
TECHNICAL NOTES
Critical Pool Level and Stability of Slopes in Granular Soils
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Abstract: The influence of pore-water pressure and the pool water pressure on stability of submerged slopes was investigated using the
kinematic approach of limit analysis. For soils with some cohesive component of strength, the critical pool level is slightly below half of
the slope height, whereas for slopes built of purely granular soils the critical pool level is not well defined. The most critical mechanism
of failure for submerged granular slopes was found to have the failure surface intersecting the face of the slope, with one intersection point
above, and the other one below the pool level. The solution to the stability problem was found to be independent of the length scale �slope
height�, and equally critical mechanisms of failure can be triggered “locally” with any water level in the pool. The safety factor associated
with these mechanisms is lower than the well-known factor defined by a planar failure surface approaching the slope face.
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Introduction

A method used increasingly more often for analysis of stability of
soil masses is based on the kinematic approach of limit analysis.
The collapse mechanisms in this analysis are comprised of rigid
blocks and continually deforming regions that allow the soil to
move down the slope, causing a landslide. Hydraulic conditions
may exacerbate the state of the slope, and trigger a landslide. A
peculiar result was observed recently in numerical simulations:
the most critical pool level of a partially submerged slope is not
when the slope is fully submerged, but rather when the submer-
gence is partial. This was observed by Lane and Griffiths �1997�
in stability analyses that employed both the finite-element analy-
sis and the traditional limit equilibrium method. Subsequent con-
tributions are found in Griffiths and Lane �1999�, Bromhead et al.
�1999�, Lane and Griffiths �2000�, and Viratjandr and Micha-
lowski �2006�. It has been well documented that the failure of
slopes built of dry granular soils, such as sand, occurs in regions
characterized by large areas, but of relatively shallow depth, with
the failure surface approaching the slope face. Such slides are
often considered maintenance problems rather than failures. Par-
tially submerged slopes, however, behave differently, and the
mechanism of failure is not necessarily shallow. During shearing,
the soil density decreases because of the dilatancy �volumetric
strain� that is manifested in the increase in the void ratio of the
soil. If water is present in the voids of a free draining soil, then
the pore-water pressure does work on the dilation �“expansion”�
of the skeleton. This work has an adverse effect on stability, and
may be a chief factor leading to landslides in submerged slopes.

The premise upon which the limit analysis is based will be
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reviewed first, and the influence of partial submergence on trig-
gering landslides in granular soils, such as sands and gravels, will
be investigated. It will be demonstrated that equally critical mul-
tiple mechanisms �failure surfaces� are possible in partially sub-
merged granular slopes.

Kinematic Approach of Limit Analysis

The kinematic approach in soil mechanics is well established, and
the new aspects of applications have been summarized recently in
Michalowski �2005�. With the assumptions of the convexity of
the soil yield condition and the normality of flow, one can prove
that an active failure load calculated from the energy rate balance
equation is an upper bound estimate to the true failure load. Al-
ternatively, this approach allows one to calculate an upper-bound
estimate to a critical height of the slope, the lower-bound estimate
of a material property needed to avoid failure, etc. In this techni-
cal note, this theorem will be used to examine the influence of
partial submergence on the stability of slopes.

The kinematic theorem of limit analysis states that in any ki-
nematically admissible mechanism, the rate of internal work dur-
ing failure is not less than the work rate of true external loads.
This can be mathematically expressed as
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where vl
k and �̇ij

k =kinematically admissible velocity field and its
strain rate, respectively; Ti=traction on boundary S; Xi

=distributed load, such as the soil weight; u=pore-water pressure;
and �ij

k =stress state related to the kinematically admissible veloc-
ity field ��ij

k is not necessarily in equilibrium�. This theorem is
written here including the submergence and the pore-water effects
�last two terms�.

Water pressure on the submerged part of boundary S and pore-

water pressure in the failure mechanism volume V is denoted by
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u. Water is considered an external load here, and the work rate of
the pressure on boundary S due to submergence is reflected in the
last term of inequality �1�; ni=outward unit vector perpendicular
to S. The second to last term in this inequality is the rate of work
of the pore-water pressure u on the volumetric strain rate �dila-
tancy� of the soil. The minus sign comes from the expansion-
negative convention �compressive pressure does positive work on
skeleton expansion�. The sum of these last two terms has been
proved to be equivalent to the seepage and buoyancy effects
�Michalowski 1995�, and they both need to be included in the
analysis of submerged slopes.

Rigid-Rotation Failure Mechanism

The rigid rotation failure pattern, depicted in Fig. 1, was proved
earlier to be the most critical mechanism for “dry” slopes with
well-defined crest and toe �Chen 1975�, and it is adopted here to
simulate collapse of submerged slopes. The soil slides along the
log-spiral failure surface ABCD, and the work dissipation rate and
the work of the pore pressure needs to be integrated along this
surface. The work rate of the pore-water pressure requires that the
pressure along the failure surface be known first. The pore-water
pressure is estimated approximately by introducing a region with
�fictitious� vertical equipotentials below segment FG of the slope,
and constant potentials to the left and to the right of that region.

The log-spiral surface is described by

r = r0
��−�0�tan � �2�

and the magnitude of velocity discontinuity vector v along this
surface varies according to

v = v0
��−�0�tan � �3�

Angles �0 and �, as well as r0 and v0, are marked in Fig. 1, and
�=internal friction angle.

Partial Submergence and Drawdown

Calculations of the rate of work dissipation and the work rate of
the soil weight for the mechanism in Fig. 1 can be found else-
where �for instance, Chen 1975�, but calculations of the last two
terms in Eq. �1� require some comment. The second to last term in

Fig. 1. Rotational collapse mechanism of a slope
Eq. �1� is the work of the water pressure on the dilative compo-
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nent of the velocity discontinuity vector v sin �, and it only needs
to be evaluated along surface BCD, as the soil inside the rotating
mass does not deform. The last term in Eq. �1� is the work of the
water pressure on boundary DEF. The details of calculations are
described in Viratjandr and Michalowski �2006�.

It is convenient to introduce stability factor c /�H to charac-
terize the slope �Taylor 1948� with c=cohesion; �=soil unit
weight �saturated�; and H=slope height. Once all the terms in Eq.
�1� are calculated, a lower bound to the stability factor c /�H can
be derived in the following form:

c

�H
=

2 tan �� f1 − f2 − f3 − f4 +
�w

�
f5�

e2��h−�0�tan � − 1

r0

H
�4�

where coefficients f i=functions of geometry of the slope and the
failure mechanism, with f1 through f4 originating from calcula-
tions of the work of the weight of the soil, and f5 being dependent
of the work of the water pressure �both surface and pore water�.
Functions f1 through f4 as well as ratio r0 /H can be found else-
where �Chen 1975; Michalowski 1995�. Function f5 does not
have a convenient analytical form, and had to be evaluated nu-
merically �as in Viratjandr and Michalowski �2006��. An approxi-
mation was made in neglecting the difference in the unit weight
of the soil above and below the water table when calculating the
work of the soil weight in Eq. �1�, leading to Eq. �4�.

The stability factor in Eq. �4� is the lower bound to the “true”
value, and the maximum of this factor is sought in calculations,
with angles �0, �h and the position of point D �Fig. 1� being
variable.

A measure used to characterize slopes is the safety factor, de-
fined as the ratio of the shear strength parameters to those neces-
sary only to maintain limit equilibrium �cd and �d�

F =
c

cd
=

tan �

tan �d
�5�

The expression in Eq. �4� can be transformed to calculate the
factor of safety. Once c and tan � are replaced with c /F and
tan � /F, the upper bound to the factor of safety can be easily
derived �Michalowski 1995�

F =
2��h − �0�tan �

ln�1 + 2
�H

c

r0

H
� f1 − f2 − f3 − f4 +

�w

�
f5�tan �� �6�

The process of calculating F is iterative, because f1 through f5 are
all functions of �d as defined in Eq. �5�. To investigate the influ-
ence of the submergence on the possible loss of stability, three
regimes of water drawdown are considered. These are indicated in
Fig. 2.

The water configuration in Fig. 2�a� is associated with a rapid
drawdown regime where the level of submergence drops down
quickly, but the level of water in the slope has not yet had time to
drop. The second one is a slow draining regime where the level of
submergence and the level of water in the soil are approximately
the same throughout the drawdown process. The last draining
process is characterized with a constant drop in the water level
from that in the slope to the submergence table, and it is termed a
constant gradient regime. As shown next, a 1:2 slope character-
ized by c /�H=0.05 and �=40° appears to be safe under all three
regimes.

The expression in Eq. �6� was used to calculate the safety

factor for a submerged slope subjected to the three different re-
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gimes �no influence of the water drawing process on the variation
of the soil strength was considered�. The results are plotted in Fig.
3. Not surprisingly, the rapid water drawdown led to the lowest
safety factor at the end of the process. However, the results appear
to be surprising for the other two regimes. The most critical lo-
cation of the water table is at about a third of the slope height.
The minimum of the safety factor on the plot of F versus water
level L /H indicates a critical pool level. The occurrence of the
critical pool level was detected earlier by Lane and Griffiths
�1997�, who used both the limit equilibrium method and FEM
�also Griffiths and Lane �1999�� and Viratjandr and Michalowski
�2006�, who used kinematic limit analysis. A similar effect is
present for the constant gradient regime.

Slopes in Granular Soils

For purely frictional soils �such as sand or gravel�, the rate of
work dissipation during shearing is zero in limit analysis calcula-
tions. This is a direct consequence of the Mohr–Coulomb yield

Fig. 2. Drawdown regimes: �a� rapid drawdown; �b� slow drawdown;
and �c� constant gradient in water levels

Fig. 3. Variation of the safety factor of a submerged slope subjected
to different drawdown regimes; slope 1:2, �=40°, c /�H=0.05 �after
Viratjandr and Michalowski 2006�
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condition and the normality flow rule. With the left-hand side of
inequality �1� equal to zero, following the same steps as in the
previous section, one arrives at

�w

�
= −

f1 − f2 − f3 − f4

f5
�7�

which also can be obtained directly from Eq. �4� after substituting
c=0. The utility of this equation is not immediately obvious;
�w /� in Eq. �7� is the upper bound to the ratio of the pore fluid
unit weight to the unit weight of the �saturated� soil at which the
slope loses its stability; the pore-water pressure is considered an
external load, and this external load would increase with an in-
crease in the unit weight of the pore fluid. Because �w /� is known
for a given slope, it is not a very practical interpretation of this
equation. However, one can use Eq. �7� to find the lower bound to
the internal friction angle necessary to prevent failure of the slope
when ratio �w /� is given. Because functions f i in Eq. �7� depend
on geometry of the failure mechanism �including the ratio of the
height of the nonsubmerged portion of the failing mass to the total
height of the mechanism� and the internal friction angle ���, the
procedure must be iterative, where the geometric parameters are
varied in the search for maximum � �best lower bound�. Denoting
the best lower-bound solution as �m and the true internal friction
angle as �, the factor of safety can be calculated as the ratio
tan � / tan �m. The safety factor so calculated is its upper-bound
estimate. The solution to maximum � revealed an interesting
characteristic: the most critical mechanism is a log-spiral failure
surface that intersects the slope as shown in Fig. 4. A somewhat
different outcome was recently obtained by Baker et al. �2005�,
who used a different technique �a slice method� to estimate the
safety of submerged granular slopes. Their failure surface was
always associated with either the crest or the toe of the slope;
likely, an artifact of the method used.

The most critical mechanism is not associated with the planar
surface approaching the slope inclination, as in the classical ap-
proach �leading to safety factor F=tan � / tan ��. Rather, it is a
deeper failure surface, defined with respect to the water level, but
not with respect to the crest or the toe of the slope. In other
words, the solution is not defined by L /H, but rather l /h �see Fig.
4�. For this particular mechanism, coefficients f2 and f4 in Eq. �7�
are both zero, and the only two independent parameters defining
the geometry of the mechanism are �0 and l /h ��h is no longer
independent, and l /h enters Eq. �7� through coefficient f5 which,
in dimensionless manner, includes the influence of the water pres-
sure on the submerged part of the slope surface, in addition to the
pore-water pressure influence; Viratjandr and Michalowski

Fig. 4. Failure surface for a submerged granular slope
�2006��.
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Because h is not related to the slope height �except that h
�H�, the solution to � needed to maintain limit equilibrium is
independent of the slope height. This implies that the geometry of
the failure mechanism is linked to the water table in the pool, but
not its particular level with respect to the slope height. The solu-
tion has no characteristic length, and the mechanisms of any size
can be equally critical, as long as they do not interfere with the
slope crest or the toe.

The kinematic approach of limit analysis yields a lower bound
to the strength parameter needed to maintain limit equilibrium
�avoid failure�; hence, this parameter �here �� needs to be maxi-
mized in an optimization procedure where geometry of the
mechanism is varied. If the failure surface AB in Fig. 5 assures
the maximum solution to � from Eq. �7� �for given �w /��, then
any geometrically similar failure surface, for instance A�B�, will
yield an identical solution to �. Hence, for slopes built of soils
with some cohesive component of strength, there is a well-defined
critical pool level �see Fig. 3�, but it is not so for the slopes built
of purely frictional soils.

The results of calculations for a 1:2 “granular slope” are
shown in Fig. 6; for convenience, F / tan � is plotted as a function
of the level of water L /H. The traditional infinite slope analysis
yields the limit state when �=�, independent of the level of water
in the pool �the hydraulic conditions are consistent with those in
Fig. 2�b��. This F / tan � is depicted by a horizontal dashed line at
F / tan �=2 �1:2 slope inclination�. If the entire slope were to
collapse �toe failure, h=H�, then the factor of safety would de-
crease with the drop of the water level in the pool, to reach the
minimum when the water level is at about midheight of the slope
�the solid line in Fig. 6�. For the given 1:2 slope, the solid line
was obtained from Eq. �7� where � was maximized with given
�w /�=0.6, for a series of L /H. As coefficients f i are functions of
�, the calculations were iterative.

This result can be deceptive, because in the search for the most
critical failure surface, it was assumed a priori that the collapse
would include the entire slope, no matter how high or low the
pool level is. It was demonstrated earlier that the solution to the
problem is scale independent, and any failure mechanism de-
picted in Fig. 5 is equally critical. Consequently, if the mechanism
of failure is not “analytically forced” to include the entire slope,
but it is allowed to form a smaller local collapse mechanism
passing through the water table, the minimum safety factor is
achieved at any pool level, as depicted by the dash-dot line in Fig.
6. The algorithm that produced the value of F / tan �=1.85 was

Fig. 5. Equivalent failure surfaces for a submerged slope
based again on Eq. �7�, but the mechanisms of the type shown in
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Fig. 5 were allowed to form. For a fully submerged slope �L /H
=0� and for a fully drained pool �L /H=1�, the safety factor F
assumes its “traditional” value of tan � / tan � �for 1:2 slope,
F / tan �=2.0�, but it assumes the minimum of 1.85 �for this par-
ticular case� everywhere in between.

In a recent paper, Baker et al. �2005� concluded that the critical
pool level for granular slopes is about the midheight of the slope.
Such a result was obtained here only when the failure mechanism
was “forced” to include the entire slope height �solid line in Fig.
6�. The investigation described in this technical note indicates that
equally critical failure mechanisms can form at any level of the
pool �excluding full submergence and a fully drained pool�, and
there is no well-defined critical pool level.

Granular soils exhibit some apparent cohesion in the zone of
water capillary rise. Therefore, the size of the smallest failure
region �Fig. 5� is not expected to be smaller than the zone affected
by water capillary rise. The safety factor will then drop down
from tan � / tan � to its minimum level �Fig. 6� at some finite
gradient. This effect, however, was not part of the analysis.

Calculations were performed for partially submerged slopes
�Fig. 2�b�� to assess the combination of internal friction angle �
and slope inclination angle � at failure, for �w /�=0.6. For ease of
use, the results are presented in Fig. 7 as F / tan � versus �. The
classical solution F=tan � / tan � is depicted by the solid line,
whereas the dashed line indicates the solution with a log-spiral
failure surface, as shown in Fig. 4. Clearly, the latter is a more
critical mechanism than the plane surface approaching the slope.

Conclusions

The influence of pore-water and pool pressure on stability of sub-
merged slopes was investigated using the kinematic approach of
limit analysis. The stability problem formulated in terms of limit
analysis allows one to evaluate the pool level associated with the
slope being most susceptible to collapse. For soils with some
cohesive component of strength, this critical pool level is below
half the slope height �about 1 /3 of the slope height for a 1:2 slope
with �=40° and c /�H=0.05�. This has been confirmed by analy-

Fig. 6. Variation of a safety factor for a granular 1:2 slope during a
slow drawdown
ses using three distinctly different methods �Griffiths and Lane
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1999; Bromhead et al. 1999; Viratjandr and Michalowski 2006�.
Slopes built of purely granular soils, however, do not have a
well-defined critical pool level.

The most critical failure mechanism for a partially submerged
granular slope was found to be a log-spiral surface intersecting
the face of the slope. This is contrary to the traditional perception
that, for slopes built of granular materials, the most critical
mechanism is a “shallow” collapse with the failure surface paral-
lel to the slope. The analysis indicated that the solution to the
most critical log-spiral failure surface is independent of the length
scale; i.e., a geometrically similar family of failure surfaces can
be found, all forming equally critical mechanisms characterized
by the same safety factor. Apparent cohesion due to capillary
water rise may prevent failure mechanisms that are relatively
small in size.

The difference in the “traditional” safety factor for a partially
submerged slope formed of granular soil �tan � / tan �� and that
for a log-spiral failure is relatively small �several percent, Fig. 7�,

Fig. 7. Safety factor for granular slopes as a function of slope incli-
nation and internal friction angle
but the important distinction between the two is that, in the
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former case, the slope �of finite height� undergoes a shallow or
“surfacial” failure, often considered a maintenance problem,
whereas the latter leads to a deeper collapse.
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