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COLLAPSE LOADS OVER TWO-LAYER CLAY FOUNDATION SOILS

RADOSLAW L. MICHALOWSKI)

ABSTRACT

A strict upper bound solution to limit loads on strip footings over two-layer clay foundation soil is presented. Two
mechanisms of failure are considered: one with a continually deforming field, and a rigid-block mechanism. The multi-
block mechanism was found to be very flexible in terms of being able to assume different shapes of the deformation
pattern. Consequently, this mechanism yielded the least upper bound to the bearing pressure. The method used was
adapted to calculations of bearing capacity of strip footings subjected to loads with horizontal components. If the
depth of the second layer of clay is sufficiently large, the shear strength of this layer will not affect the bearing capacity.
This depth is referred to here as the critical depth, and it depends on the footing width and the combination of the
undrained shear strength in the two layers. If the undrained shear strength of the bottom layer is small compared to the
top layer, the critical height may be as much as twice the footing width.
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INTRODUCTION

Considerations of stability of geotechnical structures
include a renewed interest in limit analysis. This is due to
new applications, such as reinforced soil (Michalowski,
1997), but it is also due to development of numerical tech-
niques in limit analysis, such as that presented by Tamura
et al. (1984), or Sloan (1988) and Sloan and Kleeman
(1994). Numerical solutions, both lower and upper
bounds, were shown recently by Merifield et al. (1999) for
the problem of the bearing capacity of a two-layer clay
foundation. This problem was considered earlier in the
context of limit analysis with a specific application to
embankments on soft clay with a strong crust layer
(Michalowski, 1992). For some range of parameters,
these earlier results yield a better upper bound than that
in Merifield et al. (1999). This might lead to the
conclusion that the upper bound calculations based on
optimization of the mechanism through sequential
modification of its geometry (and the geometry of the
hodograph) may be less restrictive, in some cases, than
the linear programming approach (Merifield et al., 1999).
However, the linear programming approach to solving
for the lower bounds (Sloan, 1988) appears to be a far
more effective tool than the traditional approach of
“guessing”’ the admissible stress distribution.

In addition to theoretical approaches to the bearing
capacity of layered foundation soils, there have been
attempts to obtain solutions through semi-empirical
considerations (Meyerhof and Hanna, 1978). These
solutions are difficult to judge as they are based on small-

scale tests. At best, they can be considered approximate
solutions without a sense of upper or lower bounds.

The first rational approach to solving the bearing
capacity problem for a two-layer clay foundation soil was
shown by Button (1953). While not indicated at the time,
Button’s calculations were equivalent to limit analysis
based on the kinematic approach. His calculations were
later repeated, and generalized for anisotropic clays by
Reddy and Srinivasan (1967), and given in the context of
limit analysis by Chen (1975). These results are used here
as a reference, and are referred to as Chen (1975)
solutions.

In addition to symmetric bearing capacity, the limit
load on a two-layer foundation clay is calculated for
inclined loads. The parameter used to represent the inten-
sity of the horizontal component of the load is selected as
a ratio of the average shear stress on the footing-soil
interface to the undrained strength of the upper clay
layer.

This paper focuses exclusively on the kinematic
approach. The problem is briefly described in the next
section, followed by the fundamentals of the approach to
solving the problem. Both a continuous and a rigid-block
mechanism of foundation soil collapse are then dis-
cussed, followed by sections on critical depth and
horizontal load components. The results of computations
are shown in the penultimate section, and the paper is
concluded with some final remarks.
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PROBLEM STATEMENT

The solution to be found is to indicate what are the
limit loads on a two-layer foundation clay. The limit
stress state of clay is described by the Tresca yield
condition. The strength parameter in the yield condition
is interpreted here as the undrained shear strength of the
clay. To simulate this problem, a footing is placed on the
surface of a half space whose top layer is characterized by
undrained shear strength ¢, and the clay underneath has
strength ¢ (Fig. 1(a)). Because the soil surface is
horizontal and the material is frictionless and
incompressible, the surcharge load on the surface beyond
the footing would increase the bearing pressure by a
magnitude equal to the surcharge pressure. The footing
has width B, and is infinitely long (strip footing). Hence,
a plane-strain deformation pattern is expected. The
thickness of the top layer of clay is equal to H. Because
the model of the soil is independent of the length scale,
the solution to the problem is expected to be dependent
on dimensionless parameters H/B and ¢;/c.

APPROACH

Limit loads on footings are calculated here using the
upper bound theorem of limit analysis, which can be
mathematically represented by the following inequality
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The integral on the left-hand side of inequality (1)
represents the rate of work dissipation during an incipient
failure of the foundation soil, and the right-hand side

Mechanism A

Fig. 1. Coellapse pattern (Mechanism A): (a) velocity field, and (b}
hodograph

includes the work rates of all the external forces. 7 is the
stress vector on boundaries S, and S,. Vector T; is
unknown (limit load) on S, and it is known on §, (for
instance, surcharge pressure). v; is the velocity vector in
the kinematically admissible mechanism, y; is the unit
weight vector, and ¥ is the volume of the mechanism.

The mathematical form of the theorem in Eqg. (1) states
that the rate of energy dissipation is not less than the rate
of work of external forces in any kinematically
admissible failure mechanism. Hence, the inequality in
(1) can be used to calculate the upper bound to the force
on boundary S,, if all the other terms in Eq. (1) are
known. In the specific case considered here the last two
terms on the right-hand side are equal to zero. The last
one being zero is a direct consequence of the principle of
mass conservation, whereas the second last is zero
because there is no surcharge load considered. Notice that
the total force on boundary S, can be calculated only if
velocity v; on this boundary is constant.

Since the rate of work dissipation is larger than or
equal to the rate of work by external forces, equating the
two sides of inequality (1) leads to a load on $, that is not
smaller than the true limit load (upper bound). This
approach is referred to as the kinematic approach of limit
analysis, and it is used in this paper to obtain the limit
loads on a two-layer clay foundation soil.

CONTINUOUS DEFORMATION MECHANISMS OF
FOUNDATION SOIL COLLAPSE

A failure mechanism most often used in analysis of
collapse of a clay foundation is based on the Prandtl
solution (Prandti, 1920) for soil with internal friction
angle equal to zero. This solution was adopted by Hill
(1950), who modified it for a smooth punch-indentation
problem. While the Prandtl result was based on solving
hyperbolic-type differential equations for the stress field,
this solution also can be arrived at through the kinematic
approach of limit analysis. For an ideal vertically loaded
surface foundation the two solutions are identical, and
they were proven by Shield (1954) to be the exact
solutions to the limit load.

The solution by Prandtl cannot be directly used for
two-layer foundation soils or for footings loaded with
inclined loads. To arrive at rational solutions, a
mechanism of failure can be adopted in a form similar to
that associated with the Prandtl solution, in which the
geometry is allowed to conform to its most adverse
shape. This is done through optimization of the collapse
mechanism, so that the least upper bound solution is ob-
tained. Such a mechanism is shown in Fig. 1, and it is
referred to as Mechanism A.

Line ABCD in Fig. 1(a) is a trace of a velocity
discontinuity surface, which, in general, extends through
both layers of clay. If this line is smooth at points B and
C, then OB and OC are not discontinuities in the velocity
field. Blocks ABC and CDO move as rigid bodies,
whereas region BCO deforms in a continual manner. The
hodograph is shown in Fig. 1{b}.
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The energy dissipation rate needs to be integrated
along line ABCD and within continually deforming
region BCO. Depending on the location of points B and
C with respect to the interface between the two layers,
one can distinguish five different cases. The thickness of
the first layer is H. To illustrate the calculations we show
the case where both B and C are within the top layer of
clay.

The wvelocity boundary condition is the wvertical
component of the footing velocity wv,. Since the
magnitude of the velocity jump vector along ABCD is
constant (vo/sin o, see hodograph), the dissipation rate
due to shear along this line is equal to

Dl=—s—if-l9~ [c(AB+BB +C'C+CD)+ B C] ()
o
The work dissipation rate per unit volume within region
BCO is

d=(&—&)c (3)

where &; and &; are the major and minor principal strain
rates, respectively. The strain rates expressed in the polar
coordinate system are {r and @ are the polar coordinates
with point O being the origin of the system)
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Transforming strain rates in Eq. (4) into the principal
rates, and using Eq. (3), the dissipation rate per unit
volume in BCO becomes

d=<-2 )
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This rate now needs to be integrated separately for
regions above and below the interface between the two
clay layers. It was found more convenient to perform this
integration by first calculating the dissipation rate for the
entire region BCO as if it was homogeneous with
cohesion equal to ¢;, and then subtracting dissipation due
to the difference in the undrained strength (¢;—¢) in
region B'EC'B’
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where y; is the angle indicated in Fig. 1
H
= arccos —— 7
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Now, combining the dissipation rates in Eq. (2) and Eq.
(6), and equating them to the rate of work of the external
force on the footing

W,=qBuo ®)
leads to the upper bound on the magnitude of the average
bearing pressure § under the footing
g= Dy +D;

BZ)Q

®

Angles « and y were varied in an optimization process in
order to obtain the least upper bound to bearing pressure
g. Since the depth of the mechanism is not known a
priori, other cases were considered where points Band C
might be in the bottom layer, B in the top and C in the
bottom, etc. The case which yields the minimum of
bearing pressure was then taken as the least upper bound
for Mechanism A.

RIGID BLOCK MECHANISM

The second mechanism used here consists of rigid
blocks separated by velocity discontinuity surfaces, as
presented in Fig. 2(a). This mechanism will be referred to
as Mechanism B, or as a multi-block mechanism. It
resembles the mechanism used earlier by Michalowski
and Shi (1995) for calculating the bearing capacity of
footings on a sand-clay foundation soil. Although it may
seem that this mechanism is less sophisticated than that in
Fig. 1, it is expected to yield results as good as or better
than those based on Mechanism A, because it is less
restrictive in being able to assume different shapes.
Segment BC of the discontinuity in Fig. 1{a) is set tobe a
sector of a circular arc, while line BC in Fig. 2(a) can
assume any shape consistent with an incompressible
deformation process. Therefore, with a sufficient number
of blocks, this mechanism is expected to yield a better
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Fig. 2. Multi-block collapse pattern (Mechanism B): (a) velocity field,

and (b) hodograph
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upper bound than Mechanism A does. The sufficient
number of blocks was found to be about 10. For
instance, for a case where the thickness of the top layer is
1/4 of the footing width (H/B=0.25), and the ratio of
the cohesion in the two layers is ¢;/c:=4, mechanism B
with 10 blocks yields g/c;=2.153, whereas the same
mechanism with 50 blocks gives ¢/c;=2.149 (a difference
of less than 0.5%). The energy balance equation for
Mechanism B can be easily written down after the work
dissipation rate is integrated on all the straight-line veloc-
ity discontinuity surfaces, with the velocities being deter-
mined from the hodograph (Fig. 2(b)). In calculations,
each of the discontinuities intersecting the interface be-
tween the two layers was divided into two segments, and
the work dissipation was calculated separately for the
segments within the top and bottom layers.

HORIZONTAL LOAD COMPONENT

Calculations have been performed for both the vertical
and inclined loads. The horizontal component is typically
included in considerations as an inclination of the load.
While this is appropriate for footings on frictional soils, a
more convenient way to describe the horizontal load
component on clays is to present its intensity as a fraction
of the clay undrained shear strength. Coefficient y is de-
fined here as the ratio of the intensity of the horizontal
load (average shear stress 7 on the clay-footing interface)
to the undrained shear strength of the soil immediately
below the footing
5

x= (10)

a

Coefficient ¥ can vary between 0 (vertical load) to 1
(surface sliding). In general, the depth of the collapse
mechanism decreases with an increase in coefficient y.

RESULTS

Calculations have been carried out using mechanisms
A and B. The geometry of both mechanisms was varied
so that the lowest limit load was obtained for both
collapse modes. In searching for the minimum load asso-
ciated with Mechanism A, angles o and y were varied.
The geometry of Mechanism B is less restrictive than that
of Mechanism A, but the number of variable parameters
is much larger. The multi-block Mechanism B (Fig. 2)
consists of triangular blocks, and the geometry of each
triangle is determined by two angles. Since the sum of all
angles at point O must be equal to 7, the number of
variables in the optimization process of Mechanism B
was 2n — 1, where 7 is the number of blocks. The number
of blocks used in computations was xn= 150 (although
when the number of blocks exceeds 10, the bearing
pressure changes very little with an increase in n). Out of
the two failure loads obtained (for mechanisms A and B),
the least upper bound is presented in Tables 1 and 2. The
multi-block Mechanism B was more effective than
Mechanism A was (it yielded the least upper bound), and

Table 1. Bearing capacity results
gle, Chen | Merifield
HIB | ¢//c 1975 1999
x=0 x=0.251x=0.50\y=0.75{ x=0 x=0
0.125 5 1.520 | 1.353 | 1.075 | 0.631 | 1.527 1.55
4 1.766 | 1.587 | 1.300 | 0.852 | 1.786 1.82
3 2.166 | 1.968 | 1.668 | 1.213 | 2.212 2.27
2 2.933 | 2.709 | 2.387 | 1.916 | 3.050 3.09
1.5 3.681 | 3.436 | 3.093 | 2.605 | 3.878 3.93
1 5.141 | 4.857 | 4.484 | 3.966 | 5.520 5.32
0.8 6.217 | 5.910 | 5.514 | 4.977 | 6.745 6.36
0.5 9.391 | 8.309 | 6.574 | 4.758 |10.410 8.55
0.2 | 9.842 | 8.309 | 6.574 | 4.758 |25.015 8.55
0.25 5 1.906 + 1.790 | 1.617 | 1.373 | 1.900 1.85
4 2.149° 2.021 | 1.835 | 1.579 | 2.153 2.12
3 2.533 | 2.389 | 2.180 | 1.903 | 2.559 2.56
2 3.246 | 3.090 | 2.861 | 2.506 | 3.334 3.34
1.5 3.912 | 3.735 | 3.417 | 3.049 | 4.079 4.08
1 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.32
0.8 5.991 | 5.707 | 4.943 | 4.037 | 6.571 6.25
0.5 6.561 | 5.879 | 4.984 | 4.037 | 7.973 6.25
0.2 | 6.561 | 5.879 | 4.984 | 4.037 | 7.973 6.25
0.50 3 2.579 1 2,502 | 2.394 | 2.252 | 2.592 2.44
4 2.817 1 2.729 | 2.610 | 2.456 | 2.839 2.74
3 3.177 | 3.072 | 2.934 | 2.761 | 3.218 3.16
2 3.800 | 3.662 | 3.488 | 3.271 | 3.899 3.89
1.5 | 4.329 | 4.162 | 3.937 | 3.675 | 4.504 4.48
1 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.32
0.8 5.313 | 4903 | 4.484 | 3.954 | 5.697 5.49
0.5 5.313 | 4.903 | 4.484 | 3.954 | 5.697 5.49
0.2 | 5.313 | 4.903 | 4.484 | 3.954 | 5.697 5.49
Table 2. Bearing capacity resuits
gle Chen | Merifield
HIB | ¢/ 1975 1999
x=0 |x=0.25/x=0.50{x=0.75] x=0 x=0
0.75 5 3.190 | 3.131 | 3.049 | 2.947 | 3.252 2.98
4 3.420 | 3.352 | 3.260 | 3.146 | 3.497 3.28
3 3.756 | 3.672 | 3.565 | 3.433 | 3.862 3.72
2 4,299 | 4.184 | 4.043 | 3.873 | 4.479 4.37
1.5 4.708 | 4.558 | 4.375 | 3.954 | 4977 4.94
1 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.32
0.8 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.36
1.00 5 3.768 | 3.718 | 3.652 | 3.56% | 3.899 3.54
4 3.988 | 3.930 | 3.856 | 3.763 | 4.146 3.83
3 4,299 | 4.228 | 4.138 | 3.934 | 4.506 4.24
2 4.746 | 4.651 | 4.484 | 3.954 | 5.084 4.82
1.5 5.046 | 4.857 | 4.484 | 3.954 | 5.514 5.18
1 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.32
0.8 5.141 | 4.857 | 4.484 | 3.954 | 5.520 5.30
1.25 5 4.295 | 4.280 | 4.224 | 3.954 @ 4.540
4 4.497 | 4.482 | 4.418 | 3.954  4.792
3 4,767 | 4715 | 4.484 | 3.954 ¢ 5153
2 5.141 | 4.857 | 4.484 | 3.954  5.520
1.5 | 5.141 | 4.857 | 4.484 | 3.954 5520
1.50 5 4.863 | 4.752 1 4.484 0 3954 317K 4.56
4 4.965 | 4.857 @ 4,484 3.8%4 5438 4.84
3 5.187 | 4,857 | 4,484 0 3954 0 8520 5.15
2 5.141 | 48837 4484 i 5,520 5.31
1.5 5,141 1 AB67 | A44E4 5,520 5.31
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the numbers in Tables 1 and 2 are based on Mechanism B.
For a case where H/B=0.25 and ¢, /c;=4, Mechanism A
yields q/c;=2.339 compared to 2.149 for a 50-block
Mechanism B (a difference of almost 9%). However the
difference between the two results decreases once ratio ¢; /
¢; approaches 1, and the two results become identical for
homogeneous clay (¢, /c:=1).

The results are given in Tables 1 and 2 in the form of a
ratio of the average bearing pressure to the undrained
shear strength of the top layer of clay (g/c1), for different
ratios of the undrained shear strength in the two layers
(c1 /c2) and different thickness of the top layer (H/B). In
addition to vertically loaded footings, the bearing
pressure is given for magnitudes of coefficient x (see Eq.
(10)) equal to 0.25, 0.50 and 0.75. For reasons of
comparison, the solution to the upper bound by Merifield
et al. (1999) is given in the last column. The results from a
solution first suggested by Button (1953), and later used
by Reddy and Srinivasan (1967) and Chen (1975}, are
given in the second last column. Both of these solutions
are for vertical limit loads only.

The solution suggested in this paper yields a bearing
capacity which is always better (lower) than that in the
solution by Chen (1975). The solution presented here and
the one in Merifield et al. (1999) are close to one another,
with one being better for some range of parameters, and
the other for other parameters. The approach presented
in this paper has some advantages in that the
computational effort is relatively low (less than 15 sec. for
an optimization of a 50-block mechanism on a 400 MHz
Penthium PC). However, the linear programming
approach has unquestionable advantages in the lower-
bound approach (not discussed here), since it is the only
effective method for constructing statically admissible
stress fields in the plastic domain and beyond.

For a small thickness of the top layer of clay (H/B=
0.125) and ¢, > ¢z, the solution by Merifield et al. (1999)
yields a result which is not only not as good as the one
based on Mechanism B, but it is also not as good as that
in Chen (1975). This is surprising, since the latter is based
on a crude mechanism, whereas that in Merifield et al.
(1999) is based on a rather sophisticated approach.

The bearing pressure decreases substantially with an
increase in the horizontal component of the load, which
is illustrated in columns 4 to 6 in Table 1 and Table 2. The
bearing pressure in these tables can be used for design of
footings over two-layer foundations soils.

CRITICAL DEPTH

For any combination of the clay strength in the top and
bottom layers, there is a depth beyond which the proper-
ties of the bottom layer do not affect the bearing capacity.
This depth is referred to here as the critical depth. Depth
i of the collapse mechanism [depth of point E in Fig. 1(a)
and Fig. 2(a)] is shown in Fig. 3 as a function of thickness
H of the first layer. This graph is for a specific ratio of ¢, /
¢ equal to 4.0. The bottom layer is weaker, and, with an
increase in the thickness of the first layer (# ), the depth

35 5
o
3 // 8
2.5 /£ 5
y o
2 4
i/

[an} -
= / alc,
15 / - 3
1 // 2
0.5 ¢ /e, = 4.0 1
0 0
0 0.5 1 15 2
H/B

Fig. 3. Depth of the collapse mechanism and bearing pressure as
functions of the thickness of the top layer of clay

/

1.6 /‘
14

Critical Depth /B

0.6

c,/c,

Fig. 4. Critical depth as function of the undrained shear strength ratio

of the most adverse mechanism (%) also increases. It
seems that the weak soil ‘‘attracts’ the failure
mechanism. The larger the ratio ¢ /c;, the greater the
depth to which the mechanism can be attracted. The
depth of the most adverse mechanism (mechanism which
yields the least upper bound) becomes the greatest [(A/
B)max = 3.15 in this example] when the depth of the weak
layer reaches its critical value (here: H/B=1.6). When
the depth of the bottom layer increases beyond the critical
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value, the depth of the mechanism drops down to 0.707,
and the mechanism is limited to the top layer only. The
bearing pressure increases with an increase in H/B, and it
reaches a constant value (g/c;=5.14) at the critical
depth.

Information about the critical depth for a given ¢ /cz is
useful for practical purposes. Hence, the critical depth is
shown in Fig. 4, as a function of undrained strength ratio
¢1/ca. Tt is evident from this graph that when the bottom
layer of clay is considerably weaker than the top clay,
e.g., ci/c:=10, the critical depth is almost twice the
footing width. However, the depth of the mechanism
reaches very deeply into the weak layer. Calculations for
¢1 /=10 and the depth of the weak layer of H=1.8B (B
is the footing width) reveal that the depth of the
mechanism is almost six times the footing width (k/B=
5.96). The bearing pressure in this case was g [e1=4.819,
whereas the much shallower mechanism contained within
the top (stronger) layer yields g/c,=5.14.

SPECIAL CASE

If the bottom layer of clay is much stronger than the
top layer, the mechanism may be restricted to the top clay
only, and the problem will reduce to the bearing capacity
of a layer over a rigid base. While this was a subject of an
earlier research (Michalowski, 1992), it is of some interest
to indicate that a rigorous upper bound to the bearing
pressure can be obtained in a closed form. Although
Mechanism B was found to be more effective (it yields
limit loads lower than Mechanism A does), computations
based on Mechanism B are inherently numerical in
nature. Therefore, since the objective of this section is to
present a closed-form solution, considerations are limited
here to Mechanism A.

In this special case, Mechanism A is considered not to
reach into the bottom layer of the foundation soil
(Fig. 5). The work dissipation rate for the mechanism in
Fig. 5(a) is

Vg

D=——[Bcos a+2By sin «
Sin o

+ Bsin o cot (¥ — o)l

D

Considering loading of the footing with the intensity of
the horizontal component expressed in Eq. (10), the rate
of work of the external forces can be written as

Wq = Buo(g + xc1 cot o) (12)
By equating Eqg. (12) to (11) one arrives at the following
expression for the average bearing pressure

g=2w+(l—x) cot a+cot (W—a)
(8]

13)

Two unknown parameters in Eq. (13) are ¢ and y. The
least bearing pressure requires that angle y satisfies

2(8)_

14
8{!/ \Ci ( }

| B :
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Fig. 5. Collapse within the top layer of clay: (a) failure mechanism,
and (b) hodograph

Solving (14) with respect to y yields
=24 (15)
14 4 a

and

4
C1

=1+-’21+2a+(1—x) cot o (16)

Now, if the top layer of clay is sufficiently thick,

condition
K (g) -0
do \ ¢

determines angle « in the least upper bound solution

(17)

1
a=—2- arc cos x (18)
and the least upper bound becomes
q _ n 3
—C~~1+—2~+arccosx+w/l—x 19
1

For the solution in Eq. (19) to be valid, the thickness of
the top layer (H) must be at least equal to Bsinc
(sufficient thickness), where B is the footing width, and «
is determined in expression (18). If thickness H is not
sufficient, angle « in Eq. (16) reaches its maximum value
of

=arcsin ~- 20
o B 20)
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Table 3. Bearing capacity results (special case)
qle
H/B
x=0 x=0.25 x=0.50 x=0.75

0.1 12.721 10.233 7.746 5.258

0.125 10.758 8.774 6.790 4.805

0.2 7.872 6.647 5.427 4,198

0.25 6.949 5.980 5.012 4.044

0.3 6.359 5.565 4,770 3.975

0.4 5.685 5.112 4.539 3.954

0.5 5.350 4.917 4.484 3.954

0.6 5.191 4.857 4.484 3.954

0.7 5.141 4.857 4,484 3.954

0.80 5.141 4.857 4.484 3.954

and
- 3
7 B . H

99+ va-0 JE) =1+2acsin = Q1)
C1 2 H B

Computational results based on the solutions in Eq. (19)
or Eq. (21) are presented in Table 3. These results are
comparable to those in Table 1 for a strong bottom layer
(¢1/e2=0.2). For cases with a significant horizontal
component of the load, the results in Table 3 are identical
to those in Table 1, while for other cases {(and ¢; /c;=0.2)
the bearing pressure from the closed-form solution in
Table 3 slightly overestimates that in Table 1.

FINAL REMARKS

A rigorous upper bound solution was presented for the
bearing capacity of a two-layer clay foundation soil. The
solution is based on the classical approach in which the
geometry of the collapse mechanism (and the geometry of
the hodograph) is modified in search of the least upper
bound. This approach seems to be very effective, and it
yields results that, in some regions of parameters, are
better (lower) than those produced by the numerical tech-
nique based on linear programming (Merifield et al.,
1999). Out of the two collapse mechanisms considered, a
simple rigid-block pattern was found to be more effective.
This is because a large number of rigid blocks allows for
the mechanism to assume a variety of different patterns,
whereas traditional mechanisms (such as the one
attributed to Prandtl) assume the shape of some regions a
priori. The approach used is also very economical in
terms of computer time.

If the depth of the second layer of clay is sufficiently
great, the shear strength of this layer does not affect the
bearing capacity. This depth, referred to here as the
critical depth, depends on the footing width and the

combination of the undrained shear strength in the two
layers. If the undrained shear strength of the bottom
layer is small compared to the top layer, e.g., c1/c2= 10,
the critical height may be as much as twice the footing
width. The depth of the mechanism itself, however, can
be considerably larger than the critical depth, since the
mechanism has a tendency to reach deep into the weak
layer (for ¢;/c;=10 and H/B=1.8, the depth of the
mechanism is almost six times the footing width).

The critical depth is an important piece of information
in design of footings over layered foundation soils, and it
is presented here in the form of a graph.

In addition to the vertical limit load, a solution was ob-
tained to the bearing capacity under inclined loads. The
horizontal component of the load makes the collapse
mechanism shallower, and it leads to a significant
decrease in the bearing capacity.
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