The Soar Cognitive Architecture and Human
Working Memory

RICHARD M. YOUNG AND RICHARD L. LEWIS

FIVE CENTRAL FEATURES OF THE THEORY

From the viewpoint of the Soar cognitive architecture, the term w-orkir'lg

memory (WM) refers to the psychological mechanisms that maintain

information retrieved or created during the performance of a task. Th'e
following are the five key points made in the chapter concerning Soar’s
treatment of human WM:

(1) Soar is not specifically a “model of WM,” but rather a cogniti\'lc
architecture of broad scope, which focuses on the functional capabil-
ities needed for a memory system to support performance in a range
of cognitive tasks. The functions of working memory are distributed
across multiple components of the architecture, including the long-
term production memory.

(2) Even in a cognitive architecture with an unbounded dynamic mem-
ory, WM limitations can arise on functional ground.s. Where such
functional accounts exist, they take theoretical priority over capac-
ity-based explanations of WM phenomena.

(3) Soar does not currently include any capacity limits on its d'ynamic

memory (SDM), but is compatible with certain such limitations. In

' p:\rlicul’:\r, a constraint that SDM can hold at most two items of the

same “type” (suitably defined) yields a coherent explanation for n}&}ny

psycholinguistic phenomena in the comprehension of sentences. This

constraint is motivated by computational efficiency concerns and

embodies the general principle of similarity-based interference

" (Baddeley & Logie, Chapter 2; Cowan, Chapter 3; Schneider, Chapter
10; and O’Reilly, Braver, & Cohen, Chapter 11, all in this volume).

(4) Soar emphasizes the role of lcarning in WM phcnome.na, even on
tasks that experimentally arc regarded as concerning just “perfor-
mance.” The moral is that WM cannot coherently be studied inde-
pendently of long-term memory and while ignoring learning.

(5) Soar stresses the recognitional usage of information in long-term
memory acquired as a by-product of carlier task pcrforma.ncc. It
therefore has close links to other approaches that emphasize the
involvement of long-term memory in WM and may be able to offer

The Soar Cognitive Architecture and Human Working Memory T 225

a computational process model for “long-term WM” (Ericsson &
Delaney, Chapter 8, this volume).

In the Spring of 1987, Allen Newell delivered the William James lectures at
Harvard University (Newell, 1990). He used the occasion to argue the case for
striving toward theoretical unification in psychology, and to develop Soar, a
new cognitive architecture, as the basis for a candidate unified theory. Soar had
previously been presented as a problem-solving architecture for artificial intel-
ligence (Laird, Newell, & Rosenbloom, 1987; Laird, Rosenbloom, & Newell,
1986). Since then, Soar, like the production system architectures from which it
is derived (e.g., Newell & Simon, 1972), has been applied both within artificial
intelligence as a vehicle for constructing knowledge-intensive systems and
within psychology for the modeling of human cognition. Although more
work has been done on the artificial intelligence side (e.g. Tambe et al., 19953),
there has been a steady stream of work exploring how Soar offers state-of-the-
art accounts of human empirical phenomena (Altmann, 1996; Altmann &
John, in press; Howes & Young, 1996; Lewis, 1993, 1997a, 1997h; Miller &
Laird, 1996; Poilk & Newell, 1995; Wiesmeyer, 1992; Wiesmeyer & Laird, 1993).

Unlike smaller-scale theories in psychology, Soar is not shaped by the con-
cerns of any single experimental area or paradigm. Soar therefore has no sep-
arate “memory mechanism” in the sense of components of the architecture
aimed specifically at accounting for the results of experiments on human
memory. [nstead, the design of Soar is dominated by the functional consider-
ations needed to exhibit general intelligence of human-like form (Newell,
1990). With regard to human memory, Soar’s aim is not primarily to repro-
duce the findings of laboratory experiments, but to explain how memory
works in the context of performing real, often complex, tasks. However, such
an approach is useful even for the analysis of laboratory phenomena, because
no psychological experiments test just memory. Instead, they all involve the
entire cognitive system in the comprehension and performance of tasks.

The involvement of memory in complex cognitive tasks is, as Newell (1992)
reminds us, an issue that memory theorists have largely neglected. In conse-
quence, the “standard models” offered by most memory theorists are simply
inadequate for explaining performance on cognitive tasks of any appreciable
complexity. Decades of simulation work have shown that very small working
memories - for example, those able to hold just a small number of items, say in
the range 3 to 9 “chunks” or those holding 3 or 4 items in a “central executive”
supplemented by phonological and similar loops - are simply incapable of sup-
porting the performance of tasks such as problem solving or language process-
ing (Broadbent, 1993). (For different reasons, similar doubts about the
adequacy of the accounts of memory offered by mainstream cognitive psychot-
OBy are expressed by other investigators, for example those concerned with
studies of “practical memory” le.g., Gruneberg, Morris, & Sykes, 1988] or with
the importance of “ecological validity” [e.g., Neisser, 1982, 1985].)

226 Richard M. Young and Richard L. Lewis

In this chapter we therefore examine the various phenomena of human
working memory (WM) from the viewpoint of a cognitive architecture of
broad scope, which focuses on the functional capabilities needed for a mem-
ory system to support performance in a range of cognitive tasks. We argue for
and demonstrate three points concerning the limitations of WM: (a) We show
how the cognitive system, even with a limited-capacity short-term store, can
handle complex tasks that require large quantities of information, by relying
heavily on recognition-based long-term memory working in concert with the
external environment. (b) We argue that limitdtions on WM arise even in
purely functional cognitive systems built without preset capacity constraints,
and hence that empirically demonstrated limitations of effective WM do not
necessarily imply a capacity-constrained underlying memory system. (¢) We
show how a specific mechanism of similarity-based interference can act as a
resource constraint on the cognitive system and offer a coherent account of a
wide range of psgichol'mguistic phenomena.

Terminology

Before we proceed any further, we need to deal with a few points of termi-
nology that are otherwise guaranteed to cause confusion.

First, the Soar architecture includes an internal declarative memory that
holds information specific to the task in hand, including control information.
As with most production system architectures, that memory is known as the
“working memory.” Because that memory is not necessarily to be taken as the
counterpart of human working memory, we will refer to it as Soar’s dynamic
memory, abbreviated SDM. We will reserve the term working memory (WM) for
the psychological construct. We explain the relation between the two in the
next section.

Second, as we shall see, a central role is played by Soar’s learning mecha-
nism through which it acquires new production rules. In Soar, that process of
acquiring new rules is called “chunking,” and the new rules themselves are
called “chunks.” Because the term chunk is already widespread in the litera-
ture on human memory with a different (though related) meaning, we will
again avoid the term in its specialized Soar sense, and simply talk about Soar’s
learning or acquisition mechanism, and refer to the new productions as acquired
rules. These conventions should aid clarity within this chapter, but the reader
who delves further will find that our usage is nonstandard with respect to the
Soar research literature. '

1 There is no primer or textbook for Soar, and Newell’s (1990) book is now seriously out of
date in several relevant respects. However, there is a user manual available (Congdon &
Laird, 1995), and an on-line tutorial introduction to Soar for cognitive modeling (Ritter &
Young, 1997). There is also a “gentle introduction” to Soar (Lehman, Laird, & Rosenbloom,
1998). Information about Soar can be found on the World Wide Web and is most conve-
niently accessed through the list of Frequently Asked Questions:

: http://x\wnv.ccc.nottingham.ac.uk/pub/soar/nottingham/soar-faq.html

The Soar Cognitive Architecture and Human Working Memory - 227

Third, we use the terms production, rule, and even production rule inter-
changeably and without distinction.

Finally, we discuss Soar here in terms of its most recent version, Soar7. The
technical concepts in Soar7 differ considerably from those of earlier versions.
For example, where Newell (1990) talks of goals (which have states) and sub-
goals (which also have states), in this chapter we talk simply of states and sub-
states. The change has no psychological significance, but again the reader
should be aware that most of the Soar literature employs an older terminology.

Basic Mechanisms and Representations in Working Memory,
and the Control and Regulation of Working Memory

In order to identify those mechanisms in Soar that-correspond to working
memory, we must first provide a brief introduction to the Soar architecture.
Next we will present a functional definition of working memory, abstracted
from any particular mechanism that might realize it. We then describe how
certain components of Soar realize the functions of working memory. The
particular mapping we provide between Soar and human working memory is
not the standard production system view, but we argue that it should hold for
any learning production system. |

Overview of Basic Soar Mechanisms

Soar is a cognitive architecture of broad scope, offered by Newell (1990) as
a candidate “unified theory of cognition.” Soar is best described at two levels
called the problem space level and the symbol level. At the problem space level:
Soar casts all cognitive activity as transformations of states by operators within
a state space. In a state space, there is a single current state, which encodes
working information about the problem or situation being processed.
Cognitive processing occurs by means of operators, which apply to the cur-
rent state to yield a new current state. In straightforward cases, processing
consists of a repeated cycle in which Soar first picks an operator and then
applies it to transform the current state into a new one.

This abstract description of Soar is realized concretely at the symbol level.
At this level, the states and current operators are stored in Soar’s dynamic
memory, SDM, as shown in Figure 7.1. All persistent knowledge - including
knowledge of when to propose operators, how to choose them, and how to
apply them — is encoded in production rules. Each production represents a
content-addressed piece of knowledge, which is sensitive to a particular pat-
tern of information in SDM, and when it detects that pattern proposes partic-
ular changes or additions to SDM. All productions that are satisfied, in other
words, can find data in SDM to match their pattern, apply in parallel. Once all
such rules have fired, their proposals are collected and the appropriate
changes made to SDM. Usually, these changes will cause another set of pro-
ductions to match, and the process continues.

228 Richard M. Young and Richard L. Lewis

Production Membry (LTM)

-)
A & B =X
/ C & D = Y \
I new “results”
give rise to’
K . new productions
conditions . .
actions write
test SDM . into SDM
- , (
operator: paint
block

green

impasse
operator

no-change
L 4)

Soar's Dynamic Memory (SDM)

Figure 7.1. The main memories and processes in Soar.

At this level, Soar comnsists of two main memories: SDM, which decla}'a—
tively holds dynamic information about the task at hand, and production
memory, which holds persistent knowledge. Production memory Is perma-

nent. Once a rule is acquired, it is never lost (although there are ways in

which it can be effectively masked or have its actions overruled).

Current versions of Soar employ a low-level, theoretically neutral repre-
sentation of information in SDM, consisting of attribute—val.ue pa.irs. Such a
general-purpose representation can serve as 4 basis for building higher level
constructs of the kind familiar in cognitive science, such as schemata,
frames, and so on. However, the representation is theoretically weak and
places little constraint on the form or content of information in SDM. .S(.)r’ne
work in Soar (e.g., Polk & Newell, 1995) has begun to explore the possibility

e

oot

The Soar Cognitive Architecture and Human Working Memory 229

of adopting a more constrained, theoretically stronger representation -
specifically, that of “annotated models,” inspired by the “mental models” of
Johnson-Laird (1983). But the topic of representation remains an underde-
veloped area for Soar. '

Soar’s “straightforward” processing described above, of repeatedly choos-
ing an operator and applying it to the current state, can become blocked in
various ways. For example, perhaps Soar knows of no operators to propose in
the current state; or conversely, perhaps it proposes several but lacks the
knowledge to choose between them; or perhaps it chooses an operator, but
does not know how to apply it to the state. In these cases, Soar is said to
encounter an impasse, where it is unable to proceed with its simple processing
cycle. When this happens, Soar automatically sets up a new state (implicitly
in a new state space), which is regarded as a substate to the state where the
processing was blocked. The purpose of the substate is to trigger further pro-
cessing (involving further implicit search of Soar’s knowledge base) to retrieve
information to resolve the impassé. For example, if the impasse arose because
no operator was proposed, it can be resolved by finding a suitable operator. If
the impasse arose because multiple operators were proposed, it can be
resolved by finding knowledge to choose between them, and so on.
Unsurprisingly, processing of the substate can itself encounter an impasse,
which then leads to the setting up of a sub-substate, and so on. So at any time,
Soar may have a whole hierarchy, or “stack,” of spaces it is working in, each
with its own current state and (possibly) operator.

Soar’s Learning Mechanism

Because all knowledge in Soar is encoded as production rules held in pro-
duction memory, learning - in the sense of adding new knowledge — consists
of acquiring new productions. The mechanism for doing this is intimately
tied in with the impasses just described.

Whenever processing in a substate leads to a change being made to the |
superstate, that change is called a result, and Soar automatically acquires a
new production rule. Recall that a production has a condition side and an
action side. The action side of the new production is, obviously, the result,
that is, the change to the superstate. What should constitute appropriate con-
ditions for the new production is less obvious. What Soar does is to use for the

conditions all those items in SDM that (a) are part of the superstate, and (b)

are causally implicated in the sequence of production firings that led to the
result. Here, an item being “causally implicated” means, roughly, that one of
the firing productions matches against it.

Suppose that A and B (and perhaps many other items) are part of the cur-
rent state in SDM when an impasse occurs. In the processing of the substate,
suppose that a production matches against A and adds X to the substate,
another production matches against B and X and adds Y to the substate, and
finally a third production matches against ¥ and adds the result R to the

230 Richard M. Young and Richard L. Lewis
superstate. Then A and B, and only A and B, are: both part of the sgperfs(t)a::i
and matched against in the sequence of firings ?hat leads to R, so they

the conditions, and Soar acquires a new production:

Pl A&B=R

In future, whenever A and B are both ‘on a state in SDM, the new‘prodtgz-
tion will fire, adding R to the state. If R was sufficient to resolve the impasse,

then the impasse will henceforth be avoided.

Working Memory in Soar . . | -
We have now described Soar completely enough to 1dent1f); :ih?‘s:errgle:::?y
: i ~ But first, we must de

nisms that correspond to working memory w e e
i . Following the spirit of Miller, ,
what we mean by working memory. 097
i itch (1974), Just and Carpenter s
and Pribram (1960), Baddeley and Hitc | \ (1992)
sonal role of working memory in cognuon.

and others, we focus on the functiona . ‘
The following definition specifies that role independently of the mechanisms

that realize it:

i i intain and

Waorking memory refers to those computational n:jefjhaplslﬁ; eth:;fr:rz::g an o
b . . 3 ‘ng

i C formation created or retrieved durt : f

P e omputat ort such functionality,
i lete system must supp

task. Any computationally comp ‘ i

because Zomputation is inherently a process that requires the temporary stofag

and manipulation of partial and intermediate products.

i i - tive
It should be clear that Soar’s dynamic memory — 1t; shfzrt t:rr: (()lsi:]z::kmg
i i t intended to serve the functio

store — is precisely a componen . : ¢
memory {)ndeed, that is why such components in prod'uct_\ons systems z'x :
«working memories.” The traditional descriptions of Soar rein
ent “state” in the problem
it is natural to assume that

usually called \
force this identification by staung that the curr
space is held in Soar's dynamic memory. Hence,
the SDM directly corresponds to working memotr}}i. iy way that Soar can
8! SDM is not the ¢
However, making changes to e ent of
i of a task: The other way 1s tor
change state during the course - o ehanism.
i itself to change, via Soar’s lea g
the production rule memory 1 U
.no is a function of the rate of impasses,
Because the rate of learning is a . B ory
‘ the rate at which the long-te
‘fearly some strong bounds on .
IL‘?I'M-) can encode new state changes. Nevertheless, for all butfthc sncl;;;l;:st
, i i seconds) tor
Ny i i enough time (on the order o
immediate reaction tasks, there 1s : e O eaeve that
ir diate products in LT™M and la
Soar to encode some interme nat
information during the task. In effect, the LTM can become part of the
tional working memory system.
We can illustrate the idea by thinking of the ?leclar.at.lve d}./nfmlfz ::El artsy
and the long-term production memory as bemg‘dmded into o nfemsl
according to the source and function of the constituent memory .

The Soar Cognitive Architecture and Human Working Membry 231

First, there are those memory elements that were created prior to the task and
are not used in the task (constituting a small fraction of SDM, but a large por-
tion - nearly all - of LTM). Second, there are those elements that were created
prior to the task and are used in the task (constituting a small part of SDM,
and some small fraction of LTM). In LTM, this part constitutes the preexisting

- skill for the task. Third, there are those elements that are both created and
used during the task. This constitutes most of SDM, and again, a small frac-
tion of LTM. It is this third set of memory elements that plays the role of a working
memory. Finally, the fourth set consists of those elements created during the
task, but not used.

This analysis leads to the inevitable conclusion that “working memory” in
Soar consists of both SDM, in its familiar role, and also to some extent LTM, in
its less familiar role of maintaining and retrieving intermediate products
within a task. The components and processes of working memory, therefore,
include both the short-term dynamic memory, the long-term memory, the
matching of long-term productions to the dynamic memory, and the learning
mechanism that gives rise to new productions. We will see this involvement of
LTM in working memory spelled out in more detail in the next few sections.

Relation to Other Theories of Memory

The job of relating Soar’s account of memory to others is spread through-
out this chapter, but we make a start here with a first-cut comparison between
what we have seen of Soar so far and other approaches.

We begin with the.relatively easy topic of long-term memory. Most
approaches to human memory impose a fairly clear-cut distinction between
short-term and long-term memory (or memories). Soar is unequivocal in
offering its production memory as the counterpart to human long-term mem-
ory. The various different kinds of aspects of long-term memory discussed in
the literature ~ declarative, procedural, episodic, implicit, autobiographical -
are not distinguished structurally in Soar. Differences among them would have
to be reflected in the corntent of the knowledge in production memory (or per-
haps, in some cases, in how that knowledge is used on different types of occa-
sion). Soar’s assumptions about the permanence of knowledge once acquired,
and about its content-addressed, associative nature, place it near the main-

stream of psychological theorizing and obviously share in a long tradition.
Soar’s long-term memory is, though, marked out by its structural uniformity
and the leanness of its assumptions.

With regard to the part of working memory realized by SDM, Soar shares
an evident family resemblance with other production system cognitive archi-
tectures, such as ACT (Anderson, 1983, 1993; Lovett, Reder, & Lebiere,
Chapter 5, this volume) and CAPS (Just & Carpenter, 1992). Again, however,
Soar’s relative austerity is notable: Soar has no apparatus for rule strengths or

activation levels or the like, and therefore has at least the potential for
stronger theoretical accounts.

" WM. To some extent, Soar can be seen-as complementary tot

232 Richard M. Young and Richard L. Lewis
The comparison with models derived from experimental psychology is less
straightforward. The sharp two-way divisioh between permanent and
ephemeral memories has obvious echoes of earlier ideas about “short-term”
and “long-term” memory (e.g., Murdock, 1963) or “primary” and “sec-
ondary” memories {(Atkinson & Shiffrin, 1968; Waugh & Norman, 1965) -
and consequently, in the eyes of some memory psychologists, gives Soar an
old-fashioned look. The most historically influential touchstones are probably
the idea of a short-term memory for the temporary storage of information
(e.g., Miller, 1956) and its later elaboration into a “working” memory for tran-
sient, task-relevant information, particularly under pressure of data from
study of the immediate recall task and its variants (Baddeley, 1986; Baddeley
& Hitch, 1974; Baddeley & Logie, Chapter 2, this volume). In relation to both
of these, we need to repeat warnings we have already given in this chapter:
Complex cognitive tasks simply cannot be petfoimed with temporary storage
of only 7 £ 2 items; Soar’s SDM does not have an imposed capacity limit; and
SsPM should not be simplistically identified with the psychological notion of
he main thrust
of the last decade of WM wortk, since it focuses primarily on the so-called cen-
tral executive concerning which WM researchers have, at least until recently

{Baddeley, 1996), been sO reticent.

Learning, Knowledge, and Long-Term Memory

The next two sections explore some oOf the surprisingly far-reaching implica-
tions of Soar’s learning mechanism for human memory and learning. We first
consider the unique theoretical role that learning has in cognitive models
built in Soar, and then look at some examples of the mechanism in action.
These examples lay the foundation for understanding precisely the role of
Soar’s learning and {TM in realizing working memory functions.

. Where Do the Productions Come From?

We start this section with a brief 1ook at a question often asked about 2
Soar model, namely, where do the productions come from?

One answer is, simply enough, that they are postutated by the theorist. In
this, Soar differs not at all from any other kind of model, However, Soar offers
also a second, less familiar, answer to the question of the origin of the pro-
duction rules, which is that it learns them - or at least, some of them - for
itself. An ideal cognitive model would learn all the relevant productions itself.
Of course, in practice that is not possible. For a particuiar model, some hand-
written rules have to be provided by the theorist as a starting point (although
it is now quite common in Soar models for learned rules greatly to outnumber
the handwritten ones, €.8., Altmann, 1996; Altmann & john, in press). The
aim then is to provide, initially, only capabilities that it is reasonable to sup-
pose @ human subject has when he or she walks into the experimental situa-

The Soar Cognitive Architecture and Human Working Memory 23
_ 3

tion. If i i

100 uzefct);; tr;lgicli.el is able to 1nter.pret simple English sentences (Lewis
Ny Lair’d, o5 ;)ty to querstanq instructions (Huffman, 1994; Huffmar;
B A A A A A

\ , , , ose resulti i
i ;rt;c;rr)ag;r nt)t;gczratlctarll status t'han if they were simply wri‘:zgnplr)c))fdll:::g n'cshl;;1 :,:
prog? “reducmg);he stehthe'.:m’st. (Newell, 1990, refers to this methodé)k)gy a;
eorist’s degrees of freedom."”)

Rosemary’s Baby .

Consider the following situation. You know th
Joonsider ¢ : . at Rosemary, a fri

‘):v urs e g;rloerd ato_ i}ilobirt, has just had a baby, but you do not kngw wh]eetrlllcflzroi:
Rosemary acon grat.m otu want to find out which'it is, so that you can send
(o aay e right %hm ation card, buy a present, and generally be in a position
to say the rgh o Ofgt; tobRgsemar‘y .when you see her. You obviously cannot
de Smtéb]e e ot e baby by sitting down and thinking about it, so on the
pext sultabi infornmfyou ask Robert, and he tells you that their baby is a girl
oo am s n Rose:’?n n’leans to rv'emember it, so that in the future you wili
model the cognitive (if gro); sthb:z};c:;gz(s);:zcl:: Vifn tgh e soar

A ; of this scenario in Soar?
o wo; ;:Zfrzctbof the learning process should be that whenever the Soar

about the sex of Rosemary’s baby, it retrieves the information

that the baby 1sa 1[1. HllS means t,lat t]le lllOdel])EedS SOHleh()W to acquire
g
i ! q

P2: what-is (sex-of, Roséfnary’s-baby) = girl.

An acqui 1 i i
o }:;at r;:d irrl:t)s (;I;Dt]}\l/;s form is described as a recall rule, because it serves to
) | 2 , an item of informati ich i
stored in production memory. aion which Is known, that 1
The question | i
migit iga inx::rtxht)hfen is, 'How. does the Soar model acquire that rule? One
st | Of% e c:llowmg kind of route. In some state, So.ar wants to'kn
the so rOdos:.mar)./ s baby. It doesn’t kriow the answer, that is, it doesn’t vet
processli)n uction like P2, so there is an impasse and a substate’z issetu Tylft
processir rfdotr;1 the substate, to resolve the impasse, decides to go arii a li
o pri,m oy ta :1: Z‘fﬂ;tazl-(temporarily takes precedence in the main state ovir
imat nding the baby's sex. So §
the P ’ . oar wanders off . . . an i
SUbSltaiztecrr R(f)ibert tells Soar “It’s a girl.” With that information in h: adh::e
an . . . n ’
substate can b :;sh the task by marking “girl” on the superstate. That resulte
0 a superstate, causes Soar to acquire a new production ’

The trouble is that a So
ar model operati i i
P2, but the somewhat different rule: P g along those fincs acqulres, not

P3: what-is (sex-of, Rosemary’s-baby) & answer=girl = girl

P3 is th i
o Condftis(;arr‘n§ afs P2, except that it has the extra condition “answer=girl.”
is included because in the processing that led to the regsul.t
(4

234 Richard M. Young and Richard L. Lewis

some production must have matched against Robert’s answer ”It.’s a girl” in
order for the right result to be found. The item “answer=girl” is therefore
causally implicated in the result, and consequently included in the acquired
rule. .

The extra condition prevents P3 from doing the job we want. A production
like P3 is known as a circular recognition rule. It cannot recall information, but
it can recognize the answer in the sense that it fires when the right informa-
tion is in SDM. But that still leaves us with the problem of explaining how the
recall rule, P2, is acquired.

A Mﬁltistage Learning Model

To explain how P2 arises, we temporarily ignore the question of learning
and focus instead on the task of obtaining the answer to the question ”whé.lt-
is (sex-of, Rosernary’s-baby).” A Soar model has available to it four potential

routes to the answer:

1. If Soar already has a rule like P2 that recalis the-information, then it fires
and the task is done. There will be no impasse. o

2. If Soar happens to have the information already in SDM, thgn it is picked
up and returned as the answer to the question.)

3. Soar can generate the possible answers to the question (namel.y, “boy” and
“girl”), and see if either of them triggers a recognition rule like P3. if so,
that item is returned as the answer to the question.

4. Soar can seek the answer from an external source, such as by telephoning

Robert and asking him.

These four routes are listed in order of increasing mental and (in the case of
4, physical) effort. Accordingly, it is rational for a Soar model to try the differ-
ent routes in that order, with the easy ones first. The behavior of such 'a
model, over a sequence of trials, is instructive. We assume initially that nei-
ther P2 nor P3 is present:

On the first trial, neither route 1 nor route 2 is applicable. Soar tries route
3, but fails because there is no recognition rule. It therefore adopts route 4,
asks Robert for the information, and is told “It’s a girl.” With that information
in SDM, route 2 can apply, so Soar picks up the reply and returns the z?nswer
“girl.” We have already seen that the consequence of that behaviqr is that
Soar acquires the recognition rule, P3. ’ .

On the second trial, again neither route 1 nor route 2 is applicable. Soar
tries route 3, and asks itself in turn “boy?”, “girl?”. For the “girl” option, rule
P3 fires, indicating that it recognizes “girl” as the answer it has previ.ously
seen. Soar can therefore return “girl” as the result. In so doing, it acquires a
new rule, P2. This time, the unwanted extra condition is not included in the
rule, because the Soar model has generated the answer itself (in a substate)
instead of having to rely on its already being present in SDM. The

The Soar Cognitive Architecture and Human Working Memory 235

“answer=girl” is therefore not this time causally implicated in the result, and
does not appear in the rule conditions.

On the third trial, and subsequently, recall rule P2 fires, implementing
route 1. The Soar model has therefore now “learned” the sex of Rosemary’s
baby.

A couple of features of this story about learning are worthy of comment.
First, the model engages in no deliberate activity of “learning.” Instead, the
learning occurs as a side effect of doing the task, as a consequence of Soar’s
automatic mechanism for acquiring new rules. Second, this kind of learning is
inherently multipass. The first trial is needed to acquire the recognition rule.
"The second trial makes use of the recognition rule to pick out the right answer
from among those generated and leads to the acquisition of the recall rule.
Only from the third trial onwards does the recall rule itself come into play.
Third, the learning relies on a precess of generate and recognize, in which the
learner generates possible options and makes use of previously acquired
knowledge to recognize which is right. This process has evident similarities to
other generate-and-recognize models previously proposed for memory (e.g.,
Anderson & Bower, 1972; Bahrick, 1970; Kintsch, 1970). '

Implications for Long-Term Memory

Although the model just presented is for a simple and somewhat contrived
task, the approach and its characteristics generalize to a wide range of learn-
ing situations, basically those where crucial information has to be acquired
for the task to be performed. (Post-cvent learning, where the learner has to
remember the outcome of an action or event, is a little different in detail, but

- it shares the same generate-and-recognize basis.) Much of the work in Soar

has dealt with the learning of instructions (Howes & Young, 1996; Huffman,
1994; Huffman & lLaird, 1995), where the models exhibit a gradual progres-
sion from a performance that is initially externally based, that is, dependent
on interpreting the externally presented instructions, through a stage of
recognition-based learning, to a fully internalized and assimilated skill.

Vera, Lewis, and Lerch (1993) add an important ingredient to the story, by
analyzing the kinds of situations that occur often in practice, in which the
alternative answers are provided by the external environment and therefore
do not have to be generated from the learner’s internal, cognitive resources.
In learning to use a bank automated teller machine (ATM), for example, the
action at each step makes use of a specific external object: to press one of the
labeled buttons, or type on the numeric keys, or insert a card into the card
slot, and so on. To acquire the correct sequence, the learner needs to supply
only the recognitional knowledge. As further discussed by Vera et al. (1993)
and by Howes and Young (1996), Soar predicts that the skill acquired by the
use of such external generators is strongly “situated” or “display based”
(Larkin, 1989), in the sense that a person can perform the task fluently when
in the task environment, but cannot produce the learned procedure - for

238 Richard M. Young and Richard L. Lewis

Altmann’s model attempts to comprehend each new item of information
that appears on the screen, although this comprehension can vary enor-
mously in its depth and completeness. Each act of comprehension results in
the acquisition of one or more new production rules, which include the
salient features of the item being processed and a (very crude) indication of
the circumstances in which the item appears. Such rules form effectively a
(very simple) episodic trace of what has been seen. Even though only a tiny

fraction of the content of the computer display is being captured in this way,

these productions arising as a side effect of the comprehension can serve as
recognitional knowledge. When.the model encounters an item about which
more information is needed, if one of these recognition rules fires, then Soar
knows that it has seen the item before; and if the remembered context indica-
tor differs from the current one, then Soar knows it must have seen the item
earlier, and so can find it by scrolling back.

The implications of this model for human memory both reinforce and
extend those we have seen from the previous examples. Once again, we have
the idea of learning occurring as a side effect of processing, with heavily
recognitional use being made of the production rules acquired as a by-product
of that processing. In this case, the model shows how a human programmer
can, within the constraints of a limited WM, make effective use of recogni-
tional knowledge in LTM to index into and navigate around a large and grow-
ing display of external information.

Altmann and colleagues relate their results to the idea of long -term work-
ing memory (LT-WM) propounded by Ericsson and Kintsch (1995; Ericsson &
Delaney, Chapter 8, this volume). Altmann’s model shares with Ericsson and
Kintsch'’s analysis the core suggestion that LTM be used to provide access to a
larger set of information than can be carried in WM. Soar adds to LT-WM the
twist that the relevant knowledge in LTM is primarily recognitional in charac-
ter and serves to provide access to a potentially vast body of external infor-
mation. Unlike the cases studied by FEricsson and Kintsch, Altmann’s
programmer does not put effort into the deliberate construction of retrieval
cues for the information being meémorized. Altmann and John (in press)
ascribe this difference to the contrasting requirements of the tasks. Altmann’s
programmer encounters a huge amount of information, only a small part of
which will ever be sought again, so there is no possibility of building specific
retrieval structures. Instead, Altmann and John (in press) propose extending
LT-WM with the idea of a ubiquitous “episodic LT-WM,” which the cognitive
architecture acquires passively and pervasively.

IDXL Model of Exploratory Search

* Rieman, Young, and Howes (1996) describe a Soar model called IDXL,
which performs the kind of exploratory search that experienced computer
users engage in when asked to use an unfamiliar menu-driven application.

IDXL accounts for many of the empirical phenoména observed with this kind -

The Soar Cognitive Architecture and Human Working Memory 239

of exploratory learning (Franzke, 1995; Rieman, 1994, 1996). Users typically
cannot and do not go directly to the right menu item. Instead, they examine
the menu headers, pull down and browse through some of the menus, focus
on a few promising items, and may end up visiting the correct item several
times, often for increasing durations, before finally choosing it.

IDXL pays attention to one item on the screen at a time, performing some
processing on an item and then moving to an adjacent one. The processing of
each item is done locally, with information being held in SDM about only the)
individual itemn being attended to. Each time an item is examined, a quantum
of processing is performed to assess its relevance to the task being done, and
this leads to a production being acquired to summarize the outcome of that
assessment. Over multiple visits to an item, an increasingly detailed and reli-
able evaluation of the item is represented in the acquired rules. Those rules
are also used recognitionally, for IDXL to know on each visit to an item what
processing it has already received.

IDXL's implications for human memory agree substantially with those of
the previous examples. IDXL shows how experienced users can explore a
potentially large, externally presented space of possible actions with only a
fixed-capacity WM, by storing information gathered during the exploration

* in LTM and using it recognitionally.

Limitations of Working Memory: Functional Limitations

In the previous section, we discussed three Soar models that perform complex
cognitive tasks while operating within a limited working memory. That is
only half the story (though a crucial half): We must now demonstrate how
WM limitations might actually arise in Soar. In this section and the next, we
present additional models that illustrate two theoretical points about WM
limitations in Soar. First, there are several ways in Soar that phenomena
attributed to limited WM may arise from the interaction of functionally moti-
vated aspects of the architecture, without assuming any capacity constraints.
Second, independent efficiency concerns in Soar lead us to pbsit a simple but
severe representational constraint on SDM that is consistent with a well-
known principle of human WM limitations, similarity-based interference.
This constraint leads to detailed accounts of a number of psycholinguistic
phenomena in sentence processing, while still allowing the complex task of
comprehension to proceed.

Functional Limitations and Resource Limitations

The study of working memory is dominated by the topic of limitations.
The majority of experimental studies demonstrate that people can hold a cer-
tain amount of information in WM, but no more, under such-and-such con-
ditions. The most famous case, deriving from Miller’s (1956) celebrated paper,
is that of limited immediate memory capacity. Usually these limitations are

240 Richard M. Young and Richard L. Lewis

seen as being due to underlying resource or implementational constraints. For
example, the decay rate of the phonological loop (Baddeley & Logie, Chapter
2, this volume) is a hard constraint that presumably reflects properties of the
neurobiological substrate. The same is true for models positing activation lim-
its (Lovett, et al.,, Chapter 5, this volume) or limits of attentional span
(Cowan, Chapter 3, this volume). The implicit assumption is that if the hard-
ware of the brain had different properties — were somehow better designed -
then we would be able to remember more, understand more complex lan-
guage, think and learn faster, and so on.

The idea of resource constraints appears not to sit comfortably with Soar. It
has no mechanisms of quantitative gradation, such as activation level or trace
strength,? and attempts to impose a brute-force limitation on the size of SDM
- to decide that it cannot hold more than seven items, say, or 17 - seem not to
work well. This aspect makes many psychologists doubtful about Soar (e.g.,
the commentaries in Newell, 1992), but as we shall see it does not rule out the
possibility that Soar can model and account for the psychological phenomena

associated with limited WM.

"~ Newell (1990) points to another possible source of performance limita-
tions. He distinguishes between resource constraints and functional limita-
tions, which can arise from the interaction of cognitive components
motivated on purely functional grounds. In other words, they derive from
considerations of the task an agent is trying to perform and what it has to do
to perform it, without needing to appeal to properties of the implementa-
tional substrate. The existence of functional explanations of performance lim-
itations is theoretically very important. If an explanation of a phenomenon
can be offered on independently (and functionally) motivated grounds, then
no further explanation need be sought in terms of implementational or
resource constraints. In the following subsections we consider two examples
of Soar models that exhibit such functional limitations.

Example 1: Performance Limitations and Individual Differences in

Syliogistic Reasoning

It has long been known that certain forms of syllogistic reasoning are diffi-
cult for most people to perform. For example, the syllogism in (1) below is
easy to solve correctly:

(1) All artists are beekeepers.
All beekeepers are chemists.

What (if anything) necessarily follows?

2 However, that does not mean that Soar cannot account for certain graded ph_enomena. See,
for example, Miller and Laird (1996). :

The Soar Cognitive Architecture and Human Working Memory 241

It necessarily (and quite transparently) follows from the two premises that all
artists are chemists. However, syllogisms such as (2) below are notoriously dif-
ficult to get right: \

(2) No artists are beekeepers.
Some beekeepers are chemists,

What (if anything) necessarily follows?

The correct response to (2) is some chemists are not artists, though most sub-
jects respond with no artists are chemists, some artists are not chemists, or no
chemists are artists. '

Why are certain forms of reasoning so difficult? Johnson-Laird (1983, 1988)
has championed an approach to human reasoning that claims people (who are
not trained in logic) approach such puzzles, and all kinds of everyday reason-
ing, by building and manipulating mental models of the situations described.
A model is a representation contai‘ning elements that correspond directly to
the individuals or objects in a situation. Models are to be contrasted with logic
representations, which represent via a set of logical sentences or axioms and
which are manipulated via proof procedures. The evidence Johnson-Laird gar-
ners in favor of the mental model theory is that reasoning difficulty is primar-
ily a function of the number of models that must be constructed to solve a
problem, not a function of the complexity of the logical proof (Johnson-Laird,
1988). The relation to working memory is that some reasoning tasks are diffi-
cult because they require the construction and maintenance of multiple mod-
els, which taxes a limited-capacity working memory.

Polk and Newell (1995) offer an alternative theory that also assumes people
construct mental models in verbal reasoning tasks but does not assume that
they construct multiple models. Polk and Newell argue that people solve ver-
bal reasoning tasks, such as the three-term syllogisms exemplified above, by
using their preexisting language skills. As a weak claim about a component
process of reasoning, this is uncontroversial and undeniably true. But the the-
ory makes a much stronger claim: Verbal reasoning is accomplished exclusively
by existing comprehension and production skills, in particular, by compre-
hending and recomprehending the premises, that is, by building an initial
single model and incrementally augmenting it. There are no special reasoning
processes — not only are there no logical proof procedures, but there are also
no special processes to support logical reasoning by constructing and manip-
ulating multiple models.

The theory offered by Polk and Newell (1995) has a number of properties
relevant to the question of functional constraints. First, the model is strongly
functional. One sense of this claim is simply that the model performs the
task, that is, it reads the two premises and attempts to draw a conclusion. The
sense more directly relevant here is that the model is functional in that it

242 Richard M. Young and Richard L. Lewis

* draws on abilities, like language skills, that exist to pfovide the agent with cer-
tain functional capabilities (such as speaking, listening, reading) motivated
independently of this particular task.

Second, subjects’ difficulties with the task are explained as a consequence
of this functional basis. Polk and Newell point out that although subjects’
everyday language skills (e.g., of encoding and comprehension) can serve to
perform the syllogism task, they are not perfectly adapted to that task, and so
by themselves are not adequate for perfect performance. For example, the
model resulting from language comprehension “is guaranteed to represent a
situation in which that proposition is true. But, in general, . . . an annotated
model may encode information that is not inherent in a proposition (and be
unwarranted) or fail to encode information that is (and be incomplete)” (Polk
& Newell, 1995). In this and similar ways, difficulties with the task are
explained on the grounds of functional constraints without appeal to the
notion of resource constraints.

Third, the model deals with individual differences. The model contains a
number of qualitative parameters that determine such things as detailed
aspects of how the premises are encoded, for example, whether or not a
premise of the form No X are Y will be interpreted as also implying No Y are X.
Different choices for the detailed structure generate a whole space of models,
and Potk shows that different models in that space provide a good fit to dif-
ferent individuals. The fit to individual subjects is in fact at least as good as
the subjects’ test-retest fit to their own performance one week later. This para-
meterized model provides a highly successful account of individual differ-
ences, which makes no reference to resource constraints.

Example 2: Performance Limitations and Individual Differences in
Ambiguity Resolution

We now turn to another aspect of verbal processing in which capacity lim-
itations are implicated: ambiguity resolution in sentence comprehension.
There is a long-standing and continuing controversy in psycholinguistics over
the extent to which nonsyntactic factors can affect the initial structure
assigned in parsing. Consider sentences (3) and (4), which contain a momen-
tary ambiguity that is resolved later in the sentence:

(3) a. The defendant examined the courtroom.
b. The defendant examined by the jury was upset.

(4) The evidence examined by the jury was suspicious.

The verb examined is ambiguous: It may be interpreted as the main verb (as in
3a) or as starting a relative clause (as in 3b and 4). Researchers have-argued for
a variety of factors that determine initial ambiguity resolution, ranging from
purely structural properties (e.g., Ferreira & Clifton, 1986) to lexical seman-
tics, lexical and structural frequencies, or referential properties (e.g.,

The Soar Cognitive Architecture and Human Working Memory 243

MacDonald, Pearlmutter, & Seidenberg, 1994). For example, the inanimacy of
the subject (evidence) in (4) provides a cue that the verb examined should be
interpreted as a relative clause, because that is the most plausible interpreta-
tion (inanimate objects usually do not examine things). Indeed, Trueswell,
Tanenhans, and Garnsey (1994) and others have found that such semantic
constraints can have a strong effect on ambiguity resolution.

Just and Carpenter (1992) added a novel twist to the debate, by demon-
strating that ambiguity-resolution behavior is a function of individual differ-
ences as well as linguistic factors. In particular, they argued that the
behavioral differences are due to differences in working memory capacity.
People with high working memory capacity (high span) are able to appeal to
nonsyntactic factors, such as the animacy features in (4), whereas people with
low working memory capacity (low span) do not have the capacity to be sen-
sitive to such factors. They found that low-span subjects performed in a mod-
ular fashion on material such as (4), whereas high-span subjects performed in
an interactive fashion on identical material. Thus, they argue, modularity is
not an all-or-none architectural issue, but a graded function of working mem-
ory limitations. . ’

Lewis (1993) presents an alternative explanation of these individual dif-
ferences that does not appeal to limited working memory capacity to
account for the modular behavior of the low-span subjects. The explanation
is derived from NL-Soar, a Soar model of language comprehension. In NL-
Soar, local ambiguity manifests itself by the simultaneous proposal of multi-
ple operators corresponding to the different interpretations. For example, in
(3) and (4) above, at the verb examined, two operators are proposed: one cor-
responding to the main verb structure, the other corresponding to the rela-
tive clause structure. Ambiguity resolution then takes place by drawing on
available search control knowledge. In the case of the ambiguity in (3) and
(4), a search control production can test the proposed operators and the
semantic content of the subject (e.g., evidence) and prefer the relative-clause -
operator in the appropriate contexts. Thus, NL-Soar can model the rapid,
on-line effects of sernantic context observed in the interactive studies (e.g.,
Trueswell et al., 1994) and in the high-span subjects of Just and Carpenter
(1992).

However, nothing guarantees that such a search control production will be
available. If the knowledge is present only through deliberate processing in
substates, there may not be enough time to perform all the inferences neces-
sary to make the right selection. Under press of time, there may be no alter-
native but to select one interpretation by some default preference. In such a
case, NL-Soar behaves in a modular fashion because the required knowledge
sources are not applied on-line. .

Thus, like the explanation of individual differences in verbal reasoning dis-
cussed above, the NL-Soar theory attributes the individual differences in
ambiguity-resolution behavior to differences in parsing skill. High-span sub-

244 Richard M. Young and Richard L. Lewis

jects are not necessarily performing well because of their higher working
memory capacity, but because they have been exposed to the appropriate lin-
guistic material that led to the learning of specific, semantically sensitive
ambiguity-resolution rules. (Lewis, 1993, describes how NL-Soar is in fact
capable of learning such rules.)

Related Approaches

The focus on knowledge differences as an explanation of individual differ-
~ences is shared by the long-term working memory approach of Ericsson and
Delaney (Chapter 8, this volume) (see also Ericsson & Kintsch, 1995, which
suggests a similar account of the Just & Carpenter data). Furthermore, the
methodological approach of positing cognitive resource limitations only as a
last resort is a prominent feature of the EPIC research (Kieras, Meyer, Mueller,
& Seymour, Chapter 6, this volume). The point is that some (though not nec-
essarily all) performance limitations may be a result of knowledge or skill dif-
ferences and purely functional aspects of cognitive architecture. The novel
aspects that the Soar theory adds include an account of how the relevant skill
differences can actually arise as a function of experience and a precise expla-
nation of how functional aspects of the architecture can lead to performance
limitations.

Limitations of Working Memory: Resource Constraints

The previous sections demonstrated how performance limitations may arise
in a functional model without assuming any resource or capacity con-
straints. Of course, this is not to deny that there are some kinds of hard
" resource constraints. We now consider one way of incorporating such con-
straints into Soar and apply the resulting theory to the domain of syntactic
processing, again within the NL-Soar model discussed earlier. The constraint
is motivated by efficiency concerns in Soar and yields a simple theory of
capacity limitations that accounts for a wide range of cross-linguistic mem-
ory effects in parsing.

Efficient Representations in Working Memory

For syntactic parsing in NL-Soar, SDM keeps track of partial constituents as
the sentence is incrementally structured. Recall from the overview of basic
Soar mechanisms that SDM consists of a theoretically neutral attribute-value
representation. The particular attributes and values used in parsing are incor-
porated from linguistic theory (in the case of NL-Soar, X-bar phrase structure
|[Chomsky, 1986], but for expository purposes here we adopt more traditional
grammatical relations).

SDM is organized for parsing in the following way. Partial constituents are
indexed by the syntactic relations that they may enter into with other con-
stituents (e.g., subject of sentence, object of verb, and so on). SDM is divided

The Soar Cognitive Architecture and Human Working Memory 245

into two parts: The Heads part indexes constituents by the syntactic relations
they may assign. The Dependents part indexes constituents by the relations
they may receive. :

For example, when NL-Soar constructs the prepositional phrase with the
dog, it must temporarily buffer the NP (noun phrase) the dog before creating
the complete PP (preposition phrase). At that moment, the representation in
SDM lookKs like:

(5) HEADS prep-obj: [with]
DEPENDENTS prep-obj: [the dog]
NP-modif: [with]
verb-obj: [the dog]

How should this representation in SDM be limited to ensure efficient process-
ing? The answer comes from theoretical and empirical work on the computa-
tional complexity of the recognition match (Tambe, Newell, & Rosenbloom,
1990). This work has identified open, undiscriminated sets in SDM as the
most significant source of match expense. An undiscriminated set is simply a
set of elements indexed by a single relation or attribute. With such open sets,
the recognition match becomes exponentially expensive and therefore psy-
chologically and computationally implausible as the basis for efficient mem-
oty retrieval.

Such open sets can occur in any Soar model and, in practice, do lead to sig-
nificant slowdowns in running the simulations. In NL-Soar, undiscriminated
sets may be created when multiple constituents are indexed by a single syn-
tactic relation. We can eliminate such open sets by limiting each relation to a
small number of nodes. But how many?

It turns out that the minimum number required to parse any natural lan-
guage is two (Lewis, 1996). Any less, and the system would be unable to parse
basic structures that relate two propositions, such as sentential complements
(I think that John likes Mary). We next consider the empirical implications of
this severe capacity restriction, and then relate it back to general psychologi-
cal theories of working memory. .

Difficult Embeddings: The Classic Memory Effect in Parsing

The classic short-term memory effect in sentence comprehension is the dif-
ficulty of comprehending multiple center-embedded relative clauses (Miller &
Chomsky, 1963). Single-embedded relative clauses such as (6) are quite compre-
hensible, but double center embeddings (7) cause severe difficulty:

(6) The cat that the bird chased ran away.
(7) The salmon that the man that the-dog chased smoked fell.

Consider now how NL-Soar would parse these structures. To handle a struc-
ture such as (6), two noun phrases must be momentarily buffered as potential
subjects waiting for their verbs:

