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NON-SYMMETRICAL LIMIT LOADS ON STRIP FOOTINGS

RaDosLaw L. MicHaLowskI? and LIANGZHI Youb

ABSTRACT

Limit loads on footings (bearing capacity) can be conveniently analyzed using the kinematic approach of limit analy-
sis. Nonsymmetrical loads on strip footings include the horizontal component of the load and the moment. They can
be also represented as load inclination and eccentricity. For the analysis to be sensitive to nonsymmetrical loads, the
collapse mechanisms also need to be nonsymmetrical, i.e., they need to allow for footing rotation and horizontal com-
ponent of displacement. Based on such mechanisms, inclination coefficients for surface strip footings are derived.
These coefficients fit the numerical limit analysis results better than the coefficients suggested earlier in the literature. It
is also shown that for cohesive-frictional soils the method often used to account for the load eccentricity (where the
footing width is reduced by twice-the-eccentricity) vields a bearing capacity lower than that obtained from the
kinematic limit analysis. However, this method overestimates the bearing capacity for purely frictional seils, particu-
Iarly when the surcharge load is small.
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INTRODUCTION

Limit loads on footings are typically calculated from
an expression which contains three terms, dependent on
the soil cohesion, surcharge load, and the soil weight, re-
spectively. A complete closed-form solution to the prob-
lem is known only for strip footings on weightless soils,
and loaded with vertical loads (Prandti, 1920; Reissner,
1924). Nonsymmetrical loads include horizontal forces
and moments. Moments are always associated with
horizontal loads applied above the footing level. Mo-
ments also can be induced by eccentricity of vertical
loads. Typically, moments are given in analyses as eccen-
tricity e of the vertical load, independent of their origin,
e.g., the wind load or inertial forces due to seismic shak-
ing, can be described in terms of the horizontal load and
vertical load eccentricity.

This paper uses the concept of generalized stresses and
generalized strains, as suggested in structural mechanics
by Prager (1955), and often employed in limit state analy-
sis of structures. The wvariety of possible footing
responses to different loads (symmetric and nonsymmet-
ric) can be considered. The notion of generalized loads
was more recently used in analysis of bearing capacity of
surface footings by Gottardi and Butterfield (1993), and
Salencon and Pecker (1993).

Limit analysis is used in this paper to explore failure
modes of strip footings under nonsymmetrical loads.

Failure criteria which relate to these modes are then inter-
preted as failure surfaces in the space of generalized
stresses. The concept of generalized stresses and strains is
explained in the next section, followed by the analysis of

different failure modes of strip footings. Conclusions are *

then made as to how the inclined forces and moments {ec-
centricity of load) can be included in calculations of bear-
ing capacity, and whether the existing methods should be
modified.

GENERALIZED DESCRIPTION

Generalized Stresses and Strains

Prager (1955) indicated that plastic analysis of struc-
tures could be simplified if one introduced forces and
bending moments in structural members (such as beams,
columns, and frames) as generalized stresses (Qy), and
the corresponding displacement and rotation rates as
generalized strain rates (¢;). He then suggested that the
yield condition and the plastic flow rule be expressed for
the entire structure in term of those forces and strain
rates. Generalized stresses and strain rates are defined
such that their rate of work, W, can be expressed as

W=01¢1+ Qs+ Osgat -+ +Qun. (1)

The vield condition for a structure is then expressed in
terms of O as
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J(Qy; Q2 Osye 0, Gr)=0 (2)
and the generalized associative flow rule is
L 8f(00  A=0if f<0
Gi=mh———, . (3
00 A=0if f=0

where 1 is a scalar multiplier. For instance, the yield con-
dition of beams can be described with only one con-
stant—the vield moment, with the rate of curvature being
the generalized strain rate. The vield criterion of a thin
piate, on the other hand, is a function of two bending mo-
ments and a twisting moment, and the respective general-
ized strain rates are two curvature rates and a rate of
twist. This concept can be extended to footings as present-
ed in the next subsection.

Bearing Capacity of Footings in Terms of Generalized
Stresses and Strains

Generalized stresses can be extended to loads on a
structure. For a strip footing these are: vertical force P,
horizontal force 7, and in-plane moment M (or Oy, O
and @y). The corresponding generalized strain rates are:
the vertical displacement rate of the footing (rate of plas-
tic settlement), horizontal velocity, and the rate of the
footing rotation, respectively. Consequently, the limit
state of a strip footing can be represented as a convex sur-
face in space P, T, M, and it is shown schematically in
Fig. 1(a). This is a composite surface (usually not sym-
metrical) with its different regions corresponding to differ-
ent failure modes.

The solid line in Fig. 1{(b) shows the cross-section of
surface f (P, T, M)=0 with plane M =const. Each of the
segments of this line relates to one specific failure mecha-
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Tig. 1. Failure criterion for strip feotings: (a) schematic of a failure
surface in the Joad space; and {b) cross-section of a fajlure surface
for A= const.

nism of the footing. For instance, segment OK relates to a
rigid rotation mechanism, whereas segment KH is associ-
ated with a translational mechanism. Segment OGH rte-
lates to a mechanism where the footing and the soil imme-
diately underneath rotate as one rigid body, while the soil
in the other parts of the mechanism undergoes continual
shearing. The dashed line in Fig. 1(b) represents limit
loads for translational and rigid rotation mechanisms
which yield larger limit loads (not as good) for footings
loaded eccentrically. Al of these mechanisms are de-
scribed in detail in the next Section.

If a space of generalized strain rates is superimposed
on the space P, T, M, the footing displacement and rota-
tion rates can be, according to the normality rule in Eq.
(3), represented by vectors perpendicular to the yield sur-
face. The corner points (K and H) signify that there may
be more than one displacement mode related to one set
of loads. The displacement rate at such points is a linear
combination of rates for the mechanisms represented at
that point (Koiter, 1953).

Limit analysis will be employed to determine the shape
of the yield surface. Specific failure mechanisms corre-
sponding to different regions of the generalized yield sur-
face are analyzed in the next section.

LIMIT ANALYSIS

The Upper-Bound Approach

Limit analysis is a convenient tool for estimating the
bearing capacity of footings, and it is used here to deter-
mine failure loads on footings subjected to nonsymmetri-
cal loads. The kinematic theorem of limit analysis was
used recently for a very similar problem (Michalowski,
1997), and the details of application of this theorem can
be found therein. The theorem states that rhe rate of
work dissipation is not less than the rate of work of exter-
nal forces for any kinematically admissible collapse
mechanism. This can be written as

S D(éy)dVaQ;qr{-S y,-v,-dV—i—S avidS 4)
v v S

where y; is the specific weight vector, v:is the velocity vec-
tor in the kinematically admissible mechanism, &; is the
surcharge vector, ¥ and S are the mechanism volume and
surface, respectively, and Q;¢; is the work of external
loads applied to the footing (summation convention
holds; see Eq. (1)).

Based on inequality (4) an upper bound to the limit
load can be found. The external forces, in the case of a
footing, include the surcharge load, soil weight, and the
load on the footing P, T and M (or O, ¢ and (). One
of the load components can be unknown, while the other
two must be given. By repeating calculations for different
combinations of the external loads one can trace the en-
tire failure surface.

Mechanisms of Soil Yielding Under a Strip Footing
Mechanisms of foundation soil failure considered here
are presented in Figs. 2-7. These mechanisms are de-
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scribed by letters A through E. In order for the limit anal-
ysis to be sensitive to nonsymmetrical loads, mechanisms
must include nonsymmetrical displacement modes. The
mechanisms selected here are the most realistic collapse
modes which are expected to yield the least upper bounds
to the bearing capacity for a variety of combinations of
eccentricity and horizontal loads.

For calculations to be sensitive to an inclined load (or
horizontal load component), the mechanism must allow
for horizontal displacement of the footing. Otherwise the
work of the horizontal load component is zero, and the
bearing capacity is independent of the magnitude of 7.
Similarly, if the solution to the bearing capacity is to be
dependent on the moment (or eccentricity), the mecha-
nism in limit analysis must involve the footing rotation.

The mutlti-block transiational mechanism in Fig. 2(a)
has a symmetrical geometry, with the rigid blocks sepa-
rated by the velocity discontinuities. When the number of
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Fig. 2. Translational failure mode (Mechanism A); (a) rigid-block col-
fapse pattern; (b} hodograph for vertical displacement of the foot-
ing; and (c) hodograph for nonsymmetrical displacement pattern
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Fig. 3. Nonsymmetric translational mode (Mechanism B): (a) col-
lapse pattern; and (b) hodograph

blocks tends to infinity, this mechanism becomes similar
to the one associated with the static solution of Prandtl
(1920). Notice that, even if the geometry of the mecha-
nism is symmetrical, the footing displacement may be non-
symmetrical, as presented by the hodograph in Fig. 2(c).
This mechanism is not sensitive to footing rotation, and
the limit loads calculated based on this mechanism cor-
respond to point J in Fig. 1(b).

A nonsymmetrical {one-sided) mechanism of a similar
type is shown in Fig. 3(a), and a particular case of this
mechanism is shown in Fig. 4(a), Collapse mechanisms in
Figs. 5-7 all involve rotation of the footing. Deforma-
tion patterns in Fig. 5 and Fig. 6 are alike, with the latter
permitting a separation of the footing from the ground
surface. Similar patterns were used by Murff and Miller
{1977) and, more recently, by Salencon and Pecker
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Fig. 4. Mechanism associated with horizontal displacement of the
footing (degenerated Mechanism B): (a) failure pattern; and (b)
hodograph

Fig. 5. Rotational collapse mode (Mechanism C): (a) collapse patier;
and (b) displacement increments



198 MICHALOWSKI AND YOU

Fig. 6. Rotational mechaism with separation along the footing/seil
interface (Mechanism D}; (a) collapse pattern; and (b} yield condi-
tion on the footing/soil interface
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Fig. 7. Rigid rotation collapse (Mechanism E)
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(1995), both for purely cohesive soils. The last mecha-
nism, Fig. 7, is associated with a simple rigid-rotation
mode.

The mechanisms of failure will be described briefly.
The first two collapse patterns, A and B, and the method
for calculations of the bearing capacity were discussed in
a recent paper (Michalowski, 1997). The foundation soil
is divided into rigid blocks, Figs. 2{a) and 3(a), separated
by failure surfaces (velocity discontinuities). The velocity
boundary condition is velocity V, of the footing. Veloci-
ties of all blocks and the velocity discontinuity vectors
can be calculated as funciions of ¥, from the geometrical
relations in the hodographs, Figs. 2(b}, {c), 3(b). The
work dissipation rate is calculated on all discontinuity
surfaces (it is zero if the soil is cohesionless), The rate of
work dissipation is then equated to the sum of the work-
rate of the unknown vertical limit load (unknown bear-
ing capacity), the rate of the work due to the horizontal
load (given as part of the vertical load, tan d), the work-
rate of surcharge load G, and the rate of work of the soil
weight (see inequality in (4)). An upper bound estimate
of the vertical bearing capacity is obtained from such an
. eauation. The geometry of the mechanism needs to be op-

timized such that the obtained limit load is minimum
(best upper bound).

For a case of weightless soil (=0}, a closed-form solu-
tion was found for the upper bound on the horizontal
limit load causing translation of the footing in the
horizontal direction. This failure mechanism is shown in
Fig. 4(a), with the hodograph in Fig. 4(b). Since the foot-
ing moves horizontally, the solution is not sensitive to the
vertical loading (the rate of work of the vertical load is
zero). The maximum average limit horizontal load p, is

pr=c(l +sin p)e@DTOWY L 5 tan g (1+sin @)l D+erane
(5)
or
Pre=cN;+gN; (&)
where g is the surcharge load, and
N{==(1+sin g)el@/D+dune Ni= N/ tan ¢. (7)

The expressions for the rate of energy dissipation and the
rate of work of external load are given in Appendix A.

The mechanism in Fig. 5(a) is described here in more
detail. The footing and region ABC rotate as one rigid
body about point O. Line AC is a log-spiral

r=roet e 8)

where ¢ is the internal friction'angie {see Fig. 5(a) for
other symbols). The magnitude of the velocity discon-
tinuity vector along AC is

V=@ roelAme ¢9]

where ¢ is the rate of rotation about point O, Note that
8— <0, and both r and v are descending from A4 to C.
Kinematical admissibility requires that all velocity discon-
tinuity vectors be inclined to the discontinuity surfaces at
angle of internal friction ¢. Line CD is a segment of
another log-spiral, and DE is a straight line segment. The
entire line ACDE is a velocity discontinuity (failure sur-
face). The soil in region BCD is subjected to shear defor-
mation. Velocities along CB are all perpendicular to CB,
and increase toward B, consistently with the rotation
about Q. The magnitude of the velocity discontinuity vec-
tor along CD increases according to an exponential law

(10)

where vo=@OC is the velocity at point €, and { is meas-
ured from the horizontal, as shown in Fig. 5(a). The
velocities at singular point B change according to the
same law, except the initial velocity is vep=e&OB. The
velocities are distributed according to a linear function
on all radii between point B and any point on line CD,
The soil in region BDE is subjected to a combination of
simple shear and rigid translation. The velocity discon-
tinuity vector along line DE is constant. Incremental dis-
placements are shown in Fig. 5(b) to better illustrate the
mechanism.

In summary, line ACDE is a trace of the velocity dis-
continuity surface, region ABC rotates in a rigid manner,
area BCD is subjected to shear, and BDE undergoes a

V= vce(C—a)lzma
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combination of rigid translation and simple shear. Line
ACDE is smooth, and lines BC and BD are not velocity
discontinuities.

Based on this mechanism, the work dissipation rate as-
sociated with incipient failure was calculated and
equalted to the work rate of external forces (soil weight,
surcharge load g, and the footing load P, T, and M).
This cquation yields an upper bound to the bearing capac-
ity P (while T and M arc given directly, or in terms of
force inclination, tan =T/ P, and eccentricity, e=M/
P}, Closed-form expressions were found for the respec-
tive work terms, and they are given in Appendix B. Three
parameters fully determine the geometry of this mecha-
nism. Angles «, ff, and w were used in calculations as the
three independent parameters. These angles were varied
in an optimization procedure (with a minimum incre-
ment of 0.01°) where the minimum of the bearing capaci-
ly was sought, since this approach leads to the upper
bound on the true limit load.

The mechanism in Fig. 6{a) is similar to that in Fig.
Sy with the exeeption thal the center of rolation is now
direetly underneatl the footing. The looting-soil inter-
face is considered a frictional and unilateral constraint,
and the footing can separate from the soil (no adhesion).
Since the upper bound approach is used, the mechanism
must conform to the normality rule for both the soil
deformation and interface interaction. Kinematical ad-
missibility requires that the separation vector be inclined
to the interface at an angle not less than the angle of inter-
face friction, ¢ (see Fig. 6(b)), and the discontinuity vec-
tor be inclined at ¢ to line A"C. Consequently, discon-
tinuity A’C must approach the soil-foundation interface
at angle ¢ —¢@,. Calculations are similar to those in the
case of mechanism C, and they are not presented here.

Mechanism £ in Fig. 7 involves rigid rotation of the
region between ground surface BAC and the log-spiral
BDC. This mechanism becomes critical when a clockwise
rotation of the footing is caused by a clockwise moment
which is accompanied by a leftward horizontal force com-
ponent. If the horizontal force component acts in the op-
posite direction, either mechanism C or D become more
critical. This mechanism was earlier considered by Narita
and Yamaguchi (1989), and the details of the analysis are
omitted here.

RESULTS OF NUMERICAL STUDIES

The bearing capacity of nonsymmetrically loaded strip
footings was analyzed using the kinematic approach of
limit analysis and the mechanisms presented in the previ-
ous section. The analysis had two objectives: (1) to test ex-
pressions used in practice for load inclination coefficients
in the bearing capacity formula, and (2) to assess the com-
monly used approximation introduced by Meyerhof
(1953), which suggests that the moment load can be in-
cluded in design by reducing the effective footing width
by twice-the-eccentricity.

Crass-sections of the failure surface for a nonsymmetri-
cally loaded footing are shown in Fig. 8 on plane P/y B2,
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Fig. 3. Failure envelopes for a strip footing (9 =35°, C/yB=5, §=0}

T/y B’ for different moments M/y B, The symmetrical
mechanism in Fig. 2(a) feads to a bearing capacity in-
dependent of moment and load inclination, and it is
depicted in Fig. 8 by peint J (mechanism 4). The nonsym-
metrical mechanism B (Fig. 3(a)) yields the best upper es-
timate of the bearing capacity when the load is inclined
with no eccentricity (see cross section for M=0). The
rotational mechanism C (Fig. 5(a)) is also capable of
yieiding good estimates when M=0; in this case the cen-
ter of rotation (Q) tends to reach a large depth, and the
mechanism becomes virtually translational. The bearing
capacity curve for M=0 is symmeitric, i.e., the limit load
is independent of the sense of the horizontal load. For
load inclination angles larger than about 23° the horizon-
tal load component becomes independent of the vertical
lead, and the footing failure is associated with a horizon-
tal translation similar to that in Fig. 4(a) (although the
weight of the soil is accounted for in Fig. 8). This transla-
tion is predicted by the flow rule in Eaq. (3) associated
with the failure criterion in Fig. 8. Adhesion on the foot-
ing-soil interface was not considered, thus the surface
footing resistance to horizontal loads is limited by the in-
terface friction T=Ntan @..

Once the moment (or eccentricity) increases, the bear-
ing capacity becomes sensitive to rotation, and, there-
fore, the rotational mechanisms in Figs. 6 and 7 yield the
best upper bounds to the true limit load. Whether
mechanism D or E gives better estimates depends on the
combination of horizontal load T and moment M. Con-
sidering the right-handed coordinate system as in Fig.
6{a), all loads, as shown, are positive. In such case
mechanism D gives the best results. If, however, the mo-
ment and the horizontal force are of opposite signs,
mechanism £ (Fig. 7) yields better estimates of bearing
capacity. The respective segments of the failure criterion
in Fig. 8§ are marked as mechanisms B, D or E. Points
with tangents parallel to axis P/yB? can be identified on
limit curves for both D or £ mechanisms. They imply
cases where failure is associated with the footing rotation
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about a point directly below the center of the footing.
The limit curves associated with two mechanisms are not
symmetrical with respect to axis P/yB*=0.

It is also interesting to notice that the interface friction
condition, 7= P tan ¢, may never be reached if the ec-
centricity (or moment) is significant, as demonstrated by
the curves for M/yB*=20 and M/yB*=30.

The influence of the load inclination and eccentricity is
interrelated, as demonstrated in Fig. 8, However, for the
purpose of analysis two effects are separated here, so that
the existing concept of load inclination factors can be
evaluated. Inclination factors, designated usually as i, i,
and /,, are used as multipliers of the respective terms in
the bearing capacity formula

1

P(E)Y=i.cN+igN, +§ iyy BN,
Coefficients i, i, and i, will be derived from three
separate analyses. No load eccentricity was considered in
analyses of these coefficients. When deriving i, both sur-
charge load 4 and y were taken as zero; for , cohesion ¢
and y were assumed to be zero; and ¢ and ¢ were taken as
zero for deriving coefficient #,. This allows one to
eliminate the influence of cohesion, surcharge load and
specific weight on inclination coefficients #, /; and i,. The
coefficients so calculated are, of course approximate,
since, in general, they are not consistent with one mecha-
nism.

For each of the three analyses mentioned in the previ-
ous paragraph, the right-hand-side of Eq. (11) is reduced
to one term, and, after rearrangement, the following ex-
pressions result for the three inclination coefficients

(1)

,_p&) _

= CNc H Q"""O: )’—0 (£2)
p(9)

i = c:O’ =0 13

q qu y ( )

. _2p@) _

fy= ]’BN): 3 ""'"01 q—o (14)

where p(§) is the vertical component of the bearing pres-
sure calculated using mechanism B in Fig. 3(a).
Coefficients N, and N, were taken from classical solu-
tions by Prandtl (1920) and Reissner (1924), respectively

7
N.=(N,—1)cot ¢, N,=tan’ (Z+g>e"“‘“" (15)
and coefficient N, was derived based on limit analysis of
mechanism A in Fig. 2 (Michalowski, 1997)

N?:eo.66+5.lltan¢ tan ¢.

(16)

The inclination coefficients so derived then become func-
tions of internal friction angle ¢ and force inclination an-
gle & alone, and they are reasonable approximations of
the actual influence of the force inclination on the bear-
ing capacity.

The numerical results are given in Fig. 9, for selected
values of ¢. Closed-form approximate expressions for
these coefficients were suggested by Meyerhof (1963),
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Fig. 9. Catculated coefficients i, i, and i, and the closed-form approx-
imation (solid lines) ’
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Hansen (1970), and Vesic (1975). It was found that the
following expressions vield a better fit into the numerical
results from limit analysis

je=i,=(1—sin &)

l'y:(l —sin 5)4.6—31“«5

(I7)

where ¢ is the inclination angle of the load to the vertical.

The expressions in Eq. (17) seem (o match the numeri-
cal results Irom limit analysis well, and it is suggested
that they be used for practical purposes.

it was suggested carlier that coefficient i. be derived
based on what is often referred to as a ‘‘theorem of cor-
respondence’ (Vesic, 1975), which is no more than a
transformation rule, This transformation rule is attri-
buted to A. Caquot {see De Beer and Ladanyi, 1961).
From a plot of the Mohr-Coulomb criterion one can
show that the normal stress for a purely frictional soil cor-
responds to the normal stresses for cohesive-frictional
soil (with the same internal friction angle @) increased by
c cot ¢ {c being the cohesion). This is, for instance, how
coefficient N, in Eq. (15) can be derived once coefficient
N, is known (although, historically, N, was derived by
Prandtl (1920) before N, was found by Reissner (1924)).
This transformation rule, however, is not applicable for
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Fig. 16. The influence of moment on bearing capacity: (a) y=0,
@=20% (b) y=0, §=0; and (¢} c=0, p=40°.

inclined traction. I used, coefficient i, for the cohesive-
frictional soil will correspond to an inclination angle
different than that for purely frictional soil. The rule can
be used, however, when the inclination is zero, since in
such case the direction of the traction for both cases coin-
cide. Notice then that this rule of transformation does
not apply to the coefficients in Eq. (7).

The numerical results from calculations of bearing
capacity of footings subjected to eccentric loads {mo-
ments) are presented in Fig. 10. The axes of the coor-
dinate system represent dimensionless moment M and
limit vertical force P on the footing (both M and P are
per unit length of the footing). A straight line drawn
from the coordinate origin depicts points of constant rela-
tive eccentricity; lines for e/ B=0.1 are marked on Figs.
10(a)-{c}. All examples are given for §=0 and different
combinations of surcharge load. The limit analysis
results are compared to those suggested by Meyerhof
{1953) where the calculations are performed for a sym-
metrically loaded footing, but with the width reduced by
2e (e-eccentricity).

Mechanism I} appeared to be most critical for the
range of parameters calculated, except for cases where ec-
centricity was very small (mechanism C yields a better up-
per bound estimate for small e/ B; see Fig. 10).

It can be concluded from the numerical results that the
suggestion of Meyerhof, for soils with cohesion, is some-
what conservative when compared to limit analysis (Fig.
10(a), (b)). This conclusion does not come as a surprise,
and it can be supported by a more analytical argument.
The general expression for the bearing capacity based on
mechanism C is given in Eq. (36). A similar expression
for mechanism D (and §=0) can be derived as

; _
q
P leg‘ c? (rgsmﬁ)z
B e I n Bsin o
B+2+Bcosﬁ

(18)

where ry/ B is given in (28), and ¢ is introduced here for
the convenience of differentiating

_ sinf
t_sin (B—a)

and coefficients ¢’ are similar to those in Eg. (36) (but
divided by 1?). The geometry of the mechanism depends
on three variables (angles): «, § and w. The best upper
bound to bearing capacity can be found when partial
derivatives of P/cB with respect to the variables are zero.
In Eq. (18) angle § is present only in the expression for ¢,
hence the minimum conditions with respect to § can be

written as
9 P)“O
at\cB/

(1)

(20
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which leads to

tcosmxl—ZE. 2n
Substituting Fq. (21) into Eq. {18} yiclds
ﬂ‘ i
P ‘%"g;_;gé e
"E:ZMW;“JS‘ZQ—“(I—ZE). (22)

The multiplier in the parentheses in Eq. (22) is equivalent
to Meyerhof’s “‘effective width” hypothesis. However,
Meyerhof (1953) suggested that this multiplier be applied
to the bearing capacity for centrally loaded footing (not
subjected to rotation). A symmetrical mechanism for a
footing of width B, but with a wedge of width B-2e, is
kinematically inadmissible, and an estimate of bearing
capacity should be expected to be conservative (as shown
in Fig. 10(a), (b)). Nevertheless, Meyerhot’s suggestion
seems to be reasonable for soils with cohesion. However,
the same argument cannot be used for purely frictional
soils, where the Meyerhof’s hypothesis may lead to an
overestimate of the bearing capacity (Fig. 10(c)).

FINAL REMARKS

The kinematic approach of limit analysis was applied
to the problem of bearing capacity of surface strip foot-
ings subjected to nonsymmetrical loads. This approach
leads to a strict upper bound to limit loads. If the bearing
capacity is to be sensitive to the load inclination or its ec-
centricity, the mechanism used in the analysis must be
nonsymmetrical. Otherwise, the work rate of the nonsym-
metrical part of the load is equal to zero, and the calcu-
lated vertical limit load (bearing capacity} becomes inde-
pendent of the magnitude of both the horizontal compo-
nent of the force and the moment.

Closed-form expressions are suggested for inclination
coefficients to be used in the bearing capacity formula.
These coefficients are derived as an analytical approxima-
tion to numerical results, and they fit these results better
than those suggested earlier in the literature. It is also
noted in the paper that the transformation rule (often
called the “‘thecrem of correspondence’) is not applica-
ble for deriving the inclination coefficient associated with
cohesion, as suggested in some earlier papers on the sub-
ject.

The same approach was used to assess the influence of
the eccentricity on the bearing capacity. An often-used
method (suggested by Meyerhof, 1953) where the footing
width is reduced by twice-the-eccentricity was found to
be conservative for soils with cohesion. This is consistent
with findings of Salengon and Pecker (1995). However,
for purely frictional soils, this method can lead to an
overestimation of the true bearing capacity. Whereas
Meyerhof’s technique leads to an inadmissible failure
mechanism when interpreted in terms of limit analysis, it
has been widely accepted because of its simplicity.

ACKNOWLEDGEMENT

The work presented in this paper was supported by the
National Science Foundation, grant No. CMS-5634193.
This support is greatly appreciated.

REFERENCES

1) Gottardi, G. and Butterfield, R. {1993): “On the bearing capacity
of surface footings on sand under general planar loads,’” Soils and
Foundations, Vol. 33, Ne. 3, pp. 68-79.

2} De Beer, E. E. and Ladanyi, B. (1961); ““Etude experimentale de la
capacité portante du sable sous des fondations circulaires &tablies
en surface,’’ Proc. 5th Int. Conf. on SMFE, Paris, Vol. 1, pp. 577-
58t.

3) Hansen, J. B. (1970): **A revised and extended formula for bearing
capacity,’” Geoteknisk Inst., Bulletin, Vol. 28, pp. 5-11.

4) Koiter, W, T. (1953): “*Stress-strain relations, uniqueness and varia-
tional theorems for elastic-plastic materials with a singular yield
surlace,” Quarl, Appl. Math., Vel 11, pp. 350-354.

5) Meyerhof, G. G. (1953): ““The bearing capacity of foundations un-
der eccentric and inclined loads,’” 3rd Int. Conf. on SMFE,
Ziirich, Vol 1, pp. 440-445.

6) Meyerhof, G. G. (1963): **Some recent research on the bearing
capacity of foundations,” Can. Geotech. 1., Vol. 1, No. 1, pp. 16-
26.

7) Michalowski, R. L. (1997): ““An estimate of the influence of soil
weight on bearing capacity using limit analysis,”” Soils and Founda-
tions, Vol. 37, No. 4, pp. 57-64.

8) Murff, J. D. and Miller, T. W, (1977): “Foundation stability on
nonhomogeneous clays,”” J. Geotech. Engrg. Div., Veol. 103, No.
10, pp. 1083~1096.

9) Narita, K. and Yamaguchi, H. (1989): “‘Analysis of bearing capaci-
ty for log-spiral sliding surfaces,” Soils and Foundations, Vol. 29,
No. 2, pp. 85-08,

10) Prager, W. (1955): *“The general theory of limit design,” Proc. 8th
Int. Congress Theoretical and Applied Mechanics, Istambul 1952,
pp. 65-72,

11) Prandtl, 1.. (1920): “{ber die Hirte plastischer Kérper,” Nachr.
Ges, Wissensch, Gottingen, math.-phys. Klasse, 1920, pp. 74-85.

12) Reissner, . (1924): ““Zum Erddruckproblem,” in Proc., st Int.
Congress for Applied Mechanics, Biezeno, C. B. and Burgers,
1. M. {eds.), Delft, pp. 295-311.

13} Salencon, J. and Pecker, A. (1995): ““Ultimate bearing capacity of
shallow foundations under inclined and eccentric loads. Part I:
purely cohesive soil,”” Eur. J. Mech. A/ Solids, Vol. 14, No. 3, pp.
349-373.

14) Vesic, A. S. (1975): “Bearing capacity of shallow foundations,”
in: Foundation Engineering Handbook, Winterkorn, H. F. and
Fang, H. Y. (eds.), Van Nostrand, pp. 121-147.

APPENDIX A

The expression for the limit horizontal load was ob-
tained using the upper bound theorem with the work
terms derived from the geometric relations in Fig. 4. The
rate of energy dissipation along discontinuity AC is

Dap=BcV, 23)

where B is the width of the footing, ¢ is the cohesion, and
V, is the horizontal velocity of the footing. The dissipa-
tion rates along the log-spiral discontinuity DE, and the
combined rate along CD and within BCD are

DDE=BCV0 sin @ e((ﬂ/2)+¢)tan¢- (24)
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and
Diycp=BcV,[elw/a+anane _ |} (25)

respectively, The footing undergoes horizontal transla-
tion only, thus the work rate of the footing load is in-
dependent of the vertical load and moment

W,=p.BV, (26)
and the rate of work of (he surcharge load is
Wo=—Bg Vs tan ¢ (1+sin g)et™/ ek, @7)

Equating the rate of work of the external force (Eqgs. (26),
(27)) to the rate of work dissipation (Eqs. {23)-(25)) one
obtains the expression for the upper bound to the
horizontal load in Eq. (5).

APPENDIX B

The following relations can be derived from the geo-
melry in Fig. 5(a):

ro_  sine ’ i T8 ptampreans
B sin{f—a) B B 28)
&-—-___S_'El__ﬁ___ L &;—_52 gvtang

B sin(f—a) B’ B B
The rate of external loads P, T, and M can be written as

. |l o ) €
W=PBw 2+B(cosﬁ+smﬁtan§)+8 (29)

where @ is the rate of rotation about point O (Fig. 5(a)),
and d=T/P and e=M/P. The energy dissipation rate
along segment AC of the velocity discontinuity is

- T 21
Dac=cB’w | —

2Af—eang __ 17— Z
B) Tian g € 11=cB*wg; (30)

where ¢ is the soil cohesion. The rates of energy dissipa-
tion along discontinuity segments CD and DE are

. Ror
Dep=cBw — @ [e*"Y—1]=cB*by, (31)

2B%tan
and

Ryry, cos @ sin (o+ )
{

f)m'“‘ R s
2B —cos(utw—y)

sl (-HJ(U!’N (1‘2)

respectively. The rates of dissipation in regions BCD and
BDE are

Ro(Ro+rs)

2Bang TS B o (33)

DBCQ = CBZC(:?

and

RoRy cos g sin (a+w)
2Bt —cos{at+w—@)
respectively. The rate of work of the surcharge load
along BE, during incipient flow, is

cos ¢ cos (a+ ) & &+ fﬂ)ewanw
—2cos (a+w—¢) B

Dyppe= CBZCE)

e =cB2Gygs (34)

W,=qB%&

B B
=gB%gs (35)

where g is the magnitude of the surcharge load. The up-
per bound to the bearing capacity of the strip footing sub-
jected to the rotational mechanism in Fig, 5(a) was de-
rived as

S q

P ?9'.‘"'2:96
.‘;E;.=l+e+rU +sin A tan & °o
>t g B(cos,B sin ftan §)

where coefficients g; are given in Eqgs. (30)-(35).





