (4 _N)B(ﬁ)—E(T) ]
Figure 10c presents schematically the relation between T and & for two fixed values of ¥
corresponding to points 4 and B in Fig. 10a. In the first case, we observe contact dilata-
tion with corresponding instability after reaching the maximum value at 4’; in the second
case, 7 monotonically increase to B’ and, next, slowly diminishes to the asymptotic value
at B.. The lines connecting the asymptotic points 4., B, and the lines corresponding to
the maximal points are shown in Fig. 10a. Depending on particular forms of A(x, f), the
details of such behaviour may vary, although the general feature of contact behaviour
remains unchanged. A similar yield condition depending only on one parameter § was
discussed by CALLADINE [16] and applied in the derivation of incremental constitutive
Taws for clays.

The anisotropy may be described similarly as in the previous section by expressing
the yield condition in terms of external forces Q, T, T, that is,
4.12 F(Q, Ty, Ty, #i, Bi, otiy wi) = 0, i
where «; and v; define the tangential plane to the contact 7 (f =1, 2, ..., ) with respect
to the global coordinate system x, y, z. Now, local contact properties are described by
the parameters x;, §; whereas the configuration contact hardening and softening is de-
scribed by rate equations for «; and ¥;. An application of such flow rules to the analysis
of the motion of granular materials will be discussed in subsequent papers.

5. Concluding remarks

‘The present paper has an introductory character and applies the concept of plasticity
in the description of sliding rules of rigid or elastic-plastic bodies with frictional contacts.
Due to the non-associated character of a local sliding rule, the rigid body motion on
wedge asperities does not obey the normality rule in the horizontal plane and, similarly,

4%
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the rate of dilatation is predicted by the velocity potential different from the limit condi-
tion. Thus there is no reason to expect that sliding rules for anisotropic contacts will
obey the normality rule and this case calis for further study, both theoretical and ex-
perimental. The theoretically obtained concavity of the limit surface results firom the non-
associated local flow rule. Further, by introducing a more accurate description of the
contact layer based on two state parameters » and f, the velocity rules can be derived
similarly as flow rules in hardening plasticity. The problem of multi-body contact sliding
can be solved, in principie, by using an incremental procedure and tracing the history
of #i, Bi, a;, w; for each contact and satisfying simultaneously equilibrium and com-
patibility conditions. Simple examples of contact softening are discussed in Sect, 3. It
is believed that further development of multi-body unilateral contact mechanics with
proper sliding rules will constitute a uniform formnlation for a systematic study of the
behaviour of granular materials and other frictional systems.
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