pace

icial
auf-
621-

LA,

nach
edge
-53.

Jser
nce,
Pa.,

I for
dis-
itts-
MU

ang,
tive
onf,

ann,

ysis

for
elli-
325.

oun-
irsh
dge,

e 2

o A R s S AR AT DTN

“THE SOAR ARCHITECTURE

Cambmmg Multiple
Knowledge Sources in an
Integrated intelligent Syslem

David M. Steier, Richard L. Lewis, and Jill Fain Lehman, Carnegie Mellon University

Anna L. Zacherl, Allegheny College

DESIGNING A KNOWLEDGE-
based system with a single knowledge
source is certainly easier than integrating
multiple knowledge sources, However, as
knowledge-based systems become increas-
ingly autonomous, they will be required to
exploit many knowledge sources to solve
increasingly difficult problems. The knowl-
edge sources may use representations that
differ from each other and from the repre-
sentation used by the knowledge-based
system itself. Some knowledge-engineer-
ing approaches rely on programmers to
convert manually all the necessary knowl-
edge into a single representation at design
time, but the resulting bottieneck could
become overwhelming. Therefore, re-
searchers need solutions to knowledge in-
tegration that do not rely on human inter-
vention. Using a stratified approach to
system design in Soar, we can integrate

. multiple knowledge sources and overcome

this traditional barrier to the rapid con-

struction of knowledge-based systems.
Our characterization of the problem re-

lies on the concept of the knowledge level.

- Following Allen Newell’s terminology,’

the knowledge level is a way of specifying

. intelligent systems as agents with goals,

knowledge. perceptions, and actions.
Agents follow the principle of rationality;

USING A STRATIFIED APPROACH TO SYSTEM DESIGN IN SOAR,
WE CAN INTEGRATE MULTIPLE KNOWLEDGE SOURCES,
TRADITIONALLY A BARRIER TO THE RAPID CONSTRUCTION OF
KNOWLEDGE-BASED SYSTEMS. WE HAVE IMPLEMENTED SUCH
SYSTEMS IN NATURAL-LANGUAGE COMPREHENSION,

PRODUCTION SCHEDULING, AND ALGORITHM DESIGN.

thatis, anideal knowledge-level agentuses
its knowledge to select actions that it be-
lieves will result in the attainment of its
goals. In a physically realizable rational
agent, knowledge is embodied in sources,
which are the symbol structures represent-
ing the knowledge together with their asso-
ciated access methods. The knowledge-
level description is transformed into a set
of problem spaces that provide access to
the necessary knowledge. These problem
spaces are compiled, and that output is a set
of productions that is input to the Soar
interpreter at the symbol (or program) level.

In terms of the Soar system levels we are
using, the fact that knowledge from vari-
ous sources cannot be used defines a fail-
ure at the knowledge level; that is, the

agent acts as if it did not possess that
knowledge and selects the wrong action.
Further analysis and resolution of such
failures must occur at lower system levels,
where representations and access methods
are specified. The type of integration re-
quired at these levels depends on the de-
gree of search needed to perform the-inte-
gration.

The search, in turn, depends on the type
of interaction between knowledge sources.
At one end of the continuum the knowl-
edge sources are independent, and little or
no effort is required to integrate them. A
possible integration method in this case is
assembly, in which the system simply ag-
gregates component results from two or
more sources to yield the directly usable

JUNE 1993

0885/9000/93/0600-0035 $3.00 © 1993 IEEE

35

knowledge. For example, a move genera-

tor for a game might operate by generating -

“from” positions using one knowledge
source and “to” positions using another
knowledge source. In most games, this
would be impractical, in that the choice of
a “from” position constrains the choice of
‘4 “to” position, and vice versa. The compo-
nent knowledge sources are coupled, so
that the integration process must become
more complex.

This leads to the other end of the contin-
uum, where knowledge sources are inter-
dependent and integration requires a great
deal of search. One method for integration
inthis case is generate-and-test: One knowl-
edge source generates candidate solutions,

and the other filters the candidates to yield -

directly usable solutions. Chess machines
take advantage of special-purpose move
generators, sometimes embedded in hard-
ware, to operate in this way. However, for

truly intelligent agents that operate in a’

range of task environments, any mecha-
nism for knowledge integration should be
recursive: Problem solving in one compo-
nent knowledge source may also encounter
alack of immediately available knowl-

integration to retrieve the knowledge it
needs, and so on.
One way to gradually overcome the prob-

lem of repeatedly performing the same -

task is to store knowledge once it has been

__integratéd, so that the new knowledge will -
be directly available in future situations.

Soar’s problem-space computational mode!

and its symbol-level production system

ease both knowledge source integration
and learning (although they do not -yet
solve the problem on their own).

" Soar’s support for knowledge integra-

tion derives from the architecture’s basic’

principles: a recognition memory to store
and retrieve immediately available knowl-
edge, the use of multiple problem spaces
for formulating tasks, universal subgoal-
ing to transfer control between problem
spaces, and chunking to preserve knowl-
edge acquired in subgoals for future use.
When all knowledge is directly avail-
able, Soar solves a problem by searching a
single problem space (a set of states and
operators for solving a problem). Soar

edge, and thus require further knowledge -- *

selects the problem space and initial state
to formulate the problem, and then cycles
between operator proposal, selection, and
application to produce new states until it
reaches adesired state representing its goal.
Directly available knowledge is defined as
the knowledge that can be retrieved from
recognition memory using a simple pattern
match. The information retrieved takes the
form of preferences for changes to the
problem-solving context, including what
action to perform next.

If there is insufficient directly available

FOR TRULY INTELLIGENT
AGENTS OPERATING IN A
RANGE OF TASK

. ENVIRONMENTS, ANY
MECHANISM FOR KNOWLEDGE
INTEGRATION SHOULD BE
RECURSIVE.

knowledge for Soar to select the next ac-
tion (for example, if no operators have
been proposed, or no judgment can be

»made about the relative desirability of

’ rriultiple proposed operators), Soar is at an

-‘impasse.-Universal subgoaling then comes
into play, and a subgoal is generated to
resolve the impasse. Soar works on this
subgoal as it did the higher level goal that
was the source of the impasse, that is, by
selecting problem spaces, states, and oper-
ators. In a subgoal, however, the impasse
that generated it dictates when problem
solving should be terminated: when suffi-
cient knowledge has been acquired to re-
solve the impasse. Put another way, probiem
solving in the subgoal stops when the
problem-solving context has been elabo-
rated with sufficient structure that formerly
unavailable knowledge has become directly
available. The newly available knowledge
allows problem solving in pursuit of the
higher level goal to proceed.

The chunking mechanism compiles the
retrieval process for more efficient appli-
cation in future similar situations. Process-
ing in a subgoal can be viewed as a chain of
memory accesses, starting from immedi-
ately recognizable patterns in the context

above the subgoal, and resuiting in re-
trieved information used in the service of
that subgoal. Chunking traces back through
the chain of memory accesses and builds
new pattern-information mappings that
collapse the chain. Thus chunking makes
directly available those problem-solving
results formerly accessible only by gener-
ating a subgoal. (For more details, see Jack
Smith and Todd Johnson’s article on pages
15-25 of this issue, and elsewhere.?)
Thus in Soar, for any impasse, a variety
of problem spaces accessing different
knowledge sources can be consulted to
resolve an impasse. Each of these spaces
can have a different representation and set
of operations, but each must deliver results
that can resolve the impasse for which it
was evoked. The design of such problem
spaces sometimes requires significant ef-
fort. However, we can take advantage of a
number of architectural features to- inte-
grate results, particularly for the assembly
method. The temporary working memory
permits the accumulation of preferences
for actions and changes to the problem-
solving context. This accumulation can

“occur over several memory accesses or

over several operator applications. Since a
subgoal and corresponding impasse indi-
cate that new knowledge is needed, the
context of a subgoal can provide guidance
in structuring the knowledge. Most signif-
icant, however, is that the chunking mech-
anismreduces the integration problem over
time. This is due to the increased amount of
directly available knowledge as chunks are
added. Because chunking caches the re-
sults of all of Soar’s problem solving, it
makes operation within each knowledge
source and within the integration process
more efficient, as well as reducing the need
to convert between different knowledge
representations. The chunks are actually
compiled versions of the knowledge used
in the original problem solving; as with all

compiled code, chunks need not be easily
read or explained by people as long as the -

computer system can apply them at the
appropriate time.

Our use of Soar to integrate multiple
knowledge sources differs substantially
from other work in knowledge engineer-

ing. The goal of the work on knowledge

sharing,> for example, is to develop an
infrastructure for composing knowledge
bases from reusable components. The in-
frastructure takes the form of interfaces

36

|EEE EXPERT

)
I

ges

ety
ent

| to
Ices

| set
ults
h it
lem
 ef-
ofa
nte- .
tbly -
ory
nces
em-
can
s oI
cea
indi-
. the
ance
onif-

ech-- | -

over
int of
s are
e re-
g, it

edge .
Jo

need
ledge
ually
used

ithall .

zasily
as the
at the

iltiple
itially
ineer-

Jledge

op an
viedge
'he in-
rfaces

Sk %

eihid

Lk

pp—

L2 A

 EXPERT

and knowledge representation languages
mostly developed independently of the prob-
lem-solving architecture and the methods
that will use the knowledge. Method-based
knowledge acquisition frameworks, such
as generic tasks,* address integration in
some respects, but do not provide architec-
tural support for the necessary processes.
In both cases, the concept of an autono-
mous agent performing integration and the
use of learning to capture the results of
integration are absent.

The following discussion of Soar-based
implementations depends on the following

-formalism: An agent performs some prob- -

lem-solving function F (for example, se-
lecting an operator). If there is no integra-
tion problem, the necessary knowledge K
is delivered by knowledge source KS im-
mediately and in a form directly usable for
performing F. Anintegration probléem arises
when K must be constructed by consulting

- other knowledge sources KS,...KS,, one or

more of which differ from KXS. To compli-
cate matters, the knowledge of how to
integrate knowledge from various knowl-
edge sources might be available only by

“consulting yet another knowledge source.

The search for knowledge bottoms out only
when the process yields directly usable
knowledge.

The three implemented systems perform
different tasks: natural-language compre-
hension, production scheduling, and algo-
rithm design. They demonstrate that archi-
tectural mechanisms can play a key role in
constructing systems to perform difficult
knowledge-intensive tasks.

- Language comprehension

Language comprehension is the process
by which knowledge is used to map an
utterance to a meaning. As comprehension
proceeds word by word through the utter-
ance, multiple knowledge sources play a
role in finding the correct mapping. Yet,
when a knowledge source is used during
comprehension is every bit as important as .
whetheritis used. Language is replete with
local ambiguities, that is, choice points

- where multiple interpretations are possi-

ble. The number of interpretations depends
on what knowledge is available to elimi-
nate globally incorrect choices. Does the
word “saw,” for example, refer to a cutting
tool or visual activity? When the word is

encountered in the context “John saw,”
lexical knowledge produces multiple mean-
ings, but syntax can help disambiguate if
syntactic information is immediately avail-
able. Lexical and syntactic information
alone, however, cannot choose the correct
interpretation for “John saw the man with
the gun.” Did John use the gun to see the
man (as in “John saw the man with the
telescope”) or was the man holding the
gun? Only semantics can decide. Even the
current context may be crucial to arrive at
aunique meaning. If “John saw the man on

TO GUARANTEE A CORRECT

MAPPING WE MIGHT NEED ALL
" THE KNOWLEDGE SOURCES, BUT

TO GUARANTEE A MINIMAL
SEARCH SPACE WE MUST BRING
EACH TYPE OF KNOWLEDGE TO
BEAR AS SOON AS IT IS
RELEVANT.

the hill with the telescope,” does John have

the telescope, or does the man (or does the

hill)? Previously established relationships

in the situation (John is holding a tele-

scope) may dictate how the prepositional
phrases should be attached.

In each of these examples, if the disam--

biguating knowledge is not immediately
available, multiple interpretations must be
maintained until that knowledge becomes .

- available. The more local ambiguities there

are in an utterance, the more interpreta-
tions must be carried along. Since local
ambiguity is pervasive, language under-
standing is easily recognized as a search
problem. Reducing search is necessary;
without multiple knowledge sources, even
common constructions such as preposi-
tional phrases can lead to an exponential
number of interpretations. The key to re-
ducing-search is integration of knowledge
sources. To guarantee the correct mapping
we might need all the knowledge sources,
but to guarantee a minimal search space we
must be able to bring each type of knowl-
edge to bear as soon.as it is relevant.

The need to integrate knowledge effi-
ciently has been a central research issue in

building working comprehension systems.
Most integration attempts have proposed
uniform representations designed to cap-
ture certain kinds of precompiled syntactic
and semantic knowledge. Examples include
semantic grammars, word experts, domain-
specific syntactic grammars, and unifica-
tion formalisms.> While such approaches
have succeededto varying degrees in achiev-
ing integration, it is not clear how easily
they can be extended to handle additional
knowledge sources. Systems that preserve
the independence of multiple knowledge
sources, such as blackboard architectures,
may gain some advantage in extensibility,
but face serious issues in controlling the
efficient application of modules. For ex-
ample, the problem of scheduling modules
is the primary concern in principle-based
parsing systems,® which use recent linguis-
tic theories covering a wide range of syn-
tactic constructions via a relatively smail
number of interacting independent knowl-
edge sources (principles). (Here, indepen-
dent knowledge sources are all syntactic,
but the point remains the same.). -

©

Knowledge integration. NL-Soar” is a- w

comprehension system developed in ‘the
Soar architecture. Following the formal-
ism introduced earlier, we take .F as the
function mapping a word in context to
(partial) knowledge about the meaniné of
the utterance. The meaning is represented -
in the situation model, which contains the
objects and relations that the utterance is
about, and sets the context for future utter-
ances. Functional syntactic relations among
words (such as subject or indirect object)
aid in the mapping process; they are repre-
sented in a separate structure, the utterance -
model. The mapping function F is'carried
out by Comprehend operators, shown in
the top problem space in Figure 1 (the
circled lowercase letters and numbers will
be used in a forthcoming example). A Com-
prehend operator applies to each word in a
sentence. If the knowledge to apply these
operators is not directly available, they are
implemented in the Construct space, which
constructs the utterance and situation mod-
els. The Constraint space checks indepen-
dent syntactic and semantic constraints on
model-constructor operators.

The following list describes how NL-
Soar represents and integrates the relevant
knowledge sources and how the system
uses each type of knowledge:

JUNE 1993

37

A
John
Is-a person ...

YR

Person 3
Number s
Receive $,0

Verb

Person 3 Saw_
Number s Is-a act ...
Tense past

ASS|gn s,0 *

Subject .

John

Noun - -

Person 3 Refer | John

Number s R Is-a person ...

Receive 5,0 . —
'C.;:"'u‘ STl e T
Utterance Situation Problem
mode! model! space -

Figure 1. NL-Soar comprehending “John saw...”

+ KS,: The lexicon provides a context-
independent mapping from words to a
set of possible senses. Each word sense
specifies the syntactic relations it may
assign or receive, as well as semantic
features to be used in determining the
meaning of the utterance. The Access
operator in the Construct space repre-
sents lexical knowledge (see Figure 1):
It takes a single word and delivers a set
of utterance model objects representing
the different senses.

o KS,: Syntactic knowledge is organized
around syntactic relations, and specifies
the well-formedness of putative links
between words. This knowledge is rep-
resented by Check operators in the Con-

" straint space. They take two words and a
syntactic relation, and determine whether

- the link is well formed with respect to a
‘particular constraint such as number
agreement.

o KS;: Semantic knowledge includes
knowledge about how objects are catego-
rized and how they relate to each other in
the world. In NL-Soar, the lexicon con-

tains information that constrains the kinds

_of objects that can enter into particular
events or predications. This knowledge
is used to create semantic constraints on
links between words, represented by
Check operators in the Constraint space.
These Check operators are implemented
in the Semantics space, which contains
the object classification hierarchy.

o KS,: Pragmatics includes many differ-
ent kinds of knowledge, but here it is
knowledge about how to identify ob-
jects being discussed in the current con-

~ edge about how to construct new pieces
of the current context as novel topics are
introduced. The Refer operator in the
Construct space establishes the links
between the utterance and the context.
It incrementally matches accumulating
descriptions in the partial utterance model
against objects in the situation model,
creating new objects when the match
fails. Since this process is an integral
part of word-by-word comprehension,

the success or failure of referent reso-

text (referent resolution), and knowl-.

lution can be used to-resolve local
ambiguities.

The natural way to integrate knowledge
sources KSy, KS,, and KSs is by generate-
and-test, since KS, provides a generator,
and KS, and KS; specify tests. This method

is implemented by the Construct and Con-

straint spaces, which perform the Generate
and Test operations, respectively. Com-

bining KS, to KS; in this way produces a

syntactically and semantically well-formed
utterance model, which is combined with
KS, to establish meaning in the current
context. The latter happens via a modified
assembly. The knowledge produced by KS)
to KS; and KS,; become two parts of the
total knowledge delivered by F: knowl-
edge about the syntax, and knowledge about
the contextualized meaning of the utter-
ance. (The method is modified assembly
for two reasons. First, referent resolution
(KS,) takes as input the utterance model,
and therefore depends on the content of
KS, to KS;. Second, when K| to KS, fail to
deliver a unique result, referential success
can be used to select among the possible

interpretations, thus making KS‘ to KS;
. dependent on XS,.) - cy L -

Unfortunately, the generate-and- (est
method of integration leads to comprehen-
sion based on search. NL-Soar naturally
overcomes this limitation, however,-via
Soar’s learning mechanism., Over time,

chunking converts search-based integra; -

tion into a recognitional capability that

“integrates the multiple knowledge sources

into a single operator application. For ex:
ample, consider the word “saw” in “John
saw the man with the telescope.” For ex-
planatory purposes, we assume the system
lacks the immediately available knowl-
edge required to comprehend “saw” in this
context. In the discussion that follows,
numbers and letters in parentheses label
the left- and right-hand sides of Figure 1,
respectively.

Once the system has comprehended
“John,” the utterance and situation models
each contain asingle object (a). The former
represents a noun with certain syntactic
properties, while the latter represents the
individual referred to by that noun. When
the word “saw” is encountered, NL-Soar
tries to apply the Comprehend operator
(1). Because the system lacks immediately
available knowledge of what “saw” means
in this context, an impasse arises.

38

IEEE EXPERT

3

sz

s s T
SR TR

b

bl

43
e

L%
rw

it

.

< ¢ pen b EEEE

3

-k

al

R et v T ST S

:

NL-Soar chooses the Construct problem
space to deliberately build the utterance
and situation models (2). It creates an
utterance model object foreach word sense
of “saw” retrieved by the Access operator
(3). Then NL-Soar proposes a Link opera-
tor for each syntactic relation that “John™
can receive and “saw” can assign. For the
sense of “saw” as a noun, no links are
possible. For the verb sense, however,
there are two such relations: subject and
object. NL-Soar chooses which of the two
links to try arbitrarily; since the object
link leads to a failure of the word-order
constraint, we will follow the subject link.
(No special mechanism is required to re-
cover from a failed Link operator. Since
Soar maintains operator proposals as long
as their conditions are satisfied, as soon

as one operator terminates—with success -

or failure—the remaining operators may
apply.)

The proposal of the subject link leads to
another impasse, because the Construct
space does not know whether such a link
leads to well-formed utterance and situa-
tion models. That knowledge is available
from the Constraint space (4). In this ex-
ample, three Check operators are applied
corresponding to the three constraints that
must be met: word order (the subject must
precede the verb), agreement (the number
of the subject and verb must agree), and
semantics (the referent of the subject must
be a meaningful actor for the act referred to

“by the verb). The knowledge required to

verify that the proposed link passes the two
syntactic checks is immediately available
in Constraint. The semantic check, how-
ever, creates a final impasse into the Se-
mantics space (5). In this space, to verify
that John is a legitimate actor for “saw,”
the system performs simple inferences based
on a small hierarchy of types.

Once the inference has been made, the

. impasse that led into the Semantics space

is resolved because the system now has the
result of the semantic Check operator. As
the impasse resolves, a chunk is created
that makes the inference immediately avail-
able in the Constraint space (6). Similarly,
the impasse that led into the Constraint
space is also resolved because each Check
operator was applied successfully, guaran-
teeing well-formed models after the cre-
ation of the subject link. A chunk is created
in Construct that makes the combined syn-
tactic and semantic knowledge available in

_subject (8). Since the mapping is complete,

' comprehendmg “saw"”,
and there's a precedmg word, ,

and the word refers to a person,

Then
use the verb sense of “saw”,

and the word can receive the subject ‘relation,

and the word is third person singular, -

and assign the word as the subject of “saw”,
and establish a referent for the act of seeing,
with the subject’s referent as the actor

. Lexical -
Syntactic
Syntactic) o
Semantic. . e
Syntactic i

__ Lexical

* Syntactic
Pragmatic
Pragmatic

Figure 2. The chunk integroting all the knowledge sources used to comprehend “saw.”

the future (7).

With the link made, the system creates
a referent for the action in the situation’
model, with the actor of the event corre-
sponding to the referent of the syntactic

NL-Soar has resolved the impasse that led
to the Construct space (9). Figure 2 shows
the resulting chunk that integrates all the
knowledge sources used to comprehend
“saw” in this context.

This chunk is part of the Comprehend
operator for “saw.” (It is not the operator
itself, since productions do not correspond
to operators in Soar). It was created auto-
matically when the impasse between Com-
prehension and Construct was resolved.
The next time “saw” appears in a similar
context, the chunk will fire; bringing all the
knowledge sources to bear simultaneously
to create a structure similar to (b). '

Increasing the efficiency of knowledge
integration in NL-Soar depends crucially
on the transfer (future firings) of these
Comprehend operator chunks. Figure 3
shows the efficiency increase due-to chunk
transfer. The plot compiles data from run-
ning NL-Soar over a corpus of 61 sentences
(358 words) from four domains. The hori-
zontal axis is the cumulative number of
words comprehended, and the vertical axis
is a running 24-word average of the per-
centage of words mapped via the Compre-
hend operator, without impasse. When
the system starts, comprehension is search
intensive, but in the latter part of the run,
the system understands about 80 percent of
the words recognitionally. (The sentences
were chosen primarily to test the syntactic
coverage of the system, not to demonstrate
transfer. The local fluctuations in the
cu at the very

end—simply reflect the introduction of new
lexical items or new syntactic construc-
tions in the corpus, Future work will inves-
tigate the average over many permutations.)
Without learning, the curve would be a
flat line at O percent; that is, initially ;hé
system has no productions that directly
implement Comprehend operators. During
the run, the system learns about 1,000 new
productions, more than doubling its size.
Although this is just one data point overa
relatively small corpus, it indicates that

chunking provides real benefits for sys- - |

tems that integrate multiple knowledge
sources, and that chunking may play a
significantrole in the deve]opment of large
efficient systems.

Prodoction scheduling

In contrast to the situation for natural-
language comprehension, relatively few
adults perform as experts in the domain of
our second example: scheduling produc-
tion in a manufacturing environment. For
the particular task we studied, scheduling
the production of replacement car wind-
shields, there are only two experts in the
company, with acombined total of 30 years
of experience. Merle, our domain expert,
produces schedules for most situations by
immediate recognition, and achieves satis-
factory performance in almost all situa-
tions. We built a system, called Merle-
Soar, that can also generate schedules for
windshield production.® While Merle-Soar
cannot produce schedules as quickly as
Merle, itdemonstrates arather simple frame-
work for scheduling and can account for
how it might acquire scheduling expertise
of Merle’s caliber after years of practice

ek D cabsiidrid £

JUNE 1993

39

ey Sy

KR s HE DI o ey
DA R T

(B

3

3".7"3

e o

(ATl &4

e

TV Y 7

i g e

Figure 3. Efficiency increase due to chunk transfer in NL-Soar. -

and building up chunks to perform the task
through recognition.

Both Merle and Merle-Soar focus on the
part of the production process in which
windshields must be bent using a large
oven called alehr. The glass rests on molds,

or irons, as it moves through the lehr, and-

gravity bends the glass to the correct shape.
Generating the schedule involves deciding
what type of windshield to produce (there
are several hundred types), which lehr to
use (a plant may have a few lehrs, each
with different properties), how long the
glass should be in the lehr (the belt carry-
ing the glass can move through the lehr at
different speeds), and how much glass
should be put in the lehr (normally over a
thousand windshields are produced daily).
The schedule is a plan for five weeks of
production, but is updated weekly to ac-
count for changes in the production envi-
ronment, such as rush orders or a machine
malfunction. The schedule is composed of
sequences of reservation groups, where a
reservation associates a windshield to be
produced with a particular production en-

vironment (time, lehr, setting), and areser-
vation group is a- group' of reservations
with the same lehr setup. Grouping allows
several reservations to be shifted'together
without incurring additional setup Tcost.
Every reservation group contains a primary
(or driving) windshield, selected on the
basis of the externally generated demand
for its production, and one or more second-
ary (or companion) windshields, selected
to make efficient use of the lehr capacity
remaining after the driving wmdshle]d has
been scheduled. .

The need for knowledge integration in

this task arises from the diversity of con-

straints that must be considered to pro-
duce a schedule. Merle has become an
expert by virtue of his ability to incorpo-
rate a variety of knowledge sources into
his problem solving. Following -the
knowledge integration formalism we
have been using, the function F maps
a set of orders for windshields into a
schedule for producing those orders. There
are three major knowledge sources for the
constraints:

* KS\: Product. Each windshield type has

an associated list of attributes that can-
affect the schedule. These attributes spec-
ify length and width, presence or absence -

of sun shading, rearview mirror buttons,

embedded antennae, ceramic bands, and .

so on. Each windshield also has associated
with it an economic run length, giving
the optimal batch size to be produced
given previous experience with setup
and production costs. inventory levels,
and external demand for the windshield.
* KS»: Equipment. Limits on production
capacity follow from the capacity of the
lehr and the number of irons available at
one time to produce a particular wind-
shield type. There are also bounds on the
throughput of activities preceding or
following the bending process; for ex-

ample, the machines that attach anten--

~ nae or rearview mirror buttons to wind-
~ shields can only process 4 given number
of units of glass per hour. Furthermore,
more than one type of windshield can be
produced concurrently, and this is often
done to use up excess lehr capacity for
. small runs. However, compatibility con-
- straints’ (such ‘as siz€ and heating pat-"

L

.t terns) must also. ‘be considered: Switch-

ing between windshield types may
involve setup time, and it is desxrable to
: .minimize this. -~
*. KSy: Labor. Employees have a major
impact on the producuon process: The
+ production of certain types ‘of windshields
demands specialized (thus expensive)
- help that can only be brought in on a
part-time basis, -so these special jobs
need to be scheduled together. Addition-
ally, experience has shown that defects
- are reduced when complex parts are not
scheduled for the first.or last production
sessions in the week, and when large and
small jobs are alternated to avoid ex-
hausting the workers.

In analyzing the constraints that arise
from each knowledge source, we found it
useful to distinguish between hard con-
straints, which must be followed for the
schedule to be physically feasible, and soft
constraints, which evaluate candidate sched-
ules according torelative desirability. About
25 of each type of constraint have been
identified. The primary method of integra-
tion is generate-and-test, combining the
hard constraints in the generator and then
using soft constraints to rank candidates.

40

IEEE EXPERT

[N

jor
‘he
Ids
ve).
1a
sbs
n-
cts
not
ion
ind

ise .
d it
on-
the
ioft

out
gen
ra-
the
hun

s,

PERT |

]
AR

< e R

e et b BT R R e

B e

Figure 4 illustrates this with the organiza-
tion of eight of Merle-Soar’s 18 problem
spaces (the 10 not shown are implementa-
tion spaces that handle operator processing
in these eight spaces). In the Solve-sched-
uling-problem space, the operators select a
lehr on which to schedule production, se-
lect a driving windshield from a list of
possibilities, create a reservation group,
and update the schedule. These operators
are repeatedly applied until the entire five-

.week schedule is completed, and then a

final operator prints the schedule.
Each operator is implemented in a sepa-
rate problem space, selected in response to

the corresponding operator impasse. The

Select-lehr space (not shown in Figure 4)
selects the current lehr to be scheduled
based on the earliest available one. The
Generate-feasible-windshields operator is
applied to the initial state to generate a list
of the feasible windshield types that can be
scheduled on the selected lehr. In applying
this operator, Merle-Soar might encounter
an impasse, resulting in its selection of the
Apply-hard-constrainits space. Here the

system checks the five hard constraints -

(more can be added) by applying a corre-
sponding operator, and separate problem
spaces implement the operators. The Glass-
availability-constraint space checks if the
necessary glass is in stock. The Blocksize-
width-constraint space checks windshield
size restrictions for production on particu-
lar lehrs. The Antenna space checks that no
more windshields with antenna buttons are
produced per hour across all three lehrs
than the antenna machine can process. The
Rearview space checks that no more wind-
shields with rearview mirror buttons are
produced ‘per hour across all three lehrs
than the rearview mirror machine can han-
dle, and the No-anten-last-shift space checks
that no windshields with antennae are pro-
duced during the last shift of each week.
There may be more than one feasible driv-
ing windshield available, so the Apply-
soft-constraints space must decide which
to select. Currently it chooses randomly.
Unfortunately, the Merle-Soar research
project is no longer active, so soft con-
straints have not been implemented. While

‘soft constraints are generally more diffi-

cult to measure than hard constraints, there
is a straightforward mapping between the
evaluation of a soft constraint in a particu-
lar situation and Soar’s desirability prefer-
ences for operators. Thus it should be eas-

PR
G B

.. Rearview

" No-anten-last-ghitt

Apply-soft- 5
constraints

operators are in reqular roman type..

ier to incorporate soft constraints into a
problem-space séarch framework than into
alternative frameworks such as optimiza-
tion of a mathematical model.

Similar processing (not shown in the
figure) creates the reservation group for
the chosen driving windshield. If Merle-
Soar needs a companion windshield to
fill the lehr, it generates a list of feasible
choices. This generation differs from that
for the driving windshield, in that it must
apply four additional constraints to deter-
mine if the two windshield types are com-
patible. After selecting both, Merle-Soar
uses several other problem spaces to carry
out the mechanics of calculating times
(including setup time if necessary), and
updating several counters. These book-
keeping processes are all relatively algo-
rithmic and do not involve searching.

Based on geherate-and-test and assem-
bly, Merle-Soar and NL-Soar’s mechanisms
for knowledge integration differ. In NL-
Soar’s generate-and-test, one source pro-
vides the knowledge for generating well-
formed situation and utterance models, and

Figure 4. Organization of Merle-Soar problem spaces. Problem spaces are in bold type;

others are applied successively to filter the
candidates. In Merle-Soar’s generate-and-
test, several sources are combined Lo gen-
erate-feasible schedules, and other sources
are applied (or more precisely, would be
applied if the system were fully imple-
mented) in parallel to indicate preferences
among candidates. In NL-Soar, modified
assembly must be used to incorporate knowl-
edge of pragmatics into the situation and
utterance models, modified because of the
interdependence of the knowledge sources.
Merle-Soar assumes that product, equip-
ment, and labor constraints are indepen-
dent, so it has no analogue to NL-Soar’s
modified assembly. When the independence
assumption fails, a solution might still be
found at the cost of extra search—though
this does not seem to be required for most of

the hard and soft constraints we examined.

Algorithm design

Our first two examples illustrated
knowledge integration in the context of

JUNE 1993

4

comprehension (a form of analysis) and

scheduling (a form of planning). Design is -

a third form of problem solving. Specifi-
cally, algorithm design refers to what oc-
curs from the time one understands, for
example, what it means to sort a sequence
in some order until the time one has an
efficient procedure for sorting sequences
on a computer. More abstractly, algorithm
design converts an understanding of the
problem in domain terms to an algorithm
description in terms of the target computa-
tional model. Programmers recognize that
algorithm design can require significant
ingenuity, as there are no ready-made rec-
ipes. Using Soar, we developed a theory of
the algorithm design process, virtually all
of which was implemented in the Designer-
Soar system.® The theory can be summa-
rized as follows:

(1) Design takes place in multiple prob-
lem spaces. A subset of these spaces
embodies the target model of compu-
tation, and another subset embodies
the application domain model.

(2) The task of algorithm design is to use
knowledge of the application domain,
including adomain-level procedure for
-mapping inputs to outputs, to build a
procedure for computing the desired
output in the computational spaces.

(3) The computational spaces have func-
tional operators corresponding to steps

in an algorithm (Test, Apply, and so
on), at whatever level of abstractlon is
needed for the design.

(4) Means-ends analysis on the results of
execution drives the design, with the
resulting series of execution passes in
a design session exhibiting a pattern of

' progressive deepening, repeatedly tra-
versing the same structure, exploring
different aspects each time. Execution
can be used for a variety of purposes,
including explanation and efficiency
analysis.

(5) Any part of the knowledge necessary
for accomplishing the design task may
be acquired by learning, ranging from
an understanding of the problem in the
domain spaces, to the algorithm itself,
which is represented as a generalized

path for navigating through the com-

putational spaces.

Consider the design of a sorting algo-
rithm. As part of the problem specification,
we give Designer-Soar a set of problem

spaces that allow it to access knowledge
about sequences. This knowledge ranges
from the fact that the sequence with zero
elements is the smallest possible, to proce-
dures that will sort a given sequence using
domain-specific primitives. Designer-Soar
will consult this set of problem spaces
while deciding what to execute in the com-
putational spaces. For example. it could
choose to instantiate a scheme for Divide-
and-conquer and obtain the test for the
base case (the point at which the input need
not be decomposed further and can be solved

OF COURSE, BECAUSE OF ITS
DEPENDENCE ON THE
EXAMPLES CHOSEN AND THE

AVAILABLE DOMAIN
KNOWLEDGE, THIS PROCESS
DOES NOT GUARANTEE
CORRECT ALGORITHMS.

success are possible for any generally
applicable algorithm design-method). But
the method often works if the necessary
knowledge is available to the designer, and
Designer-Soar’s behavior is remarkably
similar to that observed in our protocol
studies of human algorithm designers.'0
Virtually every important aspect of the
theory has been shaped by the necessity to
integrate knowledge efficiently. Algorithms
are represented in spaces of abstract func-
tional operators because such spaces are
easiest to search for the design task. Spec-
ifications are cast in procedures for search-
ing application domain spaces, because
this is the form in which knowledge about
the problem is initially available in the
environment. Execution in the context of
means-ends analysis is a natural way to
inspect models so that any potentially rel-
evant knowledge can be brought to bear.
The use of models is indicated because
purely propositional representations might
necessitate large amounts of computation
to guarantee correct inferences (if such a
guarantee is possible at all). With progres-
sive deepening, the entire state of the de-

_ _ ._signneednotbekept continuously in work-

directly) by consulting the domain space to

sort the empty sequence. The decomposi-
tion-and composition steps are represented
as operators in the computational spaces;
they become targets for further refinement
when the system encounters impasses in
trying to apply those operators. At certain
points, symbolic inputs (that is, “a se-
quence”) are inadequate to drive algorithm
refinement, in which case concrete sequences
such as “(1, 2, 3} are generated to drive
the execution down one branch of a condi-
tional or loop. The output sequences are
compared to sequences sorted in the do-

main space to test for correctness. Later, |

Designer-Soar generates new inputs to force
execution down alternative paths, and re-
finement continues on subsequent execu-
tion passes. When all execution paths have
been explored (barring some. abstraction
allowed for loops), the algorithm is de-
clared complete. The resulting algorithm is
the set of chunks containing the search
control and implementation knowledge for
the generalized algorithm. Of course, be-
cause of its dependence on the examples
chosen and the available domain knowl-
edge, this process does not guarantee correct
algorithms (no such general guarantees of

ing memory, since the relevant parts can be
regenerated on each execution pass. Learn-
ing ties all this together by shifting knowl-
edge between spaces, minimizing the ex-
pense of repeated execution, and lessening
the load on limited working memory by
transferring the knowledge to long-term
memory.

Knowledge sources and integration.
Atany step of the algorithm, the function F
applies the correct computational opera-
tors given any valid input. (This is the F for
executing the algorithm,; a different type of
knowledge integration might be needed if

F required the retrieval of the complete

algorithm in some representation in one
step.) Algorithm design is just whatever
problem solving is required before the ex-
ecution knowledge can be obtained recog-
nitionally. We have incorporated the fol-
lowing knowledge sources into our theory
of the algorithm design process:

* KS,:High-level algorithm schemes. Part
of the expertise of designers is the knowl-
edge of design schemes (such as divide-
and-conquer), which are used as kernel
ideas to be refined later. These schemes
are represented as collections of abstract

42

AEEE EXPERT

e

oy s i A

i

et e T

RO

FEE R RN thy

ool h

LAkl A N

& i perg ST AN

=~
-
—

i gt FITRORET S
Attt v O

LRt

P

ot

iy

|y et BRI

s s

s

functional operators in the computation-
al spaces of Designer-Soar.

* 'KSy: Transformations. Knowledge for
reformulating and refining algorithm
schemes is represented as operators and
control knowledge in computational
spaces.

* KSy: Correctness. By executing the al-
gorithm in the computational spaces with
either symbolic or concrete inputs, De-
signer-Soar can determine the input/out-
put behavior of an algorithm after a can-

. didate transformation. It then compares
the results to those obtained by execu-
tion in the application domain spaces to
determine correctness.

* KSg: Efficiency. Knowledge can be en-
coded in Designer-Soar as operators and
control knowledge. An.example is the
balancing principle, which states that
the optimal divide step for Divide-and-
conquer algorithms produces subprob-
lems of equal size. Knowledge of the
rough time complexity of an algorithm,
such as would be gained by counting

‘nested loops, can be accessed by an
execution process specialized to per-
form efficiency analysis.

* KSs: Domain definitions, procedures,
and relationships. Concepts from the
domain are used to decompose the prob-
lem specification and test for the cor-
rectness of proposed algorithms. For

" example, sorting can be defined as the
problem of producing an ordered per-
mutation of the input.

We might be tempted to classify the
integration mechanism here as generate-
and-test, because KS; and XS, combine to
generate algorithms, and KS; and KS, com-
bine to evaluate them. But in fact KS; and
KS, generate only fragments of algorithms,
and KSs plays roles in both Generate and
Test. It would be more correct to say that

integration in the service of design is per-

formed in Designer-Soar via means-ends
analysis, with. KS, providing the initial
state, K, the operators that reduce differ-
ences, KS; and KS; the knowledge that
detects differences, and all four knowledge
sources incorporating KSs to some extent.

Itisclear, however, that we are operating

here at the frontiers of our understanding

of knowledge source integration: Soar sup-
ports integration through means-ends anal-,
ysis, but significant human intervention is

still needed to use this method and organize

the problem spaces for new applications.
Furthermore, we believe the current orga-
nization is sufficient to produce the desired
integration, but because the problem of de-
signing good organizations is undercon-
strained at this point, we cannot advance
the corresponding claim of necessity. Sim-
ilarly, while we believe the Soar architec-
ture is useful for providing the desired
flexibility, we do not claim that Soar is the
only architecture that can do so.

SINCE PEOPLE PERFORM THE
tasks of language comprehension, produc-
tion scheduling, and algorithm design, it is
worth noting that our arguments for the
usefulness of Soar mechanisms in integrat-
ing multiple knowledge sources do not
depend on the merits of Soar as a theory of
human problem solving. Rather, we claim
that Soar has the potential to cope with
diversity in knowledge sources in circum-
stances similar to those encountered by
people.

Soar mechanisms reduce both design-
time and runtime overhead associated with
knowledge integration. Of these mecha-

“nisms, chunking is perhaps the most sig-
nificant, because it converts knowledge
from independent sources into directly
available knowledge and thus, over time,
-eliminates the need for problem solving to
integrate knowledge. '

Remaining issues include errors in inte-
gration, and origins of knowledge about
integration. That is, how does Soar recover
if it has made an error in integrating multi-
ple knowledge sources? And how can a
system learn to integrate knowledge for
new tasks without human intervention to
organize the spaces? Our desire to increase
Soar’s autonomy will force us to address
these issues more closely.

Acknowledgments

Allen Newell’s guidance while performing
this research was invaluable, and we acknowl-
edge the extensive comments of Todd Johnson
and other referees on earlier drafts. The research
was sponsored in part by a Schlumberger Grad-
uate Fellowship, by the Defense Advanced Re-
search Projects Agency monitored by the Air
Force Avionics Laboratory under contracts
F33615-81-K-1539and F33615-87-C-1499, and
by the National Science Foundation under grant
DCR-84-12139. Preparation of this article has
been supported by the Engineering Design Re-
search Center at Carnegie Mellon University.

References

1. A. Newell, “The Knowledge Level,” Artifi-
cial Intelligence, Vol. 19, No. 2, 1982, pp.
87-127.

2. P.S.Rosenbloometal., “A Preliminary Anal-
ysis of the Soar Architecture as a Basis for
General Intelligence,” Artificial Intelligence,
Vol. 47, No. 1-3, 1991, pp. 289-325.

3. R. Neches et al., “Enabling Technology for
Knowledge Sharing,” Al Magazine, Vol. 12,
No. 3, Fall 1991, pp. 36-55.

4, B.Chandrasekaran, “Generic Tasksin Knowl- ~

edge-Based Reasoning: High-Level Build-
ing Blocks for Expert-System Design,” IEEE
Expert, Vol. 1, No. 3, 1986, pp. 23-30.

5. S.M. Shieber, An Introduction to Unifica-
tion-Based Approaches to Grammar, Center
for the Study of Language and Information,
Stanford, Calif., 1986.

6. Principle-Based Parsing: Computation and
Psycholinguistics, R.C. Berwick, S.P. Ab-
ney, and C. Tenny, eds., Kluwer Academic,
Dordrecht, The Netherlands, 1991.

7. J.F. Lehman, R.L. Lewis, and A. Newell,
“Integrating Knowledge Sources in Language

- Comprehension,” Thel3th Annual Conf. of
the Cognitive Science Soc., Lawrence Erl-
baum Associates, Hillsdale, N.J., 1991, pp.
461-466.

8. W.Hsu, M. Prietula, and D.M. Steier, “Merl-
Soar: Scheduling Within a General Architec-
ture for Intelligence,” Proc. Third Int’l Conf.
on Expert Systems and the Leading Edge in
Production and Operations Management,
Management Science Dept., Univ. of South
Carolina, Columbia, S.C., 1989, pp. 467-
481.

9. D.M. Steier, “Automating Algorithm Design
Within an Architecture for General Intelli-
gence,” in Automating Software Design,M.R.
Lowry and R.D. McCartney, eds., AAAI
Press, Cambridge, Mass., 1991, pp. 577-602.

10. E. Kant, “Understanding and Automating
Algorithm Design,” IEEE Trans. Software
Eng., Vol. SE-11, No. 11, Nov. 1985, pp.
1.375-1,386.

David M. Steler is a
research scientist at the
Engineering Design Re-
search Center and the
School of Computer
Science of Carnegie
Mellon University. His
research centers on
the application of Al
techniques, especially
integrated problem-
solving and learning architectures, to problems
in engineering design and human-computer in-
teraction. He received his BSc from Purdue
University and his MS and PhD from Carnegie
Mellon University, all in computer science. The
algorithm design research was performed while
he was a graduate student there. He is a member
of AAAL

JUNE 1993

43

T e ey~ NI e I

Richard L. Lewis is a
doctoral candidate incom-
puter science at Carnegie
Mellon University. His
research interests are in
building computational
theories of human cog-
nitive processes, partic-
ularly language compre-
hension. He received his
BScincomputerscience

Jill Fain Lehman is a
research computer sci-
entist in the School of
Computer Science at
Carnegie Mellon Uni-
versity. Her research
interests include natu-
ral-language compre-
hension, generation,
and acquisition. She re-
ceived her BS in com-

Anna L. Zacherl is a

graduate student at

Georgia Institute of
Technology, where she
is currently working on
acase-based design aid
for architects perform-
ing conceptual design.
The research in this ar-
ticle was performed
while she was a con-

from the University of Central Florida in 1987.
He is a member of the IEEE Computer Society,
the Cognitive Science Society, the American
Psychological Society, and AAAL

puter science from Yale in 1981, and her MS sultant at Carnegie Mellon University and an
and PhD in computer science from Carnegie undergraduate at Allegheny College, Mead-
Mellon in 1987 and 1989, respectively. Sheis ville, Pa., where she earned'her BS in comput-
a member of the Cognitive Science Society er science in 1991.

and AAAL)

Steier can be reached at the Engineering Design Research Center, Carnegie Mellon University, Pittsburgh, PA 15213.
Lewis and Lehman can be reached at the School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
Zacherl can be reached at the Georgia Institute of Technology, College of Computing, Atlanta, GA 30332. .

A AR BRI RN T LR MRS Kk W T TR

- CURRENT RESEARCH IN DECISION
. SUPPORT TECHNOLOGY .
edited by Robert W. Blanning and David R. King’

This new book contains an introduction and fifteen sclected papers revised
for publication. Its articles are divided into three sections each correspond-
ing to one of the three major areas of current research.

The first area is advanced decison modeling and model management and .
covers recent research on logic modeling, model integration, the economics
of designing and using systems containing models and other DSS tools. The

SOFTWARE REENGINEERING

edited by Robert S. Amold

The tutorial introduces software reengineering definitions, themes,
technology, strategies, and risks, and describes software reengineering
concepts and processes, tools and techniques, capabilities and limitations,
risks and benefits, research possibilities, and case studies

Various key sections of the text present, evaluate, and examine:

* Several examples of real-life reengineering projects

Development.

next section explores the use of expert systems in DSS contstruction, the -
application of connectionist architectures, and the development of active
DSS that adapt to the needs of their users. The last section discusses group
DSS, the determination of the organizational impact of DSS, and the
application of computer and cogmtlve science concepts to undersmndmg of
organizational information processing and decision-making.

Sections: Introduction, Advanced Decision Models and Model Manage-
ment, Knowledge-Based Decision Support, Behavioral Issues in DSS

256 pages. March 1993, Hardcover. ISBN 0-8186-2807-3.
Catalog #2807-01 — $45.00 Members $35.00

To order call toll free 1-800-CS-BOOKS
or 714/ 821-8380 or FAX 714/ 821-4010

* Reengineering and CASE tools
* View-based systems, remodularization, andtransformations
" % Datareengineering and approaches for migrating data
* Tools and approaches for decomposing programs
* Processes, metrics, and source codes
* Knowledge-bases and architectures for software reengineering and feverse engmeenng

Sections: Business Process Reengineering, Strategies and Economics,
Reengineering Experience, Technology for Reengineering, Data Reengineer-
ing and Migration, Source Code Analysis, Software Restructuring and
Translation, Reengineering for Reuse, Reverse Engineering and Design
Recovery, Object Recovery, Knowledge-Based Program Analysis.

¢.600 pages. November 1992. Hardcover. ISBN 0-8186-3272-0.
Catalog # 3272-01 — ~ $75.00 Members $60.00
(* prepublication price)

e

o]

d

-y

s s

< o

b RN et e de e AR

