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Abstract

This paper describes two research projects that study typical Sit-
uated Action tasks using traditional cognitive science method-
ologies. The two tasks are decision making in a complex pro-
duction environment and interaction with an Automated Teller
Machine (ATM). Both tasks require that the decision maker and
the user search for knowledge in the environment in order to
execute their tasks. The goal of these projects is to investigate
the interaction between internal knowledge and dependence on
external cues in these kinds of tasks. We have used the classical
expert-novice paradigm to study information search in the deci-
sion making task and cognitive modeling to predict the behavior
of ATM users. The results of the first project strongly indicate
that decision makers are forced to rely on environmental cues
(knowledge in the environment) to make decisions, indepen-
dently of their level of expertise. We also found that perfor-
mance and information search are radically different between
experts and novices. Our explanation is that prior experience in
dynamic decision tasks improves performance by changing in-
formation search behavior instead of inducing superior decision
heuristics. In the second study we describe a computer model,
based on the Soar cognitive architecture, that learns part of the
task of using an ATM machine. The task is performed using
only the external cues available from the interface itself, and
knowledge assumed of typical human users (e.g., how to read,
how to push buttons). These projects suggest that tasks stud-
ied by Situated Action research pose interesting challenges for
traditional symbolic theories. Extending symbolic theories to
such tasks is an important step toward bridging these theoretical
frameworks.
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Introduction

The main goal of this paper is to illustrate the role of
(internal) knowledge in Situated Action tasks. One of the
major objections of Situated Action researchers is that
traditional symbolic theories are incapable of explaining
human behavior in a variety of real-life tasks in which
information or knowledge is situated in the environment.
We describe two research projects that study tasks that
force problems solvers to find and utilize knowledge in
the environment before actions are taken. Our primary
assertion is that problem solvers in these situations use
their internal knowledge to search for knowledge in the
environment before executing the tasks.

The first project investigates decision making in a
complex production environment. We have studied how
first-line supervisors manage manpower and machine re-
sources in a high volume mail sorting facility. These
supervisors make daily decisions on the assignment of
people and machines to different sorting tasks in an infor-
mation rich environment. Most of their information can
only be accessed by visually scanning the workfloor or
verbally interacting with other workers in the production
floor. The ultimate objective of the project is to design
decision support tools to improve machine utilization and
the meeting of service objectives. In this paper we report
a selected set of results from the first two phases of this
project. In the first phase we studied the supervisors’ in-
formation search behavior on the workfloor by following
them during their entire shift (10 hours) and recording
their actions and interactions with other workers. In the
second phase we built a computer animation tool that
simulates the workfloor and we asked the supervisors to
interact with this tool by making decisions similar to those
in their daily work-life.

In both phases we used the classical expert-novice
paradigm to contrast the information search behavior of
experienced supervisors against novices. We assumed
that, independently of their level of experience (or exper-



tise), supervisors need to access information and knowl-
edge from the environment since it is impossible to build
a complete plan for the entire shift. Our theory prescribes
that the supervisors use their prior knowledge to inter-
pret the information on the workfloor and to decide if
more information or knowledge from other employees is
needed before a decision is made. We did not expect per-
formance differences between experts and novices to be
the result of experts having more sophisticated decisions
heuristics. We did expect that more experienced super-
visors have learned how to interpret environmental cues
more efficiently and how to look for information more
effectively. A more sophisticated information search be-
havior should result in improved performance because
better information is available to make decisions.

The second project studies how to build a symbolic
model of users learning to interact with ATMs. We as-
sumed that most ATM users never develop complete plans
of how to interact with the machines to accomplish a va-
riety of tasks. We hypothesize that users, in general,
read the available instructions and build sketchy repre-
sentations of the device during their first interaction. In
subsequent interactions, users are expected to take advan-
tage of this internal knowledge to interpret the external
cues (external knowledge) provided by the interface. We
have built a model of these interactions within a tradi-
tional symbolic architecture. This model operates with
incomplete knowledge of how to perform tasks, but it
takes advantage of the knowledge embedded in the envi-
ronment.

The symbolic model was implemented in Soar. The
model first simulates the user reading the instructions
provided by the interface and then builds a behavioral
representation from them. For example, after having
read the instructions for inserting the card, the model
builds an internal representation indicating that you need
to insert your card into a slot to execute ATM transactions.
This representation will then be used to interact with the
machine. However, what is ultimately learned from the
interaction is not a complete and explicit plan, but rather a
recognition memory of a piece of behavior. For example,
the next time the same user wants to check her account
balance, she may notice that there is a slot in the machine,
use her general knowledge about slots (e.g., you insert
cards in them), and then recognize that inserting the card
is the first behavior required for performing tasks with
these machines.

These two projects illustrate the basic working as-
sumption of cognitive science that what is inside the head
is a simple representation of the relevant aspects of a
complex world (Simon, 1969). These studies suggest
that humans build simple representations of complex and
routine tasks that later allow them to take advantage of
information in the environment. The two studies were

conducted within the traditional symbolic framework in
cognitive science while taking into account the concerns
raised by Situated Action researchers. In the first project,
we used an ethnographic method in the first phase of the
project to understand the dynamics of the workfloor en-
vironment. The results of the first phase allowed us to
construct an animation tool that incorporates fundamen-
tal and relevant aspects of the supervisors’ job. With
the help of this simulated environment, we exploited the
classical expert-novice paradigm to explore how internal
knowledge is used to access knowledge in a complex real-
life environment. In the second project, Situated Action
theory helped us to develop a symbolic model that does
not require memorization of elements of the task. The
model combines knowledge from the environment with
simple internal knowledge about basic objects (e.g., slots,
buttons, screens) and what to do with them.

Decision Making Study

This section describes the first two phases of the decision
making project. This project has been conducted during a
three year period. Before discussing the specifics of these
two phases, it is useful to describe the production setting
and the nature of decision making tasks.

Production Environment

The production facility is a large physical plant with ap-
proximately 3000 employees in a space the size of about
six football fields. The facility processes about six mil-
lion pieces of mail per day. Most mail is processed in
the automation section which consists of two different
processing areas: the optical character reader (OCR) area
and the bar code sorter (BCS) area. OCRs read the ad-
dress on envelopes and spray a bar code onto them. This
mail is then sent to the BCS area where it is sorted to
different levels of granularity according to its destination.
A piece mail may therefore be processed anywhere from
one to five times in the BCS area, depending on its type.
Decisions in the BCS area are contingent on the activities
of upstream areas such as the OCR area.

Our study has focussed mainly on how first-line su-
pervisors search for information and make decisions in
the BCS area. There are two main things that supervisors
need to make decisions about: allocation of manpower to
the BCS machines and the assignment of sortingprograms
to each machine. At the time of the study, there were ap-
proximately one hundred different sorting programs for
the BCS machines. Different programs are needed to
process mail for specific destinations. Supervisors need
to continually assess the volume of different mail types in



order to assign the appropriate sorting programs to meet
dispatch times. This decision making task is complicated
by the fact that there are interactions among sorting pro-
grams. That is, some programs only sort mail directly for
dispatch while others sort mail that requires further pro-
cessing by other programs. Therefore, the scheduling of
sorting programs depends on the volume of different mail
types, the availability of manpower, the sorting programs
currently being run, the time of day, and the dispatch
deadlines for each specific mail type.

The BCS environment lacks any computerized
source of information. All the information has to be
accessed by either visually scanning the workfloor or by
directly asking other workers. Supervisors may ask for
information from their subordinates in the BCS area or
may use the telephone to call supervisors in other areas
such as the OCR. Supervisors may also walk to the mail
staging areas to see how much mail is waiting to be pro-
cessed. The supervisors need to make their decisions in
real time in a constantly changing environment. In sum,
the facility is a typical Situated Action research setting.

Phase One

Our first goal was to understand the technology and the
organizational setting in the BCS area. We spent 6 months
learning the language used by supervisors and workers,
the specific nature of the decision tasks, the content of the
information exchanged among the actors, and the rela-
tionships between management and workforce. We also
learned the technical details of the overall operation and
how other units in the production facility interact with the
BCS area.

After this initial familiarization process, we then de-
velop a coding instrument for collecting detailed data
about the activities and interactions of the BCS super-
visors. Our goal was to have a detailed record of how
supervisors spend their time, how they search for infor-
mation, the content of this information, and the nature
and content of their interactions. We tested the reliability
of the instrument by calculating inter-observer reliability
(see Lerch, Fenner, Snyder, and Goodman (1992b) for
more details). In general we obtained a satisfactory level
of reliability (Kappa values between .69 and .77 for the
major categories). The coding scheme differentiates be-
tween information search activities (e.g., asking workers
for information, looking for mail in the staging areas)
and decision activities (e.g., assigning mail to machines,
manpower selection and assignment).

We collected approximately 60 hours of shadowing
data by following six supervisors with different levels of
expertise for their entire shift (10 hours). We collected
and coded 5570 interactions and activities for an average

of 1.78 activities per minute. We used these data to test a
set of eight information search hypotheses that compare
information search behavior between experts and novices
(See Lerch, Fenner, Snyder and Goodman, (1992a)). In
general the results indicate substantial differences in in-
formation search behavior between experts and novices.
We present below selected examples of these results to
illustrate these differences.

Results. Experienced and novice supervisors spent ap-
proximately the same proportion of their time searching
for information (71.7% vs. 71.9%), but experienced su-
pervisors seem to be more efficient. For example, experi-
enced supervisors spent 77% of their information search
activities interacting with workers or other supervisors
and only 23% of their time directly observing the work-
floor. On the other hand, less experienced supervisors
spent 66% of their information search time in interactions
and 34% in direct observation. An analysis of the content
of the interactions indicates that information about the
environment is easier to obtain by asking others than by
direct observation.

Experienced supervisors are also more effective in
searching for prognostic information. For example, ex-
perienced supervisors search for information about up-
stream operations (e.g., OCR area) more than novices
when interacting with other supervisors (26% vs. 13%).
Upstream information is key for predicting future mail
flows and for improvingmanpower planningand schedul-
ing. The search for upstream information has to be initi-
ated by the BCS supervisors since they need to call other
areas using the telephone. The data suggests that experi-
enced supervisors are more likely to search for upstream
information because more situations seem to trigger the
requirement of searching for information outside their
immediate locus of control. For example, experienced
BCS supervisors may be able to notice subtle changes
in mail flows which may lead them to request upstream
information.

In summary, experts actively search for more up-
stream information (e.g., OCR area) than novices. They
also rely less on information directly accessible from the
environment. Whereas novices tend to do more direct
observation which gives them raw data about the envi-
ronment, experts are more likely to ask other people for
processed information.

Discussion. A situated explanation of these results
might be that familiarity with the environment accounts
for the differences in information search behavior be-
tween experts and novices. That is, differences between
experts and novices may have little to do with knowledge



inside their heads, but might instead be due to social and
perceptual advantages gained by longer exposure to the
environment. As a consequence of having been there
longer, experts may simply have more friends and be fa-
miliar with more types of situations allowing them to get
more affordances from their environments. Experts, by
virtue of being more familiar with their environments, are
able to abstract better information. Increasing acquain-
tance with one’s surroundings allows one to make better
use of external cues. Another potential situated interpre-
tationof the results would be that the differences we found
between novices and experts were due to their respective
social roles and not to their experience. By observing
them on the workfloor, we could not distinguish between
the role of seniority and that of knowledge. Unfortu-
nately, the results from Phase One do not allow evaluation
of these two situated hypotheses against more symbolic
alternatives (e.g.,that information search differences are
due to differences in internal knowledge between experts
and novices).

Although the methodology used in Phase One was
very useful for understanding the nature of information
search behavior, it is important to note that it also had sig-
nificant disadvantages. Since we did not observe all the
supervisors on the same day, it is possible that the days
on which they were observed were different in impor-
tant ways. Differences between experts and novices may
therefore be due to differences in the tasks they faced.

As traditionalcognitive scientists, we wanted to con-
trol the task faced by the supervisors (e.g., characteristics
of mail volume and mail flows for different days) and
to remove them from their social roles in order to min-
imize the advantage experts may have because of their
more elaborate social networks. In order to address these
two concerns, we proceeded to conduct more controlled
experimentation in Phase Two.

Phase Two

In Phase Two, supervisors were asked to interact with
an animated computer model of the BCS area. We took
considerable care to faithfully reproduce typical situa-
tions. For example, the mail volumes simulated in the
animation tool were based on those from a real day. We
also conducted a set of pilot studies to evaluate the visual
layout and interactional aspects of the simulation. We
modified the tool as necessary to facilitate information
search and interaction.

Supervisors searched for information on the ani-
mation tool by switching between different information
screens. Supervisors could only look at one screen at a
time. The animation tool ran on two different computer
monitors: one monitor was dedicated to information pre-

sentation (with seven available screens) and the other was
dedicated to input commands to assign sorting programs
to machines. Supervisors were allowed to freeze simu-
lated time to assign mail to machines or to browse for
information. They were also allowed to browse for infor-
mation while the simulation was running.

The animation tool simulates the mail flows and sort-
ing activity during the night shift (from 10 pm to 6 am),
which is referred to as Tour 1. Supervisors were grouped
into three categories according to their experience. There
were two groups of experts: Tour 1 experts were peo-
ple who had been supervisors on the night-shift for three
years or more. These subjects were therefore domain
experts on the night shift task. The other group of experi-
enced supervisors, Tour 3 experts, worked an earlier shift.
They had three or more years of work experience on the
day-shift, but no experience on the night shift. The third
group was Tour 1 novices who worked the night shift and
had been supervisors for less than 6 months. There were
three supervisors in each group.

Each supervisor was run individually. The entire
sessions was videotaped and verbal protocols were col-
lected. The animation tool recorded and time-stamped
all keystrokes. This allows us to measure how supervi-
sors allocated their time searching for information in the
different screens.

Results. The results are divided into two separate anal-
yses: 1) comparison of Tour 1 experts and Tour 3 experts,
and 2) comparison of Tour 1 experts and Tour 1 novices.

Tour 1 experts vs. Tour 3 experts. Performance
was measured by the number of pieces of mail that were
processed and sent out before their appropriate dispatch
times. Since all supervisors faced the same situation, it is
easier to report performance as the number of pieces of
mail that failed to meet their dispatch times. There were
no significant differences in the performance of Tour 1
experts and Tour 3 experts. On average Tour 1 experts
missed 53,000 pieces of mail while Tour 3 experts missed
57,000.

Since we hypothesized that Tour 1 experts have bet-
ter knowledge for running mail in Tour 1 when compared
to Tour 3 experts, we analyzed their information search
behavior to explain why performance differences were
not found. Tour 3 experts overcame their lack of tour-
specific knowledge by spending more time in information
search. On average Tour 3 experts spent 25 minutes more
in information search than Tour 1 experts (the average
total time to perform the whole task was approximately
one hour and a half). Tour 3 experts had a larger number
of switches among screens (Tour 3: 236 screens vs. Tour
1: 180 screens), but the time spent in each screen was
roughly the same (Tour 3: 28.1 sec vs. Tour 1: 28.4 sec.).



Table 1: Percentage of time allocated by experts to city
screen at two hour time intervals.

Tour 1 expert Tour 3 expert

10:00 pm
–12:00 am

4.9% 6.2%

12:00 am
–2:00 am

1.9% 7.1%

2:00 am
–4:00 am

21.4% 11.1%

This suggests that both groups of experts are equally
efficient in extracting information from the screens (i.e.,
same time per screen). However, Tour 3 experts perform
a more exhaustive and systematic information search be-
cause they lack knowledge about when to look for the
appropriate information. This hypothesis is supported
by looking at the allocation of information search among
screens during the course of the simulation. For exam-
ple, Table 1 shows the percentage of time allocated to a
specific screen (the “city mail” screen) at three different
two-hour intervals. The data shows that Tour 1 experts
allocate a very small percentage of time to the city screen
between 10 pm and 2 am. This is because most of the
action for city mail occurs after 2 am when Tour 1 experts
begin to allocate a greater percentage of their information
search to it. On the other hand, Tour 3 experts allocate
almost twice the percentage allocated by Tour 1 experts
between 10 pm and 2 am. In general, city mail informa-
tion is mostly irrelevant for decision making before 2 am.
Furthermore, Tour 3 experts allocate almost half of the
percentage of Tour 1 experts to the city screen during the
critical interval between 2 am and 4 am.

Tour 1 experts vs. Tour 1 novices. In contrast to
the similar performance for the two groups of experts, we
found significant performance differences between ex-
perts and novices from Tour 1. While experts missed only
53,000 pieces of mail, novices missed on average almost
three times as much (153,000pieces of mail). Bothgroups
spent roughly the same length of time browsing, but
novices had substantially fewer switches among screens
(Experts: 180 screens vs. Novices: 130 screens). There-
fore, novices spent significantlymore time per screen (Ex-
perts: 28.4 sec. vs. Novices: 40.3 sec.). This suggests
that novices are less efficient in extracting information
from a single screen. On the other hand, Tour 1 novices
follow a similar time allocation pattern among screens
through the course of the simulation. For example, Ta-
ble 2 shows the percentages of time allocated to the city

Table 2: Percentage of time allocated by Tour 1 super-
visors to city screen at two hour time intervals.

Tour 1 expert Tour 1 novice

10:00 pm
–12:00 am

4.9% 4.8%

12:00 am
–2:00 am

1.9% 1.9%

2:00 am
–4:00 am

21.4% 16.0%

screen for experts and novices. The data shows that both
groups have similar percentages at each of the three time
intervals. This indicates that although novices search for
information less efficiently, they have the necessary tour-
specific knowledge to mimic the global allocation pattern
of Tour 1 experts.

Discussion. The comparison among the three groups of
supervisors allows us to evaluate our proposed Situated
Action interpretations of the results of Phase One. Since
Tour 3 experts (i.e. supervisors with only day-shift expe-
rience) do not have the same degree of familiarity with
the specific task characteristics as do Tour 1 experts, their
performance should be worse. The finding that there is
no performance difference between the two groups of ex-
perts may be construed as indicating that Tour 3 experts
compensate for their familiarity deficiency by searching
for more information. But this explanation is not sup-
ported by the fact that novices fail to compensate for their
own familiarity deficiency in the same manner. An al-
ternative explanation is that Tour 3 experts have enough
internal knowledge about the general nature of the task
so that they are able to utilize external information when
available, even though they lack the specific knowledge
to search for information in the same directed way as Tour
1 experts.

The second situated explanation proposed in Phase
One was that experts had more sophisticated social net-
works that allow them to search for information more
efficiently and effectively. This interpretation is contra-
dicted by the results in Phase Two. Tour 1 experts can
not take advantage of their social network when using
the animation tool. Nevertheless they show more effi-
cient information search than Tour 1 novices (e.g., time
per screen) and more effective information search than
Tour 3 experts (e.g., total browsing time, the allocation
of information search among screens at different time in-



tervals). Again, these results hint that Tour 1 experts
possess more differentiated internal symbolic structures
that guide them in their information search behavior.

The empirical results from the two phases show that
decision making in dynamic environments consists of two
separate processes: First, decision makers search and
access information from the environment, and second,
they process this information to make decisions. Situated
Action research suggests that dynamic decision making
environments provide sufficient information for the sec-
ond process to be completed without significant problem
solving or deliberation. Their argument is that once the
first process is accomplished, the second follows easily
in tasks where the environment provides sufficient cues.
In general we agree with this characterization of decision
making in dynamic environments but contend that inter-
nal knowledge plays a key role in determining the value of
the information accessed during the first process. In other
words, expert decision makers in these environments are
better at finding the appropriate information at the right
time, and they can find it faster than novices.

In order to make recommendations on how to design
computer-based decision-support tools, we have carried
out a detailed study of the daily activities of first-line
automation supervisors. We are in the process of devel-
oping a prescriptive methodology intended to improve
bad features of the current environment while maintain-
ing positive affordances already present. Our research
has focused on understanding the human processes un-
derlying information search in dynamic decision making
tasks in order to achieve this goal.

An alternative approach to studying this task would
have been to build a computer model of a supervisor. Un-
like chess or physics problems, however, the task facing
supervisors is not well-defined. Moreover, at the start of
the project our understanding of the task was not suffi-
cient to allow us to confidently account for a significant
proportion of the variables affecting supervisors’ infor-
mation search behavior or performance. Since the tasks
and the role of the person in these environments are usu-
ally too complex, building models of human cognitive
processes is likely to fail in providingsignificant insights.
A more modest strategy for cognitivemodeling is to select
a simpler situated action task such as the interaction with
single-function devices such photocopiers and ATMs. In
the next section, we describe a cognitive model in Soar, a
classic symbolic architecture, that simulates users learn-
ing and performing interactions with a simplified ATM
interface.

A Soar model of an ATM user

There are a variety of common human-computer interac-
tion tasks that, while being fairly self-explanatory, require
the user to perform behaviors which are initially novel to
them. Using a banking machine (ATM), a photocopier, a
fax machine, and so on, all require the user to navigate
through a series of responses and decisions which are not
typically anticipated by the user. The first time a person
uses a particular ATM, for example, they are likely to
closely read and follow the given instructions. Through
repeated use though, the person will usually learn to per-
form at least some parts of the task without referring to the
instructions. Nevertheless, it is unlikely that ATM users
can recall the instructions or the specific physical charac-
teristics of the interface (see (Payne, 1991) on Macintosh
users recall of interface characteristics).

The Soar model we describe proposes that learning in
these tasks is interactive, and that the representation of the
task remains dependent on perceptual cues provided by
the environment. Our model learns to recognize patterns
in the environment and to perform behavioral responses
when presented with them. Nevertheless, the learning
process does not result in a complete representation of
the interface nor an explicit plan for how to complete the
task.

Soar is a theory of the human cognitive architec-
ture embodied in an implemented programming system
(Laird, Newell and Rosenbloom, 1987; Newell, 1990).
All behavior in Soar occurs in problem spaces, where op-
erators are applied to states to make progress towards a
goal. The current problem space context is represented
in a short term working memory. All the knowledge that
guides behavior (e.g., what operators to apply, how to
apply them) is held in a long term recognition memory,
which continually matches against the working memory.
This recognition memory consists of a set of condition-
action associations.

When no more progress towards the goal can be
made in the current problem space, an impasse arises,
signaling a lack of immediately available knowledge in
the recognition memory. Soar responds to the impasse by
generating a subgoal to acquire the missing knowledge
in other problem spaces. These problem spaces can ap-
ply general problem-solving heuristics and task specific-
knowledge until the problem is solved or another impasse
occurs. When the impasse is resolved, Soar’s learning
mechanism builds new associations in LTM which cap-
ture the results of the subgoal. The next time Soar en-
counters a similar situation, the associations allow the
system to recognize immediately what to do.
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Figure 1: Performing the task with instructions for the first time.

The task

The ATM machine our model will use has a slot for in-
serting a bank card, an orange button, a green button,
and an alphanumeric display for instructions. The task
is retrieving a checking account balance. The machine
will first display the instruction “INSERT CARD INTO
SLOT”, and once this step is successfully completed,
it will display “PRESS THE ORANGE BUTTON FOR
ACCOUNT BALANCE, GREEN BUTTON FOR DE-
POSIT”. Though this task and interface is an abstraction
of a real situation, it still permits exploring the questions
of interest: How does the model initially perform the task
by following instructions? What kind of learning goes
on as a result of instruction taking? How does the model
subsequently perform without the instructions? What is
the nature of the internal representations?

Behavior of the Soar model

Consider what must happen functionally for the user to
succeed in performing the initial step of inserting the
card. The user must first comprehend the natural language
instructions, extracting from the sequence of words an
internal representation of their meaning. Then the user
must operationalize this information within the current
context by generating an intention to actually perform the
action of inserting the card (Mostow, 1981; Huffman and
Laird, 1992). Finally, the user must successfully execute
the intended motor behavior.

Figure 1 shows the sequence of events leading to the
“insert” action. (This is a simplification of the actual set
of problem spaces and operators evoked by the task; the
process boxes in the figure do not represent separate mod-
ules to which control is passed.) The initial written in-
structions are comprehended by applying Soar’s existing
natural language capability (Lehman, Lewis and Newell,
1991; Lewis, 1993a). Comprehension of instructionspro-
duces a temporary declarative meaning representation in

working memory which we will call a behavior model.
In this case, it represents the action of inserting the card.
The behavior model is not itself the behavior though;
Soar must transform this declarative representation into
executable operators (Lewis, Newell and Polk, 1989).

Since Soar has had no priorexperience with this task,
no such operators are directly available and an impasse
arises. Soar then enters another problem space where it
tries to interpret the behavior model and produce a new
operator directly executable in the current context. It
is this process of interpretively executing the behavior
model that results in the operationalization of the instruc-
tions. The mapping from behavior model to action is
relatively simple in this case, though in general it can
be complex (Huffman and Laird, 1992). The executable
operator which results is the intention to perform the rel-
evant motor actions that will result in the insertion of the
card. As a result of resolving this impasse, Soar stores an
association in LTM of the form:

IF there is a behavior model object encoding
“insert the card into the slot”

and there is a card and a slot
and the goal is to retrieve the checking balance

THEN propose the operator that intends the
motor actions to insert the card

Figure 2 shows what happens when the same task is
performed again with the instructions. Soar comprehends
the instructions as before. Once the behavior model is
produced, the learned association immediately proposes
the intention to insert the card, thereby avoiding going
into the interpretation problem space. Thus, the effect
that learning has is to convert the operationalization of
the instructions from a deliberate process to one of recog-
nition.

The only memory of the task that Soar carries from
one ATM episode to the next consists of the associa-
tion described above that arises during task performance.
What happens if the instructions are absent, or ignored?
The association that proposes the insert action will not be
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Figure 2: Performing the task again with instructions.

evoked since its conditions test for the behavior model that
resulted from comprehending the instructions. It would
appear that Soar cannot re-execute the task without ex-
plicit instructions. Soar can recognize the correct action
to take, but cannot recall it. The only way to evoke the
association is to assemble the appropriate cues in working
memory by generating behavior model representations of
candidate actions. In the ATM task, the obvious gener-
ator is the interface itself, along with general knowledge
about slots and buttons.

Figure 3 shows the processes that arise when Soar at-
tempts to perform the task without the instructions. Soar
engages in a generate-and-test behavior which proceeds
as follows. Without instructions, an impasse arises since
no comprehension or intention operators are immediately
available. Soar enters a space for guessing the appro-
priate action to take. This space of possible actions is
constrained by the external cues present in the interface.
These cues trigger associations that propose Guess oper-
ators. Knowledge about affordances in the environment
is thus encoded in the proposals for these guesses. Since
there is a button on the interface, a guess is proposed and
applied that creates a behavior model object representing
a push action. Nothing happens as a result of guessing the
push action, so another guess, triggered by the presence
of the slot, creates an object representing an insert action.
Since this object has the same structure as the behavior
model built from the instruction the first time the task was
performed, it immediately evokes the association to pro-
pose the operator that intends the insert behavior. Soar
now remembers that this was the action it took in the first
episode.

The proposal of the intend operator resolves the ini-
tial impasse, and Soar builds a new association in LTM:

IF there is a card and there is a slot
and the goal is to retrieve the checking balance

THEN propose the operator that intends the
motor actions to insert the card

Since the behavior model was not part of the pre-
impasse context (because the instructions were absent),
the resulting association does not test for it. Figure 4

model
Behavior

behavior

Intend

interface
Perceived

Guess actionsRecognition
memory

Figure 3: Performing the task without instructions.

behavior

Intend

interface
Perceived

Figure 4: Performing the task again without instruc-
tions.

shows what happens when Soar performs the task on
subsequent trials: this association will be evoked imme-
diately, proposing the intentionof the insert action. There
is now a direct mapping from the cues in the environment
to the desired behavior.

Theoretical implications

While extremely simple, this model has several inter-
esting characteristics. The initial execution of the task
requires some deliberate interpretation processes to op-
erationalize the instructions. This interpretive process
improves with learning. The memory of the task and in-
structions that results is fine-grained and recognitional—a
complete, declarative plan is never stored away. Because
the task memory is recognitional, retrieving the content
of the instructions is a reconstructive process. The re-
construction is driven by a combination of the immediate



environment and knowledge about general affordances.
These affordances are not just a programming hack;

they fill a role functionally required by the way learning
works in Soar. The most simple imaginable model in Soar
yields associations that demand the kind of knowledge
captured by affordances1. The final result of learning is a
set of associations that test specific aspects of the interface
and goal context, and propose intention operators. This
results in reactive behavior with no intermediate declara-
tive representations.

All of this derives from building a Soar model with
a couple of simple assumptions about the user: 1) The
user initially performs just what is functionally required
to carry out the task; and 2) The user has a body of
general knowledge about things like buttons and slots that
enable him or her to generate possible actions for a given
interface. The nature of the learning, the memory of the
task, the necessity for reconstruction, and the subsequent
reactivity all arise directly from independent assumptions
of the Soar architecture.

The model can be extended in interesting ways to ex-
plore different assumptions about the user. For instance,
the user could adopt a strategy of deliberate memoriza-
tion initially, which would lead to both a recognition and
recall memory of the content of the instructions. Such
preparation would eliminate the later cost of reconstruc-
tive recall. However, the users must make a deliberate
decision to do this; it is not functionally required to per-
form the task the first time through. In general, a mix of
behavior is possible, by memorizing certain parts of the
task and reconstructing other parts. But even when the
strategy involves memorization, learning will eventually
result in reactive task performance.

The performance of this model can be described as
learning to use instructions to interpret the external envi-
ronment. The model progresses from using instructions
to directly using the cues in the environment in order to
achieve its goal. Shrager and Callanan (1991) present
an account of how children use collaborative activity as
a learning resource which is, in important ways, simi-
lar to the behavior of this Soar model. They observed
child-parent diads baking muffins wherein the language
of the interaction facilitates children’s development of,
not just cooking skills, but also active interpretation of
the activity. The child learns how to use active language
(i.e., instructions) to interpret the situation. Similar to
our model, the process of understanding the instructions
is only the first step. Learning how to become an active
interpreter of the environment (without instructions) is
the crucial step. The Soar model lends support to the
view posited by Shrager and Callanan, and, in addition,

1This is a specific case of the general data-chunkingproblem in Soar
(Newell, 1990)

presents a plausible cognitive mechanism that might un-
derlie learning in these kinds of tasks.

Not memorizing things when we do not have to
is a very adaptive trait. This also keeps us in a “nice
balance between stimulus-bound activity and stimulus-
independent activity” (Newell and Simon, 1972, p. 805).
Two clear predictions of this theory are that people will
not be able to recall all the steps of the task (Payne, 1991),
and increasing the number of beneficial affordances re-
duces the overall complexity of learning the task. Cor-
respondingly, conflicting affordances should increase the
need to memorize those parts of the task that are repeat-
edly stumbled on. For example, if there are a number
of slots in the interface, each of which affords inserting,
then explicit memorization of this aspect of the interface
could be adaptive.

Soar and Situated Action

Now that we have seen how Soar behaves in a simple
situated task, it is interesting to step back and consider
Soar generally in terms of the concerns of situated cogni-
tion. To do this, we will evaluate Soar along several key
dimensions proposed by Maes (1992). These dimensions
putatively distinguish Behavior-Based AI (i.e., AI based
on Situated Action principles) from Knowledge-Based AI
(based on symbolic theories of cognition).

Integrated competences vs. single competence. As
opposed to building systems with a single expertise,
behavior-based AI proposes constructing single systems
with a variety of integrated competences. Soar shares
this goal, which is a central tenet of the general research
paradigm of building integrated intelligent architectures
(Newell, 1990; Laird, 1991)2. For example, Soar systems
have been created that combine natural language instruc-
tion taking with other tasks (Lewis et al., 1989; Huffman
and Laird, 1992). (These competences are relatively high
level compared to those of behavior-based AI which have
typically been motor and perceptual). Nevertheless, we
are still far from integrating all the individual Soar sys-
tems into a single agent—integration continues to be an
important area of research for the Soar community.

Situated/open systems vs. non-situated/closed sys-
tems. Behavior-based AI focuses on constructing sys-
tems directly situated in the environment, which must
operate in real time and be interruptable. Real-time op-
eration and interruptabilityare important features of Soar
as an AI architecture (Pearson, Huffman, Willis, Laird

2Behavior-based AI focuses on systems with independent compe-
tencemodules,whichappears to contrastwith Soar’s approachof finding
general mechanisms that cover a range of domains. For an interesting
discussion on modularity (Fodor, 1983) and Soar, see (Newell, 1990)
and (Lewis, 1993b).



and Jones, 1993) and as a theory of cognition (Newell,
1990). In fact, the real-time constraint is the most funda-
mental constraint shaping cognitive theories within Soar.
For example, the immediacy of interpretation constraint
of language comprehension—that language is rapidly and
incrementally comprehended on a word by word basis—
is the primary factor shaping the Soar theory of lan-
guage comprehension. Soar must be able to recognition-
ally bring to bear multiple knowledge sources to process
utterances syntactically, semantically, and referentially
(Lehman et al., 1991; Lewis, 1993a, this volume).

Behavior-producingstructures vs. declarative/static
structures. Behavior-based AI focuses on systems with
structure that is primarily active, as opposed to static,
declarative representations that must be interpreted to
yield behavior. Nearly all structure in Soar consists of
a massively parallel, recognition memory which is nei-
ther static nor declarative. No interpreter examines the
associations in recognition memory: they are active pro-
cesses evoked whenever their relevant cues are present
in working memory. Only Soar’s working memory con-
tains what may be characterized as static and declarative
representations.

Developing systems vs. non-developing systems.
Behavior-based AI focuses on systems that acquire their
behavior-producing structure and evolve with experience,
as opposed to systems in which the structure is simply
posited withoutconcern for how it arose. This concern for
learning is also a critically central issue for Soar as an AI
system and as a cognitive theory. Soar continually learns
through the experience-based chunking mechanism. For
every piece of programmed structure in Soar, the ques-
tion naturally arises: from what set of tasks and problem
spaces could this structure have arisen by learning? Ev-
ery programmed association in Soar must ultimately be
held accountable in terms of how it might be learned, or
why it might plausibly be innate.

Another issued raised by Maes is the nature of what
is learned: does the system just compile what it already
knows, or does it learn new things from the environment?
Acquiringnew knowledge has been an important research
area in Soar (Rosenbloom, Newell and Laird, 1991) since
a concern arose early on that chunkingcould only compile
existing knowledge. Over the past few years, several Soar
systems have been developed that do learn new things
from the external environment. The simple ATM system
described above is a good example. It starts out with
no knowledge of the initial step to take in operating the
machine; it acquires that knowledge from the external
instructions.

Soar is even being applied to difficult problems in
uncovering the mechanisms of cognitive development.
Q-Soar is a system that models three and four-year old
children learning some aspects of number conservation

knowledge (Simon, Klahr and Newell, 1992). The model
learns by participating in (a simulation of) an experimen-
tal training study used to train and test conservation.

Emergent vs. planned activity. In Behavior-based
AI systems, activity is an emergent property of interact-
ing modules and the immediate environment. There is no
plan structure that is deliberated upon and then executed.
While it is true that Soar can deliberate and plan (thereby
correctly predicting that humans can as well), there is
no single structure in Soar that corresponds to the plan.
Rather, the knowledge that prepares Soar for behavior is
distributed among independent associations in the recog-
nition memory. Furthermore, there is no execution phase.
Rather, planning and acting may be interleaved (Laird,
Yager, Hucka and Tuck, 1990). The behavior that occurs
in any particular episode emerges from an interaction of
the knowledge in the recognition memory with the de-
mands of the current task. Novel behavior may arise in a
given situation because that situation evoked associations
that never before had an opportunityto interact. This is all
possible because Soar’s control structure is open: no sin-
gle module, problem space, subprocedure or production
may ever gain complete control (Newell, 1973). Thus,
the behavior does not correspond to the execution of a
rigid plan structure. Admittedly, it is possible to build a
Soar system that commits itself to a sequence of actions
and is not interruptible by changes in the environment.
But this is not an architectural constraint. Understanding
how best to build Soar systems that respond flexibly in a
dynamic environment is an area of active research.

Situated Action and Behavior-Based AI raise impor-
tant issues that any theory of human or artificial intelli-
gence must address. Nevertheless, after evaluating Soar
along these dimensionsproposed byMaes, we believe that
Soar is an example of a symbolic cognitive architecture
and research program that shares many of the concerns of
the Behavior-Based approach.

General Discussion

We have presented two studies of very different situated
tasks that involve extracting knowledge from the envi-
ronment. The first study examined the decision-making
behavior of novices and experts in a dynamic and com-
plex mail sorting facility. Phase One of the study fol-
lowed supervisors on their daily routines and showed that
novices and experts differ in their search for the infor-
mation they use to make decisions. These differences
included the frequency with which novices and experts
consulted other workers for the necessary information.
The animation tool used in Phase Two controlled for the
effects of familiarity and social interaction, and revealed
that the differences in the information search behavior



must be attributed at least in part to differences in knowl-
edge alone.

With the Soar model of the ATM task, we explored
in a simplified domain the mechanisms that might un-
derlie acquiring knowledge from the external world—in
this case, from instructions. We described how the Soar
model makes a transition from behavior that results from
deliberation about the instructions to behavior that is di-
rectly triggered by elements of the interface, without in-
termediate declarative representations. By assuming that
subjects only do what is minimally necessary to perform
the task each time, we discovered that the model actually
predicts a dependence on cues in the external environment
throughout the learning process. Such a model demon-
strates the potential explanatory power of architectural
theories in situated tasks.

These studies demonstrate the effectiveness of de-
veloping a complete approach to studying behavior in
situated tasks. A common technique of Situated Action
research has been to do very detailed analyses of tasks
such as photocopying (Agre and Shrager, 1990; Such-
man, 1987). If the goal of the research is to understand
photocopying as an activity, then the focus should appro-
priately be on the activity itself. People should only be
studied as interactive components of the activity. On the
other hand, it is clear that in each of these activities, the
human participant does have independent mental activity
and that this mental activity is important to understand-
ing why humans behave the way they do. If we want to
understand the person engaged in these activities, then
part of what we must understand is how that person ac-
quires and uses knowledge in the activity. This requires
understanding how behavior is modulated by knowledge
(as in the decision making study) and the nature of the
mechanisms used in the acquisition and application of the
knowledge (as in the Soar study).

Thus, the challenge now is to continue to integrate
what is being learned from symbolic cognitive science
and Situated Action research to further our understanding
of human cognition. One way to create bridges between
the two approaches is to apply them to each other’s tradi-
tional tasks. Our goal, as traditional cognitive scientists,
is therefore to construct symbolic models that help us
understand performance and behavior in situated tasks.
Some situated action researchers may correspondingly
take it as their job to provide an account of how a situated
or behavior-based system might play chess or learn to
solve Tower of Hanoi problems.
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