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The behaviour of soil retaining structures during earthquakes is investigated.
Seismic excitation imparts inertial forces to the soil retaining system, and, once the
seismic acceleration reaches the yield level, the structure exhibits permanent
displacements. This is typically associated with appearance of a shear band in the
backfill. The application of the kinematic approach of limit analysis is briefly discussed.
A specific example of a retaining wall with one distinct shear band is then presented.
The inclination of the shear band is found to be dependent on the acceleration amplitude
of the seismic excitation, per classical earth pressure theory, Also, it was found that the
inclination of the shear band does not remain stationary, but rather changes throughout
the shaking in response to the variation in the acceleration amplitude of the excitation.
This phenomenon is illustrated by results from both a physical experiment and a
numerical prediction, which indicate a distinct change in the shear band inclination
during seismic excitation, leaving a clear pattern of “shear banding”.
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1. INTRODUCTION

Seismic excitation of earth structures has been considered for eight
decades now. Most methods used to determine permanent displacements involve
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simplified techniques where the soil is modelled as a block sliding on a failure
surface (or a shear band) formed in the soil [2,13]. Though relatively simple, this
model is quite effective and was implemented in engineering practice more than
four decades ago [10,14]. Early experiments included the sliding of a soil mass
along a pre-determined surface [13]. However, unlike static failures, the
geometry of the collapse mechanism of a seismically excited structure is not an
exclusive function of material properties and the topology of the structure.
Rather, the geometry is also a function of the earthquake excitation, and the
geometry may change during earthquake shaking in response to the variation in
ground acceleration.

Herein, an analysis method is proposed for calculating the displacements
of earth structures subjected to seismic excitation. This method has many
comumon components with the traditional single block technique; however, it
takes into account the non-associativity of the flow of granular soils and can be
generalized for any number of blocks. Furthermore, the proposed method
becomes tractable through the introduction of the acceleration hodograph.

Regarding the organization of the remainder of this paper, first, the
proposed method is briefly discussed in general form, followed by the adaptation
of the technique to retaining walls subjected to earthquake motions. Next, the
proposed method is discussed in context of the analytical solution to shear band
inclination, and observations from physical and numerical model results are
presented.

2. DISPLACEMENTS OF SEISMICALLY LOADED
STRUCTURES

When the ground acceleration reaches the yield acceleration of a structure
the process of plastic deformation is initiated. The yield acceleration can be
determined using limit analysis as described in a recent paper by Michalowski
[8]. The approach is based on the kinematic theorem of limit analysis (i.e., in any
kinematically admissible failure mechanism, the rate of internal work is not less
than the rate of true external forces). This theorem holds for materials with
convex yield surfaces and with deformation govemed by the normality rule.
[ntroducing a kinematically admissible velocity field v and associated stress
field o, both marked with superscript £, this theorem can be written as:

Josesav = [Tvds+ [xpidr @2.1)
¥V N 13

where, 7; 18 the traction on boundary S, and X; are the distributed forces in
mechanism volume ¥. In seismic problems, the last term includes both the
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gravity forces and the inertial forces caused by earthquake excitation. Siress
field cr; is compatible with the selected collapse mechanism, but is not

necessarily in equilibrium.

The slope shown in Fig. | is now introduced and is brought to plastic state
by horizontal earthquake acceleration. The upper bound to the yield acceleration
can be found from inequality (2.1), where the only work dissipation occurs along
the velocity discontinuities (left-hand side); traction 7; is zero on the slope
boundary; and the distributed load is the gravity force and the inertial horizontal
force (kymg). In this latter term, k&, is the horizontal inertial coefficient, m is the
mass of a given block in the postulated mechanism, and g is the acceleration due
to gravity. The most adverse case (in the absence of vertical shaking) is when the
ground acceleration is directed into the slope (i.e., to the right in Fig. la), and
hence, the seismically induced inertial forces are directed away from the slope.
Consequently, for a given collapse mechanism, & is the only unknown variable
in theorem (2.1). As this approach gives the upper bound yield acceleration, the
minimum 4; is sought, with the geometry of the mechanism being variable.

{b}

& -2y

Fig. 1. Collapse of a slope (after [8]): (a) acceleration field, and (b) acceleration
hodograph.

It needs to be emphasized that the accelerations in Fig. I are not time derivatives
of the velocity field v; in the admissible failure mechanism used in theorem (2.1).
The reader is referred to the recent paper by Michalowski [8] for a detailed
discussion of the intricacies of this approach.

In a kinematically admissible mechanism, the velocity “jump” vectors are
inclined at angle of internal friction ¢ to the velocity discontinuities. Expanding
the mechanism to # blocks, the velocities of the blocks, vy, vs, v3, ... , v, can be
described as:
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o ﬁ sin(g, ~2¢+6,_, —6,) k=234 o)
. sin(J, —2¢) © i=23,4.n '

with angles @ and & defined in Fig. 1, and v; being the velocity of block 1
(kinematic boundary condition). The velocities in eq.(2.2) are incipient
velocities, and they conform to the normality rule. The accelerations in Fig_ 1,
however, generally conform to a non-asseciative flow rule governed by dilation
angley, and they can be found directly from the geometrical relations on the
hodograph, Fig. 1(b):

— = sin(S, 2w +6,.,-6,) k=234..i
L sin(6, —2u) T i=23,4..n

(2.3)

k

where, v is the dilatancy angle. The “true” velocities and displacements of the
blocks in the mechanisms are the first and second integrals over time,

respectively, of accelerations i, .

When the seismic acceleration reaches its yield level £,, the balance of
work rate during incipient failure (in the absence of vertical shaking) is:

D= Wy + kg Zm,. v,c0s(6, — @) (2.4
P=l

where, m; is the mass of i-th block; Wy is the rate of work of gravity forces; and

D is the rate of work dissipation in the entire mechanism. Once the horizontal
acceleration exceeds the yield level, the structure deforms piastically, but the
work rate balance equation now has an additional term due to inertial forces. As
the inertial force due to acceleration in a given block is opposite in direction to

ii., the work rate of this force is negative, however it is written below on the
left-hand side with a positive sign:

D +cos(¢— I//)Z My, = Wy + kg Zmi v.cos(f. — @) (2.5)
i=l i=

Subtracting eq. (2.4) from (2.5), and after several transformation, one
obtains the acceleration of the n-#2 block as:

i, = g(k—k,)C 2.6)

where C is a function of the geometry of the failure mechanism, the soil
propertics, and the yield acceleration [9]. The displacement of the »n-th block (u,)
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is the second integral of eq. (2.6) over time intervals when the first integral
{velocity) is positive:
u, = C|[glk—k,)dtd, v >0 Q.7
1

M

From a practical view point, this equality is very convenient since coefficient C
is independent of the earthquake motion. Hence, the integral of g(k—,) can be
calculated for a given acceleration time history and for a variety of yield
accelerations, and can be used as a design tool.

While the procedure described in this section can be easily implemented,
it is not directly applicable to the seismic analysis of earth retaining structures.
This is because both physical and numerical test results of such structures show
that the mechanism evolves throughout the seismic excitation. More specifically,
the observed mechanism is simple in that the structure appears to have only two
distinct regions of rigid motion, but the shear band defining the moving soil
evolves in response to the variation in the amplitude of the acceleration during
the seismic shaking. The next two sections focus on this issue.

3. COLLAPSE MECHANISM OF A RETAINING STRUCTURE
SUBJECTED TO SEISMIC LOAD

Physical model tests by Aitken [1] of a retaining wall system showed a
two block failure mechanism, similar to the schematic in Fig. 2. The method
proposed in the previous section can be easily adapted to such a mechanism by

introducing the wall-soil interface friction angle ¢, , Fig. 2.

This is an incipient mechanism used to calculate the yield
acceleration, but the true deformation may be governed by the non-
associative law with an appropriate dilatancy angle i of the soil, and
possibly incompressible sliding at the wall interface. The accelerations of
the soil and wall system are shown in Fig. 3, and they are collinear with
true velocities, not the incipient ones in Fig. 2.



162 Russell A. Green, Radoslaw L. Michalowski
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Fig. 2. Failure of a vertical (o = n/2) retaining wall; (a) mechanism, and (b) hodograph.

Fig. 3. (a) Accelerations of the soil and retaining wall, (b) acceleration hodograph.

This mechanism appears to be a reasonable adaptation of the more general
mechanism discussed in Section 2. However, the physical model tests [1]
revealed that the failure surface (or the shear band) BC in Fig. 2(a) is not
stationary throughout the duration of seismic shaking. This will be discussed in
Sections 4.2 and 4.3, and a proposal to accommodate the non-stationary location
of the shear band will be discussed in Section 5.

4, SHEAR BAND INCLINATION BEHIND A RETAINING WALL

In calculating the load umposed on a retaining wall, the angle € in the
mechanism in Fig. 2(a) needs to be chosen such that the calculated yield
acceleration is minimal. This is because the kinematic approach of limit analysis
yields an upper bound to an active force, and the seismically induced inertial
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force (kym;g) in Fig. 3 is an active force. However, when the earthquake
acceleration exceeds the yield acceleration, the work rate in the system will no
longer be balanced if deformation occurs according to the same mechanism, and,
in the absence of additional external forces, the mechanism likely evolves to
ensure the work balance. We discuss this issue in Section 4.2 in view of
experimental results and another possible interpretation of these results,
However, first, an expression for angle & is derived for an arbitrary horizontal
acceleration in Section 4.1.

4.1. Analytical solution to shear band inclination

An early solution to the load on a wall with arbitrary inclination was
developed by Poncelet [12]. He devised an ingenious graphical method for
finding an optimum solution to the load exerted on the wall. This graphical
method was used by the authors to determine the inclination angle & (Fig. 2(a))
of the failure surface as a function of horizontal acceleration:

, ~ [SIn{p+ )sin{er -, —6) . o
. sin(+ 6 )\j sin(p—f—0)sin(a 1 ) +sin{la—¢ -4, &) @
n SI(g+ ¢, )sin(a ~ g, — 8" B i i
cos(f+8" \/ sin(g— f—0)sinia 1 ) cos(a—¢p—¢,—-8")

where, &' is dependent on the horizontal and vertical acceleration coefficients &,
and k.

6" = arctan ky (4.2)

v

and the other angles are indicated in Fig. 2(a). In a different form, the very same
angle was obtained analytically by Okabe [11] in the 1920°s.

In typical design calculations for retaining structures, one seeks the load
imposed on the wall by the soil. The wall itself then is not part of the analysis. In
calculations focused on the displacements caused by seismic loads, the wall
needs to be part of the system, and angle & calculated from eq. (4.1) may not
necessarily depict the inclination of the true shear band appearing in the backfill.
One might make an intuitive conjecture, however, that this inclination does not
depart far from eq. (4.1). The specific issue this paper is focused on is: does the
shear band behind the wall remain stationary throughout the earthquake
shaking?
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4,2, Earlier experimental work

A series of small scale shake table tests were performed on a retaining
wall system by Aitken [1]. A post-test photo is shown in Fig. 4; for scale, the
height of the retaining wall shown in this photo is 0.32 m, The foundation and
backfill soil was New Brighton sand, which is a uniform, medium-to-fine
grained sand. The model was constructed by first placing the foundation sand
into the test box. The foundation sand was densified using high frequency
vibrations, and then screed level. The wall was placed on the foundation sand
and the backfill put in place. The backfill was densified using high frequency
vibrations and then screed level.

Fig. 4. A post-test photograph of the small scale shake table model of a retaining wall
system (after [1]).

The model was subjected to horizontal base excitations that were

generated by a lever arm-spring release mechanism. The excitations were
decaying sine waves whose first two to three cycles exceeded the yield
acceleration (Fig,
Fig.5(a)). As a result of the shaking, two predominant shear bands formed behind
the wall, as denoted by the white dashed lines in Fig. 4. One of the shear bands is
inclined 39.5° from the horizontal, and the other 46°. Other shear bands at other
angles of inclination may also be observed in Fig. 4, as indicated by the offsets
in the vertical white sand lines in the backfill. However, these other shear bands
did not fully develop (i.e., they do not extend all the way from the heel of the
wall to the free surface).
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Fig.5.(a)Time history of the horizontal inertial coefficient induced by the base
excitations, (b) Time histories of 8 and & computed using eqgs. (4.1) and (4.2) for the
inertial load away from the backfill,

Using eqs. (4.1) and (4.2) in conjunction with the excitation time history
shown in Fig.
Fig.5(a), the angles of rotation (&) that would induce the same inertial force as
the horizontal base excitation and the corresponding angles of inclination (£) of
the potential shear bands were computed and plotted in Fig.
Fig.5(b). In computing &, the following parameter values were used: o = 90°, f =
0°, and k&, = 0. Additionally, because sand paper having a similar grit to the New
Brighton sand was adhered to the base and stem of the wall, it was assumed that
¢ = @. Aitken [1] performed a series of simple shear tests to determine ¢ as a
function of density and confining stress; from the range of results from these
tests, ¢ = 35° was assumed by the authors in computing é.

As may be observed from Fig,.
Fig.5(b), the angle of inclination (#) of the potential shear band decreases as the
induced inertial force increases and that the upper value for 4 (~58°) corresponds
to that predicted by the Coulomb method for active (static) conditions.
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Superimposed on the plot of the time history for & are the angles of inclination of
the two predominant shear bands identified in the photo of the post-test results
of the model retaining wall (Fig. 4). As may be observed, these angles are in
close accord with those predicted by eq. (4.1). Aitken [1] did not give the mass
of the retaining wall used in his study, and consequently, the yield acceleration
cannot be computed. However, from his test results, k, =~ 0.3, thus precluding the
formation of shear bands from the third and fourth cycles in the base excitation.

4.3. Numerical results

A series of non-linear dynamic response analyses were performed on the
cantilever wall using the finite difference program FLAC [7]. The geometry and
structural detailing of the wall analyzed were determined following the US
Army Corps of Engineers static design procedures. The retaining wall was 6.1 m
in height, retaining medium-dense, cohesionless, compacted fill. Both the
foundation and backfill soils were modelled as being clasto-plastic with Mohr-
Coulomb failure criterion, and interface ¢lements were used between the wall
and the soil to allow relative movements and permanent displacements in the
wall-soil system to occur. The wall and backfill were numerically constructed in
0.6 m lifts, allowing for equilibrium of the stresses to occur between lift
placements. Additional details of the wall design and FLAC modelling are
presented in [3,4,5,6].

The deformed mesh from one of the numerical analyses is shown in
Fig. 6. As may be observed from this figure, a series of shear bands at varying
angles of inclination formed in the backfill (Note: White lines were
superimposed on the deformed mesh to highlight the shear bands.).

Fig. 6. Deformed mesh of a cantilever retaining wall system subjected to seismic

=R L

=11

excitations (after [5]).
The response of the retaining wall system shown in Fig. 6 was more
complex than the physical model test discussed previously because the
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stem of the wall was allowed to bend and the entire wall was allowed to
rotate in response to the mduced inertial forces. However, the muitiple
shear bands in the backfill are consistent with the physical model test
results shown in Fig. 4 and with egs. (4.1) and (4.2).

5. SEISMIC DISPLACEMENT OF RETAINING WALLS

The proposed method for calculating the displacements of retaining walls
subjected to seismic excitation outlined in Section 2 leads to a convenient
formula in eq. (2.7). While this method is applicable to both slopes and walls,
experiments on walls (both physical and numerical) indicate that the shear band
that forms in the backfill is not stationary. Rather, one shear band can be
associated with one cycle of seismic excitation, and if the subsequent cycle has a
distinctly different peak acceleration, a new shear band can form at a different
inclination angle. This observation suggests that under a *synthetic” sinusoidal
excitation having uniform amplitude, only one shear band will appear, whereas
for an actual earthquake excitation multiple shear bands will likely form. Further
studies are needed to reveal the impact of the frequency of the excitation on the
formation of multiple shear bands, and the possible influence of strain softening
of the backfill.

6. FINAL REMARKS

The classical sliding-block concept [10,14] can be adapted to include
more complex failure mechanisms experienced by earth structures. In applying
this concept to retaining walls, two observations were made: the backfill can be
modeled with good accuracy with only one block, but the geometry of the block
changes during the process of shaking in response to the variation in the
amplitude of the excitation. This is because the inclination of the shear band is
dependent on the induced inertial force, and hence, on the seismic acceleration.
This last statement is supported by considerations based on the classical quasi-
static theory. It is then reasonable to expect that a new shear band forms at the
peak of the acceleration in a cycle (or slightly after), and becomes visible only
once the displacements are large enough to be noticeable. One would also expect
that if the excitation has uniform amplitude, sliding will occur along one shear
band. Future research will include testing, both physical and numerical, to gain
more insight into formation of shear bands in the soil during ground motion, the
influence of ground motion frequency, and the role of strain softening of the
soil.
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