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Strain localization and periodic fluctuations in granular flow
processes from hoppers

R. L. MICHALOWSKI*

Patterns of discharge processes of a granular
material from plane containers are presented
briefly. Rupture surfaces, interpreted here as shear
bands, are a distinct feature of the flow patterns.
Either a shock-like or a material character is
attributed to the shear bands. A technique is shown
for calculation of the energy dissipation rate within
shear bands in softening materials. This technique
is used in the limit analysis type of approach to the
problem of extrusion of a strain-softening material
through a pair of smooth flat dies, and to the dis-
charge process of a granular material from a con-
tainer. It is shown that the energy dissipation rate
within a shear band in a non-steady (periodic)
process may be lower than that in a steady-state
flow. It is demonstrated that, if a criterion of
minimum effort is used, periodic fluctuations in

deformation patterns of softening materials can be .

predicted. The proposed analysis is size-sensitive;
the scale effect is introduced through the assump-
tion that the shear band thickness is a material
property. It is essential for the analysis that defor-
mation mechanisms are considered as processes,
not as incipient flow mechanisms (which is the case
in the classical kinematical approach of limit
analysis).

KEYWORDS: granular materials; limit state analysis;
plasticity; strain localization; periodicity.

L’article présent briévement des types de processus
de déchargement d’une matiére graunuleuse i partir
d'un récipient plat. Des surfaces de ropture, inter-
prétées comme des bandes de cisaillement, forment
une caractéristigue trés marquée de ces types
d’écoulement. On atiribue aux bandes de cis-
aillement ane nature analogue & un impact ou bien
une nature materiefle. Une technique est présentée
pour calculer la vitesse de dissipation d’énergie a
Pintérieur des bandes dans des matidres qui se
ramollissent. Cette technique est utilisee dans
Panalyse limite appliquée & Pextrusion d’une
matiére qui se ramollit i fravers ume paire de
matrices planes et lisses et aussi au processus de
déchargement d’une matiére granulense a partir
d’un récipient. On montre que la vitesse de dissi-
pation d’énergie a’ Pintérienr d’une bande de cis-
aillement dans un processus non-stationoaire
(périodique) peut étre inférieure & celle dans un
écoulement staticonaire, Il est démoniré que si on
emploie un critére d’effort minimal, des variations
périodiques dans les types de déformation des
matiéres qui se ramollissent peuvent &tre prédites.
L’analyse proposée dépend des grandeurs, Peffet
d’échelle étant introduit par Phypothése que
Pépaisseur de la bande de cisaillement est une prop-
rieté du materiau. Pour cette analyse il est essen-
tiel que les mécanismes de déformation soient
considérés comme des processus et non comme des
mécanismes naissants d’écoulement, comme dans
le cas de la meéthode cinématique traditionnelle
d*analyse limite.

NOTATION
a, b, n, k, material constants
¢ angle of inclination of a shear band
B1, B2, B; material constants
d half-width of a bin
D rate of internal work dissipation
& shear band thickness
strain-rate tensor
E softening parameter (strain invariant)
F =0 vyield function
¢ angle of inclination of the wvelocity
jump vector to the shear band

Discussion on this Paper closes 4 January 1991; for
further details see p. ii.
* Johns Hopkins University, Baltimore.
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x, ¥ local co-ordinate system
& angular velocity of shear band rotation

INTRODUCTION

The flow of granular materials through plane-
strain containers belongs to the class of problem
where strain localization is a very distinct feature
of the process. It may be beneficial, then, to study
the process of the appearance and propagation of
localized shear zones in containers, and to gener-
alizé some of the conclusions, as strain localiza-
tion is a common phenomenon in granular
materials, but it may not always be manifested as
distinctiy as it is ini granular flow in containers.

It is not within the scope of this Paper to
discuss criteria for bifurcation and strain localiza-
tion. The rupture zomes are considered here in
relation to the kinematical approach of limit
analysis, where they are a part of the assumed
velocity fields. It will be shown that including the
strain-softening characteristic of a material in the
analysis may provide some valuable information,
despite the fact that the upper and lower bound
theorems do not hold for such materials.

Flow patterns during the discharge process of
sand from a converging hopper and a paraliel
converging plane bunker will be presented in the
next section. Two types of localized shear zone
will be discussed in the section following that one,
and an application of the results in a problem of
extrusion of strain-softening material through a
pair of smooth flat dies will be shown. Finally, a
demonstration of the application of a density-
softening model of granular material (in conjune-
tion with shear bands formation) in predicting
periodical fluctuations in the velocity field during
the discharge process will be presented.

FLOW PATTERNS OF DISCHARGE
PROCESSES FROM HOPPERS

It is not the objective of this section to present
a comprehensive description of the velocity fields

a) b}

(rupture
surfaces)

of plane-strain flow through containers. The
purpose of presenting the velocity fields is only to
study the experimentally observed behaviour of
rupture surfaces (shear bands). A rather extensive
list of publications concerned with the kinematics
of granular materials in containers can be found
in the review article by Tiiziin, Houlsby, Nedder-
man & Savage (1982). The kinematical patterns
shown in this section are based solely on the
results presented earlier by the Author
(Michalowski, 1984; 1987a).

Flow patterns presented here were obtained on
plane-strain models whose height did not exceed
1:2 m, and width 0-4 m. The thickness of the
models was 4 cm. Only qualitative conclusions
were derived from the tests, and the influence of
friction on the front and rear model walls was not
analysed. Two types of container were tested: a
straight-wall converging hopper and a parallel-
converging bunker (hopper—bin container). In
both cases sand was used with a particle size
range of 0-25-1-75 mm.

The characteristic feature of the velocity fields
was the appearance of discontinuities in the form
of narrow zones with large velocity gradients.
These discontinuities, located by means of

-. stercophotographic technique, are marked by

solid lines in Fig. I and Fig. 2. Dashed lines show
discontinuities that were less distinct in the
stereophotographic image. On initialization of
flow in both the converging hopper and parallel-
converging bunker, a symmetrical pair of narrow
shear zones is created in the neighbourhood of
the outlet. These zones cross cach other some-
where around the axis of symmetry of the con-
tainer and then reach the walls. Subsequently, a
new pair of discontinuities starts from points
where the previous pair reached the walls,

This process repeats itself until the discontin-
uities reach the free boundary in the converging
hopper or the transition zone in the parallel-
converging bunker. While new discontinuities are
being created in the upper part of the container,

free

Fig. 1. Rupture susfaces during discharge flow from plane-strain wedge-shaped
hopper model: (a), (b) initial phase; (c) advanced flow
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Fig. 2. Rupture sarfaces during ﬂisch.arge flow from plane-strain parallel-
converging bunker model: (a), (b) initial; (c) advanced flow

the discontinuities below remain active, but they
do not remain stationary; they move down.
However, it was difficult to determine whether
these discontinuities had the character of material
zones or moved with a velocity different from that
of the material. This difficulty comes from the fact
that only the displacement field could be mea-
sured, and its interpretation as a velocity field is
only approximate, especially when the velocity
field is not steady and the velocity gradients are
high (inside the shear zones).

The advanced phase of fiow is shown in Fig.
1{c) and Fig. 2(c), respectively. The shape of the
free boundary and the shear zones in the converg-
ing hopper stay (approximately) geometrically
similar until the top pair of discontinuities
reaches the neighbourhood of the outlet. Sterco-
photographic observations of the velocity field
throughout the advanced phase of flow in the
parallelconverging bunker seem to suggest that
the geometry of the velocity field remains station-
ary. It will be shown later, however, that this field
undergoes periodic fluctuations.

The type of pattern shown in Fig. 1 and Fig. 2
is usually referred to in the literature as the mass

Q[TTEET BTTI

stationary

flow. For some combinations of geometrical
parameters of the container and propertics of the
granular media, the flow pattern may be quite dif-
ferent, and it will be referred to here as the funnel
flow. A characteristic feature of funnel flow is
that, on initialization of the discharge process, the
material starts to flow only in a narrow core (Fig.
3). The upper boundary of this core propagates
upwards with a relatively high speed (the speed of
upward propagation of the core is about one
order higher than the velocity of the material
inside the core). The speed of expansion of the
core in the horizontal direction (towards the
walis) is lower and is of the same order of magni-
tude as the velocities of the material particies. The
funnel type of flow may appear in both converg-
ing hoppers and hopper—bin containers. Piping
and arching in containers are not considered here,
as they are not of interest from the point of view
of shear band formation.

Figures 4-6 show X-radiographs of the models.
Fig. 4 represents the initial stage of the mass-flow
process from a converging hopper, and Fig. 5
shows the density distribution during funnel flow.
It is clearly demonstrated on the X-radiographs

IHE

shock-like
| shear band

material

Fig. 3. Funnel flow discharge pattern in converging wedge-shaped hopper
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Fig. 4. X-radiograph of initial stage of flow from con-
verging hopper

that the material undergoes dilation while being
sheared in the narrow zones coinciding with the
so-called rupture surfaces. The X-radiograph in
Fig. 6 seems to be the most interesting of all. Tt
was taken during the advanced phase of dis-
charge from a parallelconverging bunker model.
The image of the densities exhibits a periodic
structure (alternate layers of loose and dense
material) in the regions corresponding to the
ABC and A'BC’ areas in Fig. 2(c). However, only
the top pair of the narrow dilated zones are active
discontinuities (shear layers) in the velocity field.
The X-radiograph in Fig. 6 does not represent the
image of the incipient flow but a well-advanced
deformation process. The appearance of the
periodically spaced layers of loose material is
related to fluctuations in the velocity field during
the advanced fiow phase. It will be shown later in
this Paper that a simple limit plasticity approach
may be helpful in predicting such perturbations in
the deformation patterns.

A more elaborate description of flow patterns
shown here, and documented experimental

results, can be found elsewhere (Michalowski
1984; 1987a).

SHOCK-LIKE DISCONTINUITIES AND
MATERIAL SHEAR BANDS

Two types of discontinuity layer can be distin-
guished in the patterns presented. The first type
can be clearly observed in the funnel flow mecha-
nism {Figs 3 and 5). The vertical boundary that
separates the material in the flowing core from
the stationary material moves with a velocity dif-
ferent from the velocity of the particles on either
side. This discontinuity has a finite thickness and
bas the character of a shock in the deformation
field; it will be referred to here as a shock-like
shear band. A shock-like interpretation of discon-
tinuities in granular material velocity fields was
suggested earlier by Drescher and Michalowski
(1984). The shear bands shown in Fig. 1{c) also
have a shock-like character. It is clear that
regions ABC and A'BC' in Fig. i(c) have to
reduce as the process advances, so the material
particles jump across bands BC and BC'.

A characteristic feature of shock-type shear
bands is that the velocities of the material
{measured with respect to the wvelocity of the
band} are different from zero on both sides of the
band. It was impossible to detect from the experi-
ments whether or not these bands have a con-
stant thickness. Displacement fields from the
stercophotographic measurements cannot be
strictly identified with the velocity fields, and the
thickness of dilated (loosened) layers on the X-
radiographs cannot be identified with the thick-
ness of the shear bands. Assuming that an
observer moves with the shock bands (bounding
the funnel zone, Fig. 3 and Fig. 5) the velocity
field with respect to this observer seems to be sta-
tionary in the neighborhood of the shock. There-
fore it is assumed here that the shock-like bands
have a constant thickness. This thickness will be
considered here as material property.

A shock-like shear band is shown in Fig. 7(a).
The material particles enter the band with velo-
cities ¥, undergo acceleration within the band,
and feave the shear band with velocity

pout= Vi 4 [V] M

[¥] being the total jump of the velocity across
the shear band.

The second type of discomtinuity layer con-
sidered here is a material shear band (Fig. 8).
Unlike in the case of shock-type bands, the
boundaries of the material shear band are sta-
tionary with respect to the material outside the
band; there is no material entering or leaving the
shear band. The shear band thickness in a defor-
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Fig. 5. X-radiographs of a funnel-flow mechanism in converging hopper model

mation process increases in dilating materials,
and the density of the material within the band
decreases.

Material shear bands are often observed in
biaxial and triaxial tests of soils in the post-
bifurcation regime (e.g. Vardoulakis, 1980). It will
be shown here that if a material character is
attributed to shear bands AB and A'B (Fig. 2(c)),
periodic fluctuations in the velocity field can be
predicted and the dense-loose layered structure of
the density field (Fig. 6) can be explained.

HYPOTHESIS FOR PREDICTING
PERTURBATIONS IN VELOCITY FIELDS

It has been known for quite some time now
that Jocalization of strain within a plastically
deforming material may take place even under
conditions of a homogeneous stress state. Criteria
for occurrence of strain localization were
discussed by Rudnicki & Rice (1974), Hill & Hut-
chinson (1975), Vardoulakis {1980), Vermeer

(1982), and others. Here, based on experimental
data, it is assumed that localization of strain
takes place during discharge from hoppers. It will
be demonstrated, however, that minimizing the
rate of energy dissipation within shear bands may
provide valuable information regarding periodic
fluctuations of the velocity field.

The criterion of minimum energy dissipation is
often used in plastic forming of metals. If the
body forces are neglected, for any admissible
deformation mechanism the external effort (work)
is equifibrated only by the internally dissipated
energy. Further, if the material is perfectly plastic
and obeys a convex vield condition and the flow
rule associated with this condition, such
approach yields an upper bound to the true limit
lead (or external effort). Thus, by minimizing the
internal energy dissipation, an approximate solu-
tion to the limit load problem can be found. A
similar approach was applied earlier to strain-
hardening metals. The theorems of limit analysis
do not hold for hardening-softening materials;
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Fig. 6. X-radiograph of advanced discharge process from
parallel-converging bunker model

however, the results obtained (Michalowski, 1986)

seem to supgest that this method may be a valu-

able engineering tool for such materials. This
method was also used by Drescher and Kang
(1987) for evaluating penetration forces of hard-

ening soils. Here it is applied to predict pertur-
bations in the velocity field.

The reasoning is as follows: a kinematically
admissible steady-state deformation field is
assumed, the rate of internal energy dissipation is
calculated, and the (stationary) geometry of the
mechanism is found for which the rate of dissi-
pation reaches its minimum. Next, a perturbation
of the mechanism is assumed in which the discon-
tinuities (shear bands) in the mechanism are
aliowed to propagate in space. This causes the
strain rates within the shear bands, and thus also
the energy dissipation rates, to be different from
those in the steady-state mechanism. It is
assumed that the mechanism generating the least
energy dissipation rate is most iikely to appear in
a physical process. Thus, if the level of the dissi-
pation rate in the mechanism undergoing pertur-
bations is lower than that in the steady-state
mechanism, perturbations in the physical process
are likely to occur. This idea was first presented
in 1987, and discussed further in 1989
{Michalowski, 1987b; 1989).

The above should be considered a hypothesis,
as it lacks a mathematically rigorous preof. In
problems where body forces or stress boundary
conditions are important, a hypothesis of
minimum applied (external) effort is more appro-
priate than the minimum dissipation rate hypoth-
€518,

The minimum dissipation rate hypothesis does
not necessarily lead to a process in which the

" total encrgy dissipated (integrated over time) is

minimal. This is because in a non-steady process
the rate of energy dissipation may increase while
the process progresses. However, switching to
another process (with a lower dissipation rate)
may be kinematically inadmissible once a particu-
lar deformation pattern has already developed.

EXTRUSION OF STRAIN-SOFTENING

MATERIAL THROUGH SMOOTH FLAT DIES
Before the analysis of sand flowing through a

plane hopper-bin container is presented, a related

Fig. 7. Shock-like shear bands with constant strain-rate across thickness &: (2) in
dilating material; (b) incompressible material
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Fig. 8. Material shear band (dilating material): (a) at time # = t5; (b) at £ =1, + Ar

problem for an incompressible strain-softening
material is considersd. Fig. 9{a) shows a kine-
matically admissible velocity field of an extrusion
through a symmetrical pair of smooth dies (plane
strain}. The following is not a rigorous solution to
the extrusion problem, but only a demonstration
of the applicability of the proposed analysis in
predicting periodic fluctuations in the velocity
fields in strain-softening materials. Therefore, to
reduce the number of computations, oniy the dis-
sipation rates generated by bands AB and A'B
(Fig. 9(a)) will be calculated.

Consider a shock-like shear band of thickness
o, with linearly distributed velocity jump [¥]
(Fig. 7(b))

VY = [vip/é) @

where [¥] is the length of vector [V] and y is the
co-ordinate of the local system (see Fig. 7(b)). The
material is assumed to obey the Tresca yield con-
dition, but yield point k is the decreasing function
of sirain

k=ky—b{l — e~ % (3)

where k,, b and a are the material parameters.
The material is assumed to be incompressible

a)

(associated flow rule), thus, vector [¥] is parallel
to the shear band; & is defined here as

= \/(%Eijlsijl)s 5;," =&y %Ekk 6ij “)

where g;; is the strain tensor (for an incompress-
ible material g; =&, For the particular case
considered here (steady-state) the distribution of &
across the shear band is

TN 4!
RECRNEEEE ¥

¥,!» is the component of vector ¥ (Fig. 7) and é

. is the thickness of the shear band. Equation (5)

was arrived at by integrating the strain rate,
&, = [V1/26, over time t spent by a material
clement inside the shear band, t = y/V,* (i, is
constant within the shear band due to assumed
linear distribution of [V, and is constant in time
for the steady state process). The rate of work dis-
sipation per unit area of the shear band (in the
x0z plane) can be expressed as

(]
b= L o3y by dy (6)

Fig. 9. (a) Kinematically admissible velocity field for plane-strain extrusion problem
through pair of symmetrical dies; (b) hedograph (¥, is velocity boundary condition)
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For an incompressible material and constant
shear strain-rate across thickness §, Equation (6)
can be written as

R 1
D=[V] SJ- k) dy (6a)
s}
and, after utilizing Eguation (3)

B = (ko - BIV] + /3 2 e

(5] o
Y

The total dissipation rate within stationary
shear band AB (Fig. %(a)) now can be found by
integrating Equation (7) along AB (multiplying by
distance AB). Angle o corresponding to the
minimum of the total dissipation rate (in the

steady-state process) can be obtained using a
numerical procedure minimizing the dissipation
rate function (minimum effort hypothesis).

The total dissipation rate along band AB in the
steady-state process is represented by the hori-
zontal section of the continuous diagram in Fig.
1%{a). The ordinate denotes the dimensionless dis-
sipation rate, and the abscissa shows the
advancement of the process {dimensionless time).
V, is the velocity boundary condition {Fig. %(a)).
The dissipation in the steady-state process is con-
stant. The first section of the continuous diagram
corresponds to initial phase of the process where
the virgin material (not yet softened) fills the
shear band.

Consider now a small perturbation of the
mechanism, shown in Fig. 9(a), where the end
point of shear band AB moves from position B to
B* in time increment At. This causes rotation of

/ 174
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// /:.,
\ e 74
LN v // /
046 i e
11 \\ - ///
4 1 —_BJa=002 S
\ - s
Iy ///
03P A e
EH RN PRs
1 \ -
i \ - -
\ -
\ \..,6_/_11.~u,01 e 8=30°
A - - bk, = 0.75
0.2} “w_&d-0002 7 >
—— a=10
0‘1 L ) 2 I3
05 10 v, t
b) o d

8=30°
- p/k,= 075

1.0

2t

d

Fig. 10. (a) Work dissipation rate (dimensionless) integrated along shear
band AB (Fip. 9(a)) as function of process advancement (internal time); (b)
cyclic Buctustions in work dissipation rate for two strain softening
materials with different rates of softening
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shear band AB around point A. Such mechanism
is kinematically admissible. Velocity jump vector
[¥1 across AB can be calculated for any position
of AB (hodograph, Fig. 9(b)). Velocity ¥, will
vary now due to variation in the mechanism’s
geometry (angle o) and due to the fact that it is
measured with respect to the (moving) shear band

V" =V, cos « — dx 8

This causes the strain rates to vary along the
shear band, and, as long as the rotational velocity
@ of shear band AB is clockwise, the strain rates
will be higher than those in a stationary shear
band. Therefore, lor a strain-softening material, it
is reasonable to expect a decreasing dissipation
rate with its gradient at ¢ = 0 steeper than that
for a stationary band. On the other hand, due to
geometrical changes, the dissipation rate will
gradually increase (the position of the shear band
at t = 0 corresponds to minimum dissipation in
the steady state process). Therefore, one should
expect the dissipation rate function to have a
minimum with respect to time.

Dissipation rates for a non-steady process as
functions of dimensionless (internal) time are rep-
resented in Fig. 10{a) by the dashed lines. These

dissipation rates cannot be obtained by simply -,

integrating (7) over shear band length AB with
¥, described by Equation (8). The process is now
non-steady and the profile of material strains
across the shear band thickness changes as the
process advances. The calculations were per-
formed numerically.

The shear band was divided into ten elements
and the process was divided into small time
increments (AV,t/d =5 x 107%). Strain incre-
ments were then calculated across each clement,
and integrated at every time step, so the current
yield point distribution across the elements could
be calculated according to Equation (3). Note
that V™ changes according to Equation (8),
where angle o (see also Fig. 9{a)) is updated at
every time step (do = @ df). Next, the work dissi-
pation rate was numerically integrated within
each element (Equation (6)) and summed over all
the elements.

As opposed to the steady-state solution, the
dissipation rate is not constant in time and it
depends on thickness & of the shear band. This is
a clear scale effect introduced into the analysis
through the assumption that the thickness of the
shear band is a material property (independent of
the size of the boundary value problem). Thick-
ness & can be regarded as an internal length
parameter.

The scale effect was not present in the steady-
state solution. In steady-state flow across a
(shock-like) shear band of any thickness 4, the
distribution of strains (and, thus, the yield point)

is identical {for a given [V]) if normalized with
respect to 6. The work dissipation rate, as the
integral over the shear band thickness, is then
independent of a specific 4, since the strain-rate
components are inverse functions of é. This is not
the case when a non-steady process takes place.
In the latter, the distribution of strains across
thickness & is picce~-wise linear and its gradient in
the part (say 6,) occupied by the material which
has entered the shear band {with velocity ¥ is
different from that in the part (3,) occupied by the
material which has been associated with the shear
band from the instant the shear band was formed.
The magnitudes of the material strain and the
ratio 8,/6, depend on the time lapsed and total
thickness &, thus the work dissipation rate is also
a function of time and total thickness of the shear
band, unlike in steady-state flow.

According to the hypothesis described in the
previous section, one should expect the physical
experiment to foliow the non-steady dissipation
curve since it produces lower energy dissipation
rates at the beginning of the process. After the
energy dissipation rate reaches its minimum, it
increases to the level of the initial value. At this
point a new shear band will be formed, as it
requires dissipation rates lower than those
required to continue the process. The new shear
band will be formed at the same spatial location
where the first one started, and the first one will
stop acting as a shear band. Therefore the process
is likely to exhibit periodical fluctuations in the
velocity field.

Periodic variations of the dissipation rate
within moving shear band AB (Fig. 9(a)) are
shown in Fig. 1b). The length of the cycle
depends on both the thickness of the shear band
and on the rate of material softening.

Velocity ¢& of the shear band rotation was not
given a priori. This velocity was determined from
the requirement of the minimum dissipation rate
and was such that it produced a translation of the
shear band in the symmetry axis equal to the dis-
placement of the material (highest admissible @).
Therefore the shear bands considered here were
essentially shock-type in character.

If a solution to the entire problem was sought
(dissipation within the whole mechanism), then
the computations would be far more elaborate, as
the material below the first shear band is non-
homogeneous. The basic properties of the solu-
tion {periodic fluctuations) would stay the same,
however.

PERIODIC PERTURBATIONS IN FLOW
THROUGH BUNKER

The density distribution of sand during the
advanced discharge process from a plane
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parallel-converging bunker is shown in Fig. 6. It
is seen clearly that the layers of dense and loose
material appear alternately in regions ABC and
A'BC (cf. Fig. 2(c)); these layers seem to be paral-
lel to each other. Only the top pair of loosened
layers coincides with the shear bands (AB and
A'B, Fig. 2(c)). An oscillatory mechanism of
forming the shear bands can explain the develop-
ment of the alternate loose and dense layers
{Michalowski, 1987a). The dense material that is
fed from the bin part into the transition zone
undergoes dilation within the top pair of shear
bands. Such dilation effect is expected to take
place in a dense granular (pressure-sensitive)
material. These shear bands do not remain at
their spatial location during the flow process.
They move downwards until a new pair of shear
bands is created above them, leaving a strip of
undiiated material in between. When a new pair
of shear bands is created, the first pair stops
acting as such. This process is continuously
repeated, leaving the layers of loose and dense
material in regions ABC and A'BC’ (cf. Fig. 2(c}
and Fig. 6). Below these regions the material is
homogenized owing to further deformation along
bands BC and BC'.

1t will be demonstrated in this section that, if
the hypothesis of minimum material effort (or
minimum dissipation rate) is adopted, the cyclic
fluctuations in the velocity field can be predicted
through the use of a simple limit analysis
approach.

The material is described here by a density-
hardening—sofiening model with yield surfaces
F(s;;, p) = 0 shown in Fig. 11(a). The material is
assumed to be continuous, so physical relations
can be described in terms of stresses and strains.
B, B., By and k are material parameters describ-

a)
T= 1‘2"‘3
softenin
£ ¥
k{p,) 5
By P2 &

ing the yield condition. Only parameter k is
dependent on density p, (Fig. 11{(b))

a, n, b and p_, are the material constants, p,,,
being the maximum possible bulk density for the
given material (corresponding to minimum
porosity). It is further assumed that there exists a
minimum bulk density p,;,. The density of the
material during plastic flow cannot drop below
Pmins and k=0 at p = p_; . Thus b in function
(®) is not an independent parameter and can be
expressed as

b= a(pmin/pmu)” (0

The material is assumed to obey the associated
flow rule

de;; = dA -QF-, diz0 (11)
do;;

where de;; is the strain increment tensor, gy; is the
stress tensor, F = F(gy;, p) == 0 is the yield condi-
tion for the material and dl is a non-negative
increment of a scalar function A. Variation of
density is dependent on volume strain increment
dey

dp = —pde, (12)

Function A in flow rule (11} can be determined
using condition dF(ey;, p)= 0 for active plastic
processes, and relation (12). This is not done here,
because, in the kinematical approach used, the
velocity field is assumed a priori, and flow rule
(11} is used only to assure kinematical admissi-
bility of deformation within the shear band.

A kinematical mechanism for discharge from a
plane bunker consisting of a parallel bin and

B
k(p) |
1
I
a Prain Poax
hardening
Fls.T.0,)
{?) (r,)
A%
5573

Fig. 11. (a) Yield surfaces as functions of density; (b) parameter k as func-

tion of density p :
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Fig. 12. () Kinematical mechanism for discharge problem; (b) hodograph.
(1t is assumed that material dilates only along shear band AB)

wedge-shaped hopper is shown in Fig. 12{a).
First, steady-state flow is considered. The
material moves down in the bin with velocity ¥,
(the boundary condition), it jumps across the top
shock-like shear band (AB), moves parallel to the
hopper wall, then crosses the next shock-like
shear band (BC), moves vertically downwards
within area BCD, crosses shear band CD and so
on. This mechanism, despite its simplicity, is a
close approximation of mechanisms observed in
experiments, As in the case of the extrusion
problem presented in the previous section, only
the dissipation rate within shear band AB is
analysed.

Total velocity jump [ #] across shear layer AB
can be determined [rom the hodograph, Fig.
12(b). Vector [¥] is inclined at angle ¢ to band
AB. This inclination is related to y with the rela-
tion sin ¢ = tan ¥ (¥ shown in Fig. 11(a)). Both
angle ¥ and angle « (inclination of shear band
AB) are not given a priori, and will be found from
the requirement of the minimum dissipation rate.

Consider now a shock-like band (Fig. 7{a}) with
a linear distribution of velocities in the y-
direction

V,‘=inn+[_.V£.0_s£y
o 13)

In steady-state flow of the material across the
band the volume strain is

1 ¥ d
au=sii=J.éiidt=J- éii_y‘
o o W

=In|l +sind —F% <

where t is the time in which a material element
moves inside the band from position y=0to y
(y £ 6). Using relation (12) the distribution of
density across the shock-like band can be found,
Po being the initial (inflow) density of the material

[¥] g)"
Vyin 6

The rate of work dissipation per unit area of the

shear band (in the x0z plane) can be found now
as

p= po(l + sin ¢ (15)

D= 'r (s, + &) dy (16)
o

where & =[V]sin ¢/3, & =TV]/6 and stress
state invarianis s and t (Fig. 11(a)} are related to
&, and &, through flow rule (11). Finally, the work
dissipation rate per unit area of a shear band can
be written

D = M[V]

a Po "(1+A)‘“"—1
*[““l—n@";::) T4 “’] an

where p, is the inflow density, 4 = sin ¢ [VI/V,™,
and

M=1—tan cot §,,
M = B(l — tan ¢ cot f§,),
where
g S B, sin (8, — B3
sin #, sin (f, — fa}

Formula (17) was used to obtfain the steady
state dissipation rate within shear band AB (Fig.
12(a)} and the computational results are rep-

when 0 3

<y <p
when f; <¥ </,

and tan y =sin ¢
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resented by the horizontal sections of the solid
diagrams in Fig. 13. Thickness J of the shear
band influences the initial phase of the process,
but, once the steady state is reached, the dissi-
pation rate is independent of the band’s thickness.
Computations were performed for angles o and
such that the dissipation rate in steady state was
at a minimum. It seems at first that the minimum
dissipation rate should be obtained for =
B.(D = 0). Such solution is inadmissible, however,
as it would produce dilation of the material to
densities much smaller than the lowest possible
density p ;.-

Consider now a mechanism where the discon-
tinuities shown in Fig. 12(a) move down with a
certain velocity. Again, the analysis is restricted to
shear band AB only. Velocity V™ now depends

D
av,d

(1) &sd=0.01
010 (2) &/d =0.05
{3} 8/d = 0.0

\

\

{
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on the speed of the shear band’s downward trans-
lation, the length of the shear band reduces grad-
ually and strains inside the band increase with
time. As the shear band moves down from the
transition zone, material above the shear band
undergoes a continuous deformation process as it
enters the converging hopper part of the bunker.
X-radiographs suggest that this deformation is
incompressible, as no clear dilation effect can be
observed above the moving shear bands (see the
areas above the top bands in Fig. 6). This defor-
mation will contribute to the total work dissi-
pation. The rate of dissipation within the
continuously deforming field was computed
approximately, as it was done solely for the
purpose of demonstrating the applicability of the
proposed analysis {the energy was assumed to be

g=40° /

stationary shear band
moving {pericdic) band

1

0.20 v

Yoy
d
-
0.03 {1) 5/d =0.01 8= 20° -
(2) /4 = 0.05 P
{3) 574 =0.10 //
0.02 e
-
0.
| H
0.05 0.10 _\_(gq_t

Fig. 13. Work dissipation rate {dimensionless) within shear band A'B’ and
in area ABB'A’ (added together) as fenction of internal time of process: {a)
=40 () O=20°(f, =42°, §, =30°, f;,=20°, p, =175, poi. =
1-45, p,.,. = 190 Mgp/m?, n = 15)
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dissipated within material strip ABB’A’ above the
band, Fig. 12(a), and the principal stress and
strain-rate directions were assumed to be vertical
and horizontal). Total rates of work dissipation
{within shear band AB' and area ABB’A’) are pre-
sented by dashed lines in Fig. 13 as functions of
an internal time.

As it was assumed that the shear band under-
went rigid translation (no rotation), the distribu-
tion of the total strain of the material depends
only on the location of a material element across
the band (y-co-ordinate). The process was divided
into small time increments. The distribution of
volume strain of the material inside the shear
band was calculated by integrating the volume
strain rate (derived from Equation (i3)) over the
time which a given material element spent inside
the shear band. This leads to a piece-wise linear
distribution of volume strain across the band.
The first range of this distribution (on the
‘entrance’ side) increases from zero to a certain
value. All material elements within this range
have entered the shear band during the process of
the band’s downward propagation. The remain-
ing part of the distribution is constant in space

(but variable in time). Material within this con-_
stant range has been inside the shear band from

the time the shear band was formed. If the
process continues for a sufficiently long time, this
second (constant) range is reduced to zero, as all
the material originally occupying the shear band
will have left the band. However, the strain dis-
tribution will be constant across the total shear
band thickness (though variable with time) if the
shear band is of the material type (ie. Vy‘“ =0).

The distribution of the density was calculated
from Equation (12) and parameter k from Equa-
tions (9) and (10). The stress parameters 7 and s
(on the appropriate loading surface, Fig. 11) were
calculated, and, the work dissipation rate was
computed from Equation (16).

Computations first were performed assuming
that band AB is a shock-like band. The lowest
gradient of the dissipation rate at the beginning
of the process and the lowest dissipation rate
during the process were obtained when the pro-
pagation speed of the band was equal to that of
the material particles above it. The difference
between this particular case of a shock-like band
and a material shear band is that the latter has an
increasing thickness, while the first one is
assumed to have a constant 4. Calculations were
then repeated assuming that shear band AB is of
a material type. The diagrams in Fig. 13 represent
dissipation rates for different initial thicknesses of
shear band AB (taken as a material shear band).
The diagrams show that the thinner the shear
band {6 is the initial thickness), the larger the
drop in the dissipation rate. IT the thickness of the

shear band is large as compared to the dimen-
sions of the problem (small size), the steady-state
process may yield rates of work dissipation lower
than those following from a non-steady, periodic
process. This is seen clearly from the diagram for
thickness &/d = (-1 in Fig. 13(a). Whether or not
the periodic process yields lower dissipation rates
depends also on the geometry of the problem
itself. Fig. 13(b) shows the diagrams for the same
problem as Fig. 13(a) with only included semi-
angle ® decreased. Now the dissipation rates for
both é/d =0-1 and 8/d = 0-05 are higher than
those in the steady-state process.

The length of the cycle (dimensionless) is now
independent of the band's thickness. This could
be predicted without computations. The dissi-
pation rate within the shear band (part of the
total dissipation) drops to zero when the density
drops to g = p.;, (Equations (9) and (10}, and
this happens before the end of the cycle. Thus, at
the end of the cycle, only the continuously
deforming field contributes to the total dissi-
pation, and it is independent of the band’s thick-
ness. A yield function that allowed for scme
hydrostatic pressures at p = p_;, would be more
realistic,

In both examples presented, the rates of work
dissipation at the end of each cyclic perturbation
reach levels higher than those in the steady-state
analysis. It is the energy dissipation drop at the
beginning of the process that determines which
mode {steady or non-steady) is going to be acti-
vated. Afterwards, if the periodic mechanism is
chosen, the process has to follow the admissible
pattern of deformation, even il it leads, at some
point, to energy dissipation rates exceeding the
rates from the steady-state process. A jump from
one pattern to-the other is kinematically inadmis-
sible.

DISCUSSION OF FINDINGS AND
CONCLUSIONS

Strain localization is a common phenomencen
in deformation processes of plasiic media, yet the
fundamental advances in the matter are, so far,
applied only to very simple boundary value prob-
lems (such as plane strain sample tests). No effec-
tive methods exist for solving engineering
problems where strain localization could be
expected. This Paper demonstrates the possibility
of incorporating a strain localization phenome-
non into the framework of limit analysis. The
question of whether or not the strain localization
occurs has not been addressed in this Paper, but
a very particular problem pertaining to periodic
forming of shear bands was presented. It is essen-
tial in this analysis that the mechanisms of defor-
mation are considered as processes where the
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shear bands are allowed to propagate, not as
incipient flow problems in which the discontin-
uities are fixed in space.

Based on experimentat observations, two kinds
of shear band can be distinguished: (a) shock-like,
and (b) material shear bands. Shock-like shear
bands are characteristic in that they move with
respect to the material. Material particles (grains)
enter the shock-like bands, change their relative
configuration while passing through them (strain
in continuous materials), and leave the bands.
These bands are thought to have a constant
thickness. Material shear bands, on the other
hand, are stationary with respect to the material
{i.e. a new material does not enter the bands and
the material inside the bands stays inside during
the deformation process). If the material dilates in
the course of the deformation process, the thick-
ness of the second type of shear band increases.
The thickness (or initial thickness) of the shear
band is a characteristic material parameter. Intro-
duction of the shear band thickness as a material
property (internal length) implies the scale effect,
which, indeed, was detected in the examples.

Methods used in the examples for computa-
tions of the work dissipation rate within shear
bands require some comments. The technique
used in the first example was used earlier by the
Author to compute dissipation within shock-like
shear layers in a pseudo-steady mechanism of
pyramidal indentation of strain-hardening metals
{Michalowski, 1986). This techrique is based on
integrating the dissipation rate across thickness §
of the band. In a shock-like shear band (within a
continuous material) the yield point varies across
the band, as the strain of the material depends on
the location inside the band. Thus, in the limit
when §— 0, a statically inadmissible discontin-
ity in the stress vector acting on the shear band
may Occur.

The constitutive model used in description of
the material in the second example is the plastic
softening-hardening model with the density as
the softening parameter. It has been established
experimentaily that the thickness of shear bands
in granular materials is of about 10 grain dia-
meters. The results of computations of the strain
(or density) and stress distribution within such
range are rather artificial. The scheme presented,
however, captures the effect of softening well.
Perhaps a constitutive relation in terms of the
stress vector and relative displacement increment
{or velacity) of the shear band boundaries, with
the total relative displacement as a softening
parameter, might be more appropriate. Owing to
lack of physical data for real materials, such a
model was not used in this Paper.

1t seems natural to apply the shear band devel-
opment scheme presented here in the limit

analysis formulation of problems. Discontinuities
(shear bands) are common features in mecha-
nisms used in the kinematical approach of limit
analysis. Aithough the theorems do not hold for
softening-hardening materials, the results follow-
ing from application of the kinematical approach
are well-matched by experiments (Michalowski,
1986) and, as shown in this Paper, this approach
can predict cyclic fluctuations not detectable by
other technigques.

The technigque used in this Paper would not
predict fluctuations in velocity fields of extrusion
or hopper flow if the material was perfectly
plastic or strain-hardening. Indeed, physical
experiments suggest that in such cases no period-
ic fluctuations should be expected (e.g. Butterfield
& Andrawes, 1972).

The intent of the Author was not to soive fully
the problem of extrusion or that of granular
material flow through containers, but to demon-
strate the potential capability of the proposed
analysis. The minimum material effort hypothesis
(minimum work dissipation rate) may have to be
replaced in other cases by the minimum applied
effort hypothesis, where the minimum of a limit
force (or external work rate), rather than a
minimum of work dissipation, is sought. For
example, in a problem of rigid wedge penetration
into a ponderable granular material one should
search for the minimum of the force driving the
wedge into the material, not for the minimum of
internal dissipation.

The method presented in this Paper for analys-
ing the movement of the shear bands in velocity
fields is approximate. It is meant as an engineer-
ing tool for predicting fluctuations or periodic
perturbations in flow mechanisms and is not
expected to explain the phenomenon itself.
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