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Abstract

It is known that, on average, people adapt their choice of memory strategy to the subjective utility

of interaction. What is not known is whether an individual’s choices are boundedly optimal. Two
experiments are reported that test the hypothesis that an individual’s decisions about the distribution

of remembering between internal and external resources are boundedly optimal where optimality is

defined relative to experience, cognitive constraints, and reward. The theory makes predictions that

are tested against data, not fitted to it. The experiments use a no-choice/choice utility learning para-

digm where the no-choice phase is used to elicit a profile of each participant’s performance across

the strategy space and the choice phase is used to test predicted choices within this space. They show

that the majority of individuals select strategies that are boundedly optimal. Further, individual dif-

ferences in what people choose to do are successfully predicted by the analysis. Two issues are dis-

cussed: (a) the performance of the minority of participants who did not find boundedly optimal

adaptations, and (b) the possibility that individuals anticipate what, with practice, will become a

bounded optimal strategy, rather than what is boundedly optimal during training.

Keywords: Bounded optimality; Adaptation; Bounded rationality; Constraints; Utility

maximization

1. Introduction

It is known that people choose strategies that adaptively distribute memory and plan-

ning between internal and external resources according to the cost/benefit structure of the
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task environment (Gray, Sims, Fu, & Schoelles, 2006; Marewski & Schooler, 2011;

Payne, Howes, & Reader, 2001). For example, it is known that lower action costs when

solving the eight-puzzle decreased the amount of planning by participants (O’Hara &

Payne, 1998). This can lead to longer solution paths and less learning in terms of transfer

to other solution paths. Similarly, it is known that people make strategic use of computer

help systems when the costs of accessing such systems are low but otherwise prefer

strategies that rely on imperfect memory (Gray & Fu, 2004). Gray et al. (2006) refer to

people as preferring imperfect information in the head over perfect information in the

world. Many others have demonstrated, or argued for, the adaptive nature of how people

use the external task environment (Brumby, Howes, & Salvucci, 2007; Cary & Carlson,

2001; Charman & Howes, 2003; Duggan & Payne, 2001; Edwards, 1965; Gigerenzer &

Selten, 2001; Gigerenzer, Todd, & the ABC Group, 1999; Gray et al., 2006; Kirsh &

Maglio, 1994; Payne, Bettman, & Johnson, 1993; Payne, Duggan, & Neth, 2007; Payne,

Richardson, & Howes, 2000; Sch€onpflug, 1986; Smith, Lewis, Howes, Chu, & Green,

2008; Tseng & Howes, 2008; Walsh & Anderson, 2009).

The proposal that people distribute memory adaptively contrasts with the idea that

people routinely offload cognitive processing (Hollan, Hutchins, & Kirsh, 2000). A weak

version of the offloading hypothesis is that people simply make use of the environment to

perform cognitive functions. The stronger version is that people favor the use of the envi-

ronment over the use of internal psychological resources. Ballard, Hayhoe, Pook, and

Rao (1997), for example, argued that people use a minimal memory strategy to copy

arrangements of color blocks on a computer display. Participants in an experimental study

tended to make frequent visual checks of the target pattern, rather than attempting to

encode the pattern in memory. The idea that people favor offloading was rejected by

Payne et al. (2001) in favor of a view of people as adaptive decision makers (Payne

et al., 1993). The idea that people make use of the environment was not disputed, but

rather Payne et al. (2001) questioned the idea that people minimize the use of internal

cognitive resources, or that they are cognitively lazy. According to Payne et al. (2001),

people choose to trade offloading with cognitive processing, given the cost/benefit struc-

ture of the task. According to Gray et al. (2006), differences in temporal cost of just a

few hundreds of milliseconds are enough to shift the allocation of resources from relying

on the environment to more memory-intensive strategies.

The purpose of the current article is to test whether an individual’s selection of strate-

gies for short-term remembering can be explained as boundedly optimal remembering.

Behavior is boundedly optimal if it can be predicted with a theory in which subjective

utility is maximized, given the bounds imposed by individual information-processing

capacities and their experience (Howes, Lewis, & Vera, 2009; Howes, Lewis, & Singh,

2014; Howes, Vera, Lewis, & McCurdy, 2004; Lewis, Howes, & Singh, 2014; Lewis,

Vera, & Howes, 2004). The hypothesis moves beyond previous work on adaptation to

consider the cost/benefit structure of the task environment in two respects. The first is in

the assumption that people do not merely adapt the distribution of memory but that they

can also find boundedly optimal adaptations. The second is in the assumption that the
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bounds are not only those of the task environment but that they are also due to an indi-

vidual’s own particular resource limits and experience.

The particular resource limits that we focus on in this article are memory limits. We

are interested in the extent to which people are boundedly optimal, given experience of

their own performance on a simple short-term remembering task. Previous work, concern-

ing what people choose to remember, has been conducted by Ballard, Hayhoe, and Pelz

(1995) and by Gray et al. (2006), among others. Following Ballard et al. (1995), Gray

et al. (2006) used a Blocks World task to study the choices that people make about what

to remember. The participant’s task was to reproduce patterns of colored squares (blocks)

visible in a Target window, in a Workspace window. There might, for example, be eight

blocks, each of a different color, positioned randomly in a 4 9 4 grid. Gray et al. (2006)

manipulated a lockout period, a period of 0–3,000 ms, before the target pattern became

available after the participant moved the mouse over it. On average, the blocks encoded

in memory per visit to the Target window increased from just over two to just under

three blocks as the lockout period increased, demonstrating adaptation to external costs.

The studies reported below use a variant of Gray et al.’s (2006) task to show that choice

about how much to encode is not only adaptive but that it is also boundedly optimal.

2. Bounded optimality

The motivations for this paper come from the bounded optimality framework proposed

in Howes, Vera, Lewis, and McCurdy (2004), Howes et al. (2009), Payne and Howes

(2013) and Lewis et al. (2014). The term “bounded optimality” was first used to refer to

algorithms that maximize utility, given a set of assumptions about problems and con-

straints in machine reasoning problems (Horvitz, 1988). According to Russell and Subra-

manian (1995, p. 575): “an agent is boundedly optimal if its program is a solution to the

constrained optimization problem presented by its architecture and the task environment.”

We assume here that individual, embodied, human minds correspond to the kinds of

boundedly optimal machines defined by Russell and Subramanian (1995), although we do

not, for the moment, make the distinctions between the different types of bounded opti-

mality articulated by these authors. Unlike Russell and Subramanian (1995), our goal is

not to develop the formal basis of Artificial Intelligence, but rather to test bounded opti-

mality as a hypothesis about human behavior. The key element that Russell and Subrama-

nian (1995) bring is that rational behavior is usefully defined as the deployment of

optimal programs relative to constraints that include the cognitive architecture and experi-

ence (Lewis et al., 2014). In contrast, other approaches, more strongly influenced by eco-

nomics, have tended to define rationality relative to the task environment (Anderson &

Schooler, 1991) and/or in terms of sound principles of inference (Oaksford & Chater,

2007), though see Schooler and Anderson (1997) for a discussion of the relationship

between rational analysis and processing bounds.

Bounded optimality is also influenced by key concepts in reinforcement learning (RL:

Sutton & Barto, 1998; Dayan & Daw, 2008). Most important, RL makes a commitment
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to the idea that learning what to do next concerns learning to maximize reward signals

through interaction with the environment. RL suggests extending Cognitive Science’s

traditional focus on goal-directed behavior to a more explicit consideration of the utility

of costs and benefits of interaction. Rather than merely describing goal states, RL

demands that the value of states is considered with the aim of maximizing the utility of

behavior to the agent. Our interest, therefore, is not with RL methods as hypotheses about

the nature of human learning (e.g., Dayan & Daw, 2008), nor with RL methods as means

of calculating optimal solutions (Chater, 2009), but rather with the formal definition of

the RL problem as bounded utility maximization. By implication, the problem of how to

distribute memory is the problem of how to maximize reward signals through interaction

with the environment.

In the following section, we report a number of examples of evidence for boundedly

optimal behavior. After that, we contrast the optimization assumption required by

bounded optimality with the explicit rejection of optimality found in bounded rationality

(Gigerenzer & Selten, 2001; Simon, 1992).

2.1. Evidence for bounded optimality, given response variance

There is no empirical work to our knowledge that directly tests whether people are

able to choose short-term memory strategies that are boundedly optimal. However, there

is relevant evidence in a range of perceptual-motor tasks. While these tasks do not

demand that participants adapt what they choose to remember, they do demand that peo-

ple adapt movement strategies. A brief review is useful here because it will support a

clearer articulation of the hypothesis. In particular, it will help us develop a theory of

how the selection of remembering strategies is bounded by variation in how an individual

performs a task, where variation is an inevitable consequence of internal constraints.

For example, Meyer, Abrams, Kornblum, Wirght, and Smith (1988) showed how a

stochastic optimized-submovement model can explain simple movements. In the model,

movements are described as an optimal compromise between the durations of primary

and secondary submovements, given noise on the control of movement caused by limita-

tions of internal information processing and muscular control processes. The secondary

movement acts to correct unintended, but inevitable, variance in the primary movement.

Optimization is therefore bounded by internally generated variation in performance.

In an empirical investigation of Signal Detection Theory, Swets, Tanner, and Birdsall

(1961) tested the hypothesis that people select a boundedly optimal criterion. Participants

were shown to select criterion levels, for the trade-off between correct detection and false

alarms, that maximized utility. The optimization was achieved accounting for noise gen-

erated by the perceptual system in the signal level of targets and distractors. As with

Meyer et al. (1988), people are boundedly optimal in the sense that they generate strate-

gies that are optimal, given bounds imposed by variation in human information-processing

mechanisms.

Trommersh€auser, Maloney, and Landy (2003) demonstrated that the assumption that

participants were able to maximize financial gain in a task where they used a finger to
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point at a reward region and avoid a penalty region could be used to predict targeting. As

with the previous examples, participants in this study learned to adjust where they pointed

to their own particular profile of motor system noise. Participants who exhibited greater

variation in the spread of where they pointed needed to adjust more in order to avoid the

penalty region. Further studies have supported the idea that people learn boundedly opti-

mal pointing strategies, given the variation in performance (Maloney & Mamassian,

2009; Trommersh€auser, Maloney, & Landy, 2008; Trommersh€auser et al., 2003).
Bounded optimality is also evident in more complex situations that require two

responses and require those responses to be ordered (Howes et al., 2009). By assuming

that people were boundedly optimal in a series of psychological refractory period (PRP)

experiments, Howes et al. (2009) demonstrated that the interval between the two

responses could be precisely predicted for individual participants. Critically, the analysis

defined optimality relative to the variance in the duration of each of the two responses. In

order to maximize the utility of performance, the model set the inter-response interval to

a duration that was long enough to minimize the potential for response reversals without

incurring a penalty for an excessive delay in the timing of the second response. The

shorter the inter-response interval, the greater the probability of a reversal error because

of the variation in the duration of both responses. In other words, while participants can-

not precisely predict the duration of one particular response, they can adjust performance

to the response distributions. Howes et al.’s (2009) analysis of the PRP data showed that

participants had made boundedly optimal adjustments to the duration between the two

responses, given the individual characteristics of the response distributions.

2.2. Bounded optimality versus bounded rationality

Bounded optimality shares much in common with bounded rationality. Bounded

rationality is a framework for understanding behavior that starts with the observation that

people have limited time and limited capacities (Simon, 1997). These bounds impose lim-

its on the extent to which people approximate the classical normative rationality that is,

in contrast, insensitive to the reality of computation in the world. Bounded rationality also

makes a commitment to the observation that behavior often reflects adaptation to the

structure of the environment (Gigerenzer et al., 1999; Oaksford & Chater, 1994; Simon,

1997). In these respects, there is no difference between bounded optimality and bounded

rationality.

Where bounded optimality and bounded rationality differ is in the explicit rejection of

optimality criteria that is evident in the definitions of bounded rationality provided by

Simon (1997) and Gigerenzer and Selten (2001). While in earlier work Simon pursued

the idea that satisficing a bounded rational heuristic method was optimal for certain tasks

(Kadane & Simon, 1977; Simon, 1955; Simon & Kadane, 1975), the predominant posi-

tion articulated in his work was that the environment is too complex and computational

resources are too limited for optimization to play a role in explaining human behavior

(Simon, 1997). Gigerenzer et al. (1999) embraced this view of bounded rationality.

Gigerenzer et al. (1999) work with the premise that much of human decision making and
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reasoning can be modeled with heuristics that “do not compute probabilities or utilities.”

For Gigerenzer et al. (1999, pp. 10–11), the notion that people might optimize under con-

straints is a “demon,” a creature with unlimited capacity, that is rejected along with the

“Unbounded Rationality demon.” From Gigerenzer’s perspective, optimization under con-

straints is paradoxical in that it seeks to explain limited information processing by assum-

ing that the mind has essentially “unlimited time and knowledge.”

Bounded rationality and bounded optimality also differ sharply in practice. For exam-

ple, Simon’s contributions to understanding short-term memory, long-term associative

memory, and problem representations (e.g., see the compilations in Simon, 1979) were

made without the benefit of an explicit consideration of the effects of the utility functions

that human participants might have adopted in the experimental situations. In contrast,

bounded optimality requires consideration of utility functions (Howes et al., 2009; Lewis

et al., 2014).

However, our contention here is that in a wider range of tasks than previously thought,

optimization algorithms can be useful for predicting human behavior. This is for three

reasons. The first reason is the substantial recent literature, some of which is reviewed

above, showing that optimization can play a useful role in psychological theorizing. The

extensive repetition of more-or-less similar tasks, for example, gives opportunity, both in

terms of time and knowledge, for optimal adaptation to occur on perceptual-motor tasks

(see above); it may also do so on more complex, higher level decision-making tasks that

involve constraints imposed by memory. The second reason is that these tasks, including

many tasks used in experimental psychology, are what Savage (1954) called “small

world” tasks, and it is therefore possible for the researcher to ascertain and solve the

decision problem faced by the participants.

The third reason is that, in contrast to optimization under constraints, the cost of opti-

mization is paid by the analyst, not by the participant. Bounded optimality does not

assume that the mind is unlimited; rather, it asserts that the analyst can make use of opti-

mization to test theories of the bounds (Lewis et al., 2014). This assumption is what

Oaksford and Chater (1994) called “methodological optimality.” A key benefit is that a

prediction derived through optimization has a privileged status as an explanation for why
people behave as they do because it allows a causal link to be established between

bounds and behavior (Hahn, 2014; Howes et al., 2009; Payne & Howes, 2013).

2.3. Bounded optimality and probability matching

In contrast to the evidence, provided above, in favor of bounded optimality, given

response variance, there are many studies that show that people probability match (Vul-

kan, 2002). Probability matching occurs when the frequency with which a choice is made

is proportional to the probability that the choice maximizes subjective utility. Probability

matching is often taken as evidence against the idea that people can be explained as per-

formance optimizers. For a review of the probability matching literature, see Vulkan

(2000). While some studies have questioned the assertion that people probability match
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(e.g., Shanks, Tunney, & McCarthy, 2002), probability matching phenomena have been

offered by others as evidence that people do not maximize subjective utility.

It is arguable whether people should probability match when they first experience a

choice task. Indeed, the boundedly optimal strategy for early stages of learning, given

choices with uncertain outcomes, can be extremely difficult to ascertain. In general, the

solution to these problems, depending on the assumptions, involves a period of explo-

ration followed by convergence to the policy that exploits the highest rates of reward

(Gittins, 1989; Sutton & Barto, 1998). In this paper, we are interested in the bounded

optimality of the strategies on which people converge after a period of exploration. In the

studies reported below, we not only test whether participants are boundedly optimal but

also whether they probability match. We ask which of these two theories is better able to

explain the data.

2.4. Overview

If individuals are boundedly optimal, then they should seek strategies that are optimal,

given subjective utility and bounds on short-term remembering. Each individual should

not offload and should not make a minimal use of memory. They should not exhibit any

bias in the use of memory away from what is measurably boundedly optimal for that

individual. They should not continue to probability match in cases where the prediction

of maximized utility deviates from the prediction of probability matching.

In what follows, we report two experiments. In each experiment, participants are asked

to make choices that have implications for the remembering strategies that can be

deployed while performing a laboratory version of an everyday task. The choices concern

how many items to hold in memory when copying messages from a calendar to an email

system. Structurally, the task is similar to that deployed by Gray et al. (2006), which

involved copying color squares, but, in contrast to Gray et al., it uses a no-choice/choice

paradigm so as to measure the utility of a range of different memory loads for each par-

ticipant. Therefore, unlike for Gray et al. (2006), it is possible to draw conclusions about

the efficiency of a participant’s choice of memory load. The paradigm is described further

in the next section.

3. Experiment 1

Experiment 1 was designed to test whether individuals used a boundedly optimal dis-

tribution of memory in a laboratory version of a memory task. The task involved copying

appointments from a simulated “email” application to a simulated “calendar” application.

Trials of the experiment were organized into a no-choice phase and a choice phase. This

design is a novel variant on the choice/no-choice paradigm employed by Siegler and

Lemaire (1997). In a no-choice/choice paradigm participants are first told which strategy

to practice (a no-choice phase) and then asked to choose their preferred strategy (a choice

phase). Siegler and Lemaire (1997) introduced the choice/no-choice paradigm, with the
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choice phase first, so as to address weaknesses with choice studies of adaptation. With

the no-choice phase, they were interested in obtaining unbiased estimates of the perfor-

mance characteristics of a set of strategies, and in particular in recording the speed and

accuracy of each strategy.

We reversed Siegler and Lemaire’s (1997) choice/no-choice order so that the no-choice

phase could act as a training phase ensuring that all participants were equally exposed to

every strategy. This provided performance data that could be used to inform and evaluate

strategy selection during the choice phase.

The purpose of the no-choice phase was to elicit a performance profile of a subset of

the memory strategies available to participants. The space of strategies for the email-

copying task encompasses variation along a number of dimensions, including number of

items to encode, encoding method, and rehearsal method. However, rather than explicitly

elaborating a large space of strategies varying along these dimensions and instructing par-

ticipants on the micro-structure of each strategy within this space, we presented partici-

pants with a sequence of trials that varied in the number of items that the participant was

asked to remember. We used a small space of possible list lengths (3, 4, 5, 6, 7, 8, and

9) and instructed participants to attempt to remember the corresponding numbers of

names. For example, a participant might be asked to remember five names and copy these

to the “calendar.” In addition, the incremental presentation of the list of appointments fur-

ther restricted the encoding strategy. These list lengths and instructions, thereby, encour-

aged participants to adopt a strategy that involved the encoding of a certain number of

appointments in memory. The participants’ performance on each list length provides us

with a measure of how utility varies along this single, but important, dimension of the

space of strategies.

In order to test for bounded optimality, it was important to provide an explicit and

measurable utility regime for the participants. The goal for the participants was to copy a

set number of items in as fast a time as possible. Utility for participants was therefore

defined in terms of the time taken to copy all of the items. The faster that all items were

copied, then the sooner the participants would be paid and could leave the laboratory.

Importantly, we operationalized errors in terms of time. For example, in one condition,

only correctly copied items counted toward the total number of items copied. Incorrect

copies, for example recalling the wrong item, resulted in wasted time and a lower reward.

As we describe later, participants were instructed to correctly copy n appointments as

quickly as possible. Further, they were instructed that their choice of number of appoint-

ments to be presented/copied should be made to achieve this end. There was a trade-off

between selecting strategies that appeared faster, in the absence of errors, and the

increased risk of errors.

For the purpose of the analysis, as reported in the results, we defined utility in terms

of the rate at which items were copied. “Rate” refers to the number of items copied per

second. We use rate as a measure of performance because it can vary as the participant

progresses through the experimental trials. If participants are boundedly optimal, then

they should make remembering choices that maximize the rate at which items are copied.
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3.1. Method

3.1.1. Participants
Forty native English-speaking students from the University of Manchester participated

in the study. They received £5 ($8.09) as compensation for their time.

3.1.2. Materials
Following Gray et al. (2006), the task involves copying information from one com-

puter application window to another. However, our task involved copying appointment

information, where Gray et al.’s (2006) participants copied information about a spatial

arrangement of color blocks. A program was written in Microsoft Visual Basic 6 that

simulated the email and calendar functions from Microsoft Outlook. This program ran on

an ordinary personal computer with a keyboard and mouse.

To mimic the experience of receiving email, all visual elements of the original Outlook

interface were reproduced. In addition, a single large button was included in the Inbox.

The caption for this button was “Click for timeslots.” Clicking on this button caused a

message to be displayed in the box to the right of the button. This message was of the

form “09.00: Appointment with NAME,” where NAME was replaced with the name, in

capitals, of the person at that appointment time. Each click of this button increased the

time displayed by one hour and changed the name presented. Only one name and

appointment were visible at a time (the display is illustrated schematically in the left

panel of Fig. 1).

Once all appointments had been displayed, a button in the bottom left-hand corner of

the screen labeled “Calendar” was enabled. Clicking this button changed the interface

into a modified version of the calendar function from Outlook (illustrated schematically

in the right panel of Fig. 1). There were nine different boxes into which users could enter

Time Name

09:00 JACK

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

Click for time slots

Email display

Calendar Finished

10:00 
Appointment
with ROSE

Calendar display

Fig. 1. Experiment 1: The experimental apparatus. On each trial participants were first presented with the

“email display.” They clicked the “click for time slots” button until all appointments had been shown. The

“calendar” button then became available and pressing it caused the display to change to “calendar display.”

They then entered the names that they could remember into the time slots and pressed “finished.”
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text. These boxes corresponded to the appointment times; thus, the uppermost box was

labeled 9.00, the second 10.00, and so on down to the bottom box labeled 17.00. Partici-

pants entered text into a box by clicking on it and typing using the keyboard. Pressing

“Tab” cycled down through the boxes. Beneath these appointments there was a button

labeled “Finished.” All other buttons, menus, and features of both the Email and Calendar

interfaces were disabled. Every time the participant clicked a button or entered text via

the keyboard, the program recorded and time-stamped the event.

A stimulus set of eight male and eight female first names (e.g., ROSE) was con-

structed. All of these to-be-remembered names were deemed familiar to native English

speakers and were four letters long. Each name began with a different first letter.

3.1.3. Design and procedure
Participants were divided into two groups of equal size. The cost of making an error

(the payoff) was manipulated across the two groups; therefore, they were labeled “Low

Error Cost” and “High Error Cost.” In the Low Error Cost condition, each incorrectly

copied appointment was counted as an error. In the High Error Cost condition, all of the

appointments in a trial were counted as errors if one or more of them was copied incor-

rectly. The experiment was divided into two phases: the No-choice phase followed by the

Choice phase. Each phase was completed when participants had correctly copied a speci-

fied total number of appointments into the calendar.

All participants were instructed that they were required to copy appointments from the

email application into the calendar. They were told that within each message there were

two pieces of information: the name of the person to be met and the time of the appoint-

ment. However, they were also informed that the first appointment was always at 09.00

and all appointments were always 1 hour apart and in sequence; therefore, only the names

and the order they were presented in needed to be remembered.

Appointments were presented in trials. On each trial, participants were required to

view between three and nine appointments before the calendar function was enabled and

appointments could be copied across. The number of appointments that participants were

required to read before copying across was an independent variable during the No-choice

phase and a dependent variable during the Choice phase.

Blocks of seven trials were presented consecutively during the No-choice phase. Each

trial within a block contained a different number of appointments to be copied. Therefore,

each of the seven list lengths ranging from three appointments up to nine appointments

was represented once within each block. The order of trial presentation within each block

was determined randomly. The order varied across blocks and across participants. For

every appointment, on every trial, the program randomly selected a name from the stimu-

lus set of 16 names. The only constraint on this process was that no name was allocated

to more than one appointment on the same trial.

After completing a practice trial containing three appointments, all participants were

asked to copy 200 appointments into the calendar as quickly as possible. It was empha-

sized that making errors was only problematic insofar as it slowed down the overall time
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taken and that their aim should be to finish as quickly as possible, rather than finish with

as few errors as possible.

At the start of each trial a screen appeared indicating the total number of appointments

remaining and the number of appointments that would be presented on that particular

trial. When participants clicked a button labeled “OK,” this screen was replaced with the

email interface. Participants were presented with each of the appointment names in turn

and then required to copy the names in uppercase letters into the appropriate slots within

the calendar. After copying, they were free to edit the text as much as desired and when

satisfied should click the button labeled “Finished.” The program then provided feedback

about the number of appointments correctly copied and highlighted in red any slots incor-

rectly completed. Any erroneous spellings, lowercase letters, or spaces left within a calen-

dar slot when the “Finished” button was clicked caused the item to be scored as an error.

When the error feedback was provided, another button was enabled that participants

clicked to begin the next trial. Participants could not go back to correct errors; they could

only progress to the next trial.

In the High Error Cost group, a single error on any of the appointments meant that all

of the appointments from that trial were classed as errors and no points were awarded.

Thus, if there were eight appointments presented during a High Error Cost trial, and

errors were made when copying three of them, then the overall total to-be-copied would

have remained the same. In the Low Error Cost group, all appointments correctly copied

reduced the overall total to be copied. Thus, if there were eight appointments presented

during a trial and errors were made when copying three of them, then the overall total to-

be-copied would have been reduced by 5. In the analysis below, we refer to the reduction

in the total number of items to-be-copied on a trial as the points achieved on the trial.

After 200 appointments had been correctly copied in the No-choice phase, participants

received the instructions for the Choice phase. This phase was identical to the No-choice

phase except that participants were allowed to select the number of appointments that

were presented on each trial. This choice was implemented at the start of each trial by

clicking on one of seven buttons labeled 3, 4, 5, 6, 7, 8, or 9, respectively. For the choice

phase, participants were instructed to correctly copy a further 100 appointments as

quickly as possible and that their choice of number of appointments to be presented/cop-

ied should be made to achieve this end.

The importance of the fact that participants had to correctly copy 100 appointments

during the choice phase is worth restating. If a participant failed to correctly copy items,

then his or her target of items remaining to be copied was not reduced. As a conse-

quence, unlike in many experiments, errors were not merely counted by the experimenter,

but rather they had real consequences for the time taken by the participant.

3.2. Results

3.2.1. Average list length selected
Fig. 2 is a plot of the mean rate at which items were copied against list length (number

of items) for both the no-choice and the choice data. The mean rate at which items were
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copied was calculated according to the following procedure. For every trial, we recorded

the trial duration, the selected length (3, 4, 5, 6, 7, 8, or 9 items), and the number of

appointments correctly copied. The trial duration was defined as the interval between the

end of the previous trial and the end of the current trial. This duration therefore included

the time cost of moving from one trial to the next. For each participant and each list

length (number of appointments), the rate Rk for a trial was then calculated by dividing

the number of appointments copied by the amount of time taken for the trial. We then

calculated an average rate for each participant and each list length.

In the low cost condition, a single point was awarded for each successfully copied

item. For example, a participant who attempted to copy five items and made one error

would get four points. In the high cost condition, a single point was awarded for each

successfully copied item, unless there were any errors, in which case no points were

Fig. 2. Experiment 1: Mean rate at which items were copied for each list length in the no-choice phase and

for the average list length chosen in the choice phase. Error bars are the 95% confidence interval for the

mean chosen list length.
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awarded. For the same example, attempting to copy five items and making one error

would result in no points. We defined an error as a failure to copy an item correctly.

As we have said, an important property of the rate is that error costs are reflected in

the measure because when participants made errors it cost them time (by an amount con-

tingent on the condition). We refer to the list length (number of appointments held in

memory) associated with the highest rate of copies as the boundedly optimal list length.

We assume that the boundedly optimal strategy involved the selection of the boundedly

optimal list length.

Participants completed a variable number of trials because while all participants were

required to copy 100 appointments during the choice phase, each was free to choose how

many appointments to copy on a trial.

In Fig. 2 it can be seen that for the Low Error Cost condition the mean list length

selected was 5.05 (SD = 0.67; Mode = 4.93, SD = 0.69) and for the High Error Cost con-

dition the mean selection was 5.00 (SD = 0.78; Mode = 4.98, SD = 0.80). There was no

statistically significant difference between the conditions for the means or modes (ts < 1).

The absence of a difference in the choice phase list length is disappointing but, con-

versely, it can be seen in Fig. 2 that the mean participant choice in both conditions is pre-

dicted by the no-choice phase rates.

Fig. 2 gives the illusion that the rate for each list length was a point value when in fact

they were distributions. This is made clear in Fig. 3, which shows the frequency distribu-

tion of rate for each list length across all participants in both cost conditions and across

both choice, and no-choice phases, of the experiment. Qualitatively, the figure suggests

that some choice discriminations are relatively easy. It is easy to see that a list length of

9 is worse than a list length of 4. Other discriminations, for example, between 4 and 5

are relatively difficult because of the overlap in the rate distributions.

3.2.2. Correlation between the boundedly optimal list length and the selected list length
In Fig. 2 there appears to be a correspondence between the strategy with the highest

rate in the no-choice phase and the chosen strategy in both conditions. In order to test

this hypothesis further, we first defined the mean boundedly optimal list length Bp for

each participant p, as

Bp ¼ arg maxRp;s
s2S

where s is one of the set of possible list lengths S and the rate of reward for a list length,

Rp,s is defined above. Bp is therefore defined as the list length s that maximized the rate

R for participant p.
We pooled participants from both conditions and found a significant correlation

between the boundedly optimal list length and the list length that participants actually

selected, r(38) = .35, p = .027. Participants for whom it was predicted that they would

take on larger list lengths did so, suggesting that the boundedly optimal list length pre-

dicted 12.25% of the variation between participants. This finding offers initial support for
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bounded optimality. Given the assumption that the boundedly optimal strategy involves

the selection of the list length that allows each participant to maximize his or her own

utility, then we know that the boundedly optimal strategy predicted by the theory is cor-

related with the list length actually selected by participants.

3.2.3. Probability matching
Before analyzing the extent to which people were bounded optimal, we first wanted to

reject the possibility that participants probability matched. The idea was that rather than

using a strategy involving a list length that yielded the maximum utility, participants

selected a list length in proportion to the probability that the strategy yielded the maxi-

mum utility, that is the highest rate of copies (e.g., see Shanks et al., 2002; Walsh &

Anderson, 2009). We took the list length that each participant selected most frequently

during the choice phase, called the highest frequency list length, and plotted the probabil-

ity selected against the probability that it was the list length that maximized utility. If the

participants were probability matching, then we expected Fig. 4 to show a straight line

through 0,0 and 1,1. However, there was no significant correlation between the logit

transformed probability selected and probability optimal (r(38) = .061, p = .707).

3.2.4. Frequency of utility maximization
We tested whether the highest frequency list length selected by participants was

selected more frequently than was predicted by probability matching. We first found the

list length that was selected most frequently by each participant. We then found the

Fig. 3. Experiment 1: The frequency distributions of the rate at which items could be copied with each list

length. Data are for all participants in both conditions (n = 40) and for both no-choice and choice phases.
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probability that this list length was boundedly optimal for that individual. Recall that each

list length has a distribution of rate (Fig. 3) and so the probability that a list length is

boundedly optimal is simply the probability that a sample of that list length’s rate is

greater than a sample of any other list length’s rate. The data for both list length and

probability were positively skewed and we therefore used a permutation test. A permuta-

tion test, with 10,000 resamples, contrasting probability selected and probability maxi-

mum utility, was significant p < .001. The mean probability boundedly optimal was 0.49

and the mean probability of selection of the most frequent list length was 0.80. Partici-

pants were significantly more likely to select their highest frequency list length than was

predicted by probability matching (reflected in the fact that most of the data in Fig. 4 are

above the probability matching line).

3.2.5. Comparing boundedly optimal to suboptimal choice
We were interested in comparing the predictions of the boundedly optimal list length

to list lengths that implied the encoding of fewer items in memory and to list lengths that

involved encoding more items in memory. We examined the means of all list lengths

with fewer items (optimal�1, optimal�2 etc.) and found that optimal�1 predicted as many

selections, or more, than all others that had fewer items. The corresponding result was

Fig. 4. Experiment 1: Probability selected versus probability bounded optimal for each participant’s most fre-

quently used list length. Probability matching predicts a straight line regression through 0,0 and 1,1—which

is not supported by these data.
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found for optimal+1. For this reason, we focused these analyses on optimal�1 and opti-

mal+1 (if optimal�1 performs worse than the boundedly optimal list length then optimal�n

will also perform worse). The optimal�1 list length offers a test of the offloading hypoth-

esis; this is the hypothesis that people routinely offload to the environment. Contrasting

the maximum utility list length (max) to optimal�1 and optimal+1 offers a test of the pre-

cision of the predictions. Fig. 5 is a bar graph contrasting the average percentage of trials

on which each of bounded optimal, optimal�1, and optimal+1 list lengths predicted partic-

ipant performance. On average, boundedly optimal predicted 55% (SD = 32) of partici-

pant selections, whereas optimal�1 and optimal+1 predicted 8% (SD = 12) and 17%

(SD = 24), respectively.

A permutation test was used with 10,000 resamples to contrast the proportion of pre-

dicted selections in the choice phase for each of the three list lengths (bounded optimal,

optimal�1, and optimal+1). The permutation test was used because the distributions for

optimal�1 and optimal+1 were skewed. The boundedly optimal theory was a better predic-

tor of selections than optimal�1 (p < .001), and a better predictor of selections than opti-

mal+1 (p < .001). Optimal�1 and optimal+1 were equally poor predictors. All other

strategies, for example, optimal�2, optimal�3, predicted even fewer selections.

Fig. 5. Experiment 1: Percentage of predicted choice phase selections for the bounded optimal, optimal�1,

optimal+1, and the selected strategy. Error bars are the 95% confidence interval for each strategy.
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3.2.6. Individual differences
We wanted to investigate individual differences across trials. For each participant and

each trial, we computed the probability that a random use of any one list length would be

better, that is, deliver a higher rate of copies, than a random use of any of the other list

lengths. The distribution of rates for each list length was set to the empirical distribution

of rates for each list length for values over trials 1 to k � 1. The computation of the

probability was achieved using 1,000 Monte Carlo trials for each list length on each trial

of the experiment.

For example, consider a scenario in which there were only list lengths of 3 and 4. If

participant 1 had experienced rates R3 = (0.4, 0.3, 0.4, 0.7) for list length 3 and rates of

R4 = (0.2, 0.4, 0.6, 0.6, 0.5) for list length 4, then probabilities were calculated by sam-

pling n pairs with replacement, with one element of each pair from R3 and R4 and then

counting the frequency that the sample for 3 was greater than the sampled rate for 4. For

example, if the sample generated from R3 was 0.7 and from R4 was 0.2, then the fre-

quency that list length 3 was better than list length 4 would be incremented by 1. Once

calculated, for each individual participant on each trial, this frequency was divided by the

total number of sampled pairs, n, so as to generate the probability that each list length

would generate a higher rate. In the analysis of the results presented below, rather than in

this illustrative example, samples were taken from all seven list lengths and the probabili-

ties were calculated for each list length relative to all other list lengths.

The advantage of probability best, over rate (used previously), is that it is sensitive to

the uncertainty in the rate associated with each strategy, as represented by the empirical

distribution functions. Probability best is a measure of the likelihood that a strategy is

boundedly optimal for the individual participant. One strategy, for example, using a list

length of six appointments, may be associated with a higher mean rate than a strategy

using a five-appointments list length but may also have much higher variation, or the two

strategies may have such high variation that they are effectively indistinguishable; the

probability best measure is sensitive to the distribution of rewards for each strategy.

We plotted the probability that utility was maximized with each list length. In Fig. 6,

each panel represents the likelihood that each list length maximized utility, given a partic-

ular participant’s trial-to-trial experience through the experiment.

Participants 8, 5, 4, 12, 13, and 14 were selected to represent the diversity of perfor-

mance. In each panel, the no-choice phase is to the left of the vertical bar and the choice

phase is to the right. Circles represent the selected list length. Each list length is repre-

sented with a different color. We analyzed all participants irrespective of condition.

Participants 4, 12, 13, and 14 (Fig. 6) are presented because each selected the bound-

edly optimal list length on the majority of trials. In addition, each of these participants

chose a different list length from the others and the figure, therefore, illustrates some of

the individual differences in performance. For participant 4, a list length of 7 allowed

them to maximize utility and the participant selected a list length of 7. For participant 12,

list length 4 was boundedly optimal and the participant selected list length 4. For partici-

pant 13, list length 5 was boundedly optimal and the participant selected this list length

on the majority of trials. For participant 14, list length 6 was the boundedly optimal and

A. Howes et al. / Cognitive Science (2015) 17



it was also selected. In addition, for participant 14, while list length 6 was not the bound-

edly optimal at the beginning of the choice phase, practice improved its performance to

the extent that it became the boundedly optimal list length.

Participant 5 (Fig. 6) was selected because there was no clear boundedly optimal list

length. All strategies have probabilities below about 0.4 and three of the strategies (4, 5,

and 6) have probabilities in a narrow range between 0.2 and 0.4. On some trials, the

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 8

3
4
5
6
7
8
9
choice

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 5

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 4

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 12

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 13

40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

trial

p(
bo

un
de

d 
op

tim
al

)

participant 14

Fig. 6. Experiment 1: Six panels that give illustrative examples of individual performance across trials. The

probability that a strategy was the bounded optimal strategy is plotted against trial (see the text for a descrip-

tion of how this probability was calculated). Each strategy is represented by a different color. The selected

strategy is represented by a circle. Participant 8 (top left) failed to find the bounded optimal strategy. Partici-

pant 5 (top right) did not exhibit a distinct bounded optimal strategy. Participant 4 (middle left) initially prac-

ticed a strategy lower than the optimal (strategy 6) before persistently selecting the bounded optimal strategy

(strategy 7). Participant 12 (middle right) persistently selected the bounded optimal strategy (strategy 4) but

also explored a higher memory strategy (strategy 5). Participant 13 (bottom left) persistently selected the

bounded optimal strategy (strategy 5). Participant 14 (bottom right) practiced a strategy that became the

bounded optimal.
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participant selected list length 6 and on some list length 5, but these strategies and list

length 4 are indistinguishable (it is not clear that there is a distinct boundedly optimal list

length).

Participant 8 (Fig. 6) was selected because their behavior illustrates choice phase per-

formance that is not predicted by the theory. For this participant, by the end of the choice

phase, the probability that list length 4 is the boundedly optimal list length is about 0.5

and the probability of all of the others is below 0.2. Despite the discrimination between

the probabilities, the participant has selected a list length that is unlikely to allow him or

her to maximize utility (list length 6) on the majority of choice phase trials.

Plots of the probability that each list length maximized utility for each participant are

provided in Fig. S1.

3.2.7. Regression of selection against trial
We analyzed whether participants were more likely to select the optimal list length

with trial. We estimated the fixed effect of trial on whether or not bounded optimality

predicted list length selection. A repeated measures logistic regression computed probabil-

ity boundedly optimal for the selected list length against trial and revealed a significant

positive slope (p < .001). Participants were more likely to select the boundedly optimal

list length as trial progressed. Fig. 7 displays a plot of the fit for each participant.

3.3. Discussion

The results offer support for the bounded optimality hypothesis.

(1) As predicted, there was a positive correlation between the boundedly optimal list

length and the selected list length; individuals who were predicted, on the basis of

their measured performance across the strategy space, to choose a higher working

memory load did, in fact, do so. While the magnitude of the errors points to varia-

tion, there is indication that strategy choice is sensitive to individual performance.

(2) As predicted, individuals were more likely to select the list length with the maxi-

mum utility than list lengths that involved encoding more or fewer items in mem-

ory (see Fig. 5). Further, a repeated measures logistic regression showed that

participants were significantly more likely to select the boundedly optimal list

length with practice.

Despite the positive evidence, a substantial portion of the data could not be accounted

for as boundedly optimal choice of list length. For example, eight participants became

less likely to select the boundedly optimal strategy as trials progressed (they exhibit a

negative slope in the regression reported in Fig. 7). Four other participants persistently

selected a list length that was not bounded optimal. (They exhibit a flat regression slope

in Fig. 7.) We return to this result in the General Discussion. In addition, the manipula-

tion of the external reward signal failed to generate a difference in either the predicted

list length or in the list length selected by participants. These problems are addressed in

the design of Experiment 2.
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Fig. 7. Experiment 1: Plots of repeated measures logistic regressions of probability optimal selection (y-axis)
against trial (x-axis) for each individual participant. Each plot indicates the probability that a participant

selected the optimal list length with trial. (No axis labels are provided because of the number of plots.)

20 A. Howes et al. / Cognitive Science (2015)



4. Experiment 2

While Experiment 1 offered some support for the hypothesis that individuals would

choose to use bounded optimality list lengths, there was no effect of the manipulation of

payoff function on the strategies selected by participants. Therefore, in Experiment 2,

rather than manipulate the cost of an error, we manipulated the number of points awarded

for a successful copy such that, in one condition, there was a greater incentive to copy

larger list lengths (more details are given below).

4.1. Method

4.1.1. Participants
Twenty native English-speaking students from the University of Manchester partici-

pated in the study. They received £5 ($8.09) as compensation for their time.

4.1.2. Design and procedure
The goal for the participant was to score a set total of points by copying appointments

into the appropriate slots in the calendar. As in the “Low Error Cost” condition of Exper-

iment 1, a score for a trial was computed from the number of correctly copied appoint-

ments made when copying other appointments. Zero points were awarded for errors.

The key manipulation was the relationship between the number of appointments copied

on a single trial and the number of points received for that trial. This was a between-

participant manipulation across two groups of equal size. In the “Linear” group, partici-

pants received a single point for each appointment correctly copied. The total number of

appointments to be copied in the Choice phase was doubled from Experiment 1, meaning

participants had to score 200 points in both the No-choice and the Choice phases. In all

other respects, the Linear condition was the same as the Low Error Cost condition from

Experiment 1.

In the “Exponential” group, the number of points received for a trial increased expo-

nentially according to the number of appointments correctly copied. Specifically, for

copying one appointment participants received one point and the total trial points for

each additional correctly copied appointment were 2, 3, 4, 7, 11, 17, 27, and 42. The

target number of points in both the No-choice and the Choice phases was set at 310

points. This number was derived from the mean data from the Low Error Cost condi-

tion in Experiment 1. Assuming participants made the same number of errors on the

same trials, then during the No-choice phase participants would take the same number

of trials to reach 310 points in the Exponential condition as it took to reach 200 points

in the Linear condition. This kept the amount of practice prior to the Choice phase

approximately equivalent across both groups. Of course, these points totals did not nec-

essarily result in both groups completing the same number of trials during the Choice

phase—indeed, the purpose of our manipulation is to produce a difference between the

two groups.
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At the start of the experiment, all participants were given a table and graphic that out-

lined the relationship, between appointments copied and points scored, that was specific

to their condition. It was emphasized to participants that they should aim to score the tar-

get points total as quickly as possible. All other aspects of the method were the same as

in Experiment 1.

4.2. Results

Unless stated otherwise, all measures are computed and analyzed in the same way as

for Experiment 1, except that here rate refers to the number of points acquired per second

rather than the number of items.

Later trials on which fewer than 10 participants contributed were excluded. The fol-

lowing analyses, therefore, use data from the no-choice phase and trials 1–39 of the

choice phase. No other data were excluded from the analyses. The mean number of trials

completed in the no-choice phase did not differ between the Exponential condition

(M = 41.10, SD = 16.40) and the Linear condition (M = 46.60, SD = 6.36, t(18) < 1).

4.2.1. Average list length selected
The mean list length that participants selected was larger in the Exponential condition

(M = 6.99, SD = 1.32) than in the Linear condition (M = 5.07, SD = 0.78; t(18) = 3.98,

p = .001, d = 1.33), supporting the hypothesis that people can adapt remembering strate-

gies to the objective points-based utility function specified in the instructions. The aver-

age of each participant’s mode list length produced the same significant difference

(Exponential, M = 7.20, SD = 1.62; Linear, M = 4.90, SD = 0.99; t(18) = 3.83, p = .002,

d = 1.31). This relationship is illustrated in Fig. 8, where the rate at which items were

copied is plotted against the list length.

4.2.2. Correlation between the boundedly optimal list length and the selected list length
As with Experiment 1, we pooled participants from both conditions and found a signif-

icant correlation between the boundedly optimal list length and the list length that partici-

pants actually selected, r(18) = .77, p < .001. The RMSE was 1.34 and the boundedly

optimal list length explained 59.29% of the variance. Participants for whom it was pre-

dicted that they would select larger list lengths did so, suggesting that boundedly optimal

choice predicted a substantial part of the variation between participants. While the corre-

lation does not tell us whether participants were biased, it does tell us that participants

who were measurably able to copy larger list lengths did so.

4.2.3. Probability matching
As with Experiment 1, for each participant and each trial, we computed the probability

that a random use of any one list length, and therefore strategy, would be better; that is,

would deliver a higher rate than a random selection of any of the other list lengths. The

computation was achieved using 1,000 Monte Carlo trials for each list length on each
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trial of the experiment. Each list length was represented by the empirical distribution

function formed from the values of its rate over trials 1 to k�1.

Fig. 9 is a plot of each participant’s most frequently selected list length. It provides a

representation of the extent to which probability of selection was predicted by the proba-

bility that the selection was bounded optimal. If, on average, participants used probability

matching then probability selected should match probability bounded optimal. The line of

best fit should pass through 0,0 and 1,1. While there was a correlation (r(18) = .62,

p = .003), a permutation test revealed that participants were significantly more likely to

select the most frequent choice than predicted by probability matching (p < .001).

4.2.4. Individual differences
Inspection of the individual plots, of probability boundedly optimal versus trial,

revealed a similar pattern of individual variation as that observed in Experiment 1. First,

Fig. 8. Experiment 2: Mean rate at which items were copied for each list length in the no-choice phase and

for the average list length chosen in the choice phase. Error bars are the 95% confidence interval for the

mean chosen list length.
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12 of the 20 participants (five in the Exponential condition, seven in the Linear condition)

selected the boundedly optimal list length on the majority of trials. Two participants

selected between a set of strategies all of which could have been the boundedly optimal,

but which were essentially indistinguishable, and six participants systematically selected a

list length that was not the predicted list length. Of this last group, four participants

selected larger strategies than the bounded optimal, and two selected smaller strategies

than predicted by bounded optimality (all within � 2 of the bounded optimal). Plots of

the likelihood that each list length maximized utility for each participant are provided in

Fig. S2.

We visually inspected the response data file where all key presses and mouse clicks

were recorded. This log showed that for 49% of trials in the Exponential condition, dur-

ing the recall phase, participants did not initially enter the complete names in each box.

Instead, they selected each response box in turn and only entered the first letter of a name

in each box. Once a letter had been entered in each box, they then returned and entered

the remaining letters of the name. This strategy was less frequently observed in the Lin-

ear condition (17% of trials), where participants entered the complete name in a box and

rarely returned to a box subsequently. This strategy offered less benefit for the Linear

Fig. 9. Experiment 2: Probability selected versus probability bounded optimal for each participant’s most fre-

quently used strategy. Probability matching predicts a straight line regression through 0,0 and 1,1. While

there is a significant correlation (r(18) = .62, p = .003), probability bounded optimal and probability selected

are significantly different (V = 20, p < .001).
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condition as there was less reward for accurately remembering large list lengths. The

mean list length selected was larger for the first letter strategy (M = 6.65, SD = 1.70)

than the complete name strategy (M = 5.46, SD = 1.01, t(23) = 2.10, p < .05, d = .80).

4.2.5. Comparing boundedly optimal to suboptimal choice
We compared the maximum utility list length to a list length that involved one fewer

items in memory (optimal�1) and a list length that involved encoding one more item (op-

timal+1). Fig. 10 is a barplot of the percentage of trials on which each of the three strate-

gies (bounded optimal, optimal+1, and optimal�1) predicted a participant’s selection.

Permutation tests were used to contrast the proportion of predicted selections in the

choice phase for each list length. (The distributions for optimal�1 and optimal+1 were

positively skewed.) The boundedly optimal strategy was a better predictor of selections

than optimal�1 (p = .003) and a better predictor of selections than optimal+1 (p = .004).

Neither optimal�1 nor optimal+1 was a better predictor than the other. On average bound-

edly optimal predicted 46% (SD = 33) of participant selections, whereas optimal�1 and

optimal+1 predicted 12% (SD = 13) and 14% (SD = 17), respectively. We used a repeated

Fig. 10. Experiment 2: Percentage of choice phase selections predicted by the bounded optimal, optimal+1,

optimal�1, and the selected strategy against trial (choice phase only). Error bars are the 95% confidence inter-

val for each strategy.
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measures logistic regression to test whether each theory—bounded optimal, optimal�1,

and optimal+1—predicted more, or fewer, participant selections with trial. We found no

effect of trial on whether optimal predicted the choice p = .1285. We did find an effect

of trial on whether optimal�1 predicted the choice p = .006. There was also an effect of

trial on whether optimal+1 predicted the choice p = .0391. Both optimal�1 and optimal+1
become significantly worse at predicting the participant’s choice.

4.3. Discussion

In Experiment 2, half of the participants received exponentially increasing rewards for

those list lengths, and therefore those strategies, that required more memory. The other

half received linearly increasing reward. As predicted, individuals in the exponential con-

dition selected significantly larger list lengths than individuals who received linearly

increasing rewards, demonstrating that participants can adapt choice of memory strategy

to utility. Evidence that participants not only adapted but were also boundedly optimal

was also present. The boundedly optimal list length was a significantly better predictor

than either optimal�1 or optimal+1, supporting the idea that participants were boundedly

optimal. However, it was also the case that many participants failed to select the pre-

dicted list length.

5. General discussion

Two experiments used the no-choice/choice paradigm to test the hypothesis that indi-

viduals can choose boundedly optimal strategies when remembering items for short peri-

ods of time. The no-choice phase of the experimental paradigm allowed us to empirically

measure performance on a range of strategies and, thereby, calculate the boundedly opti-

mal strategy for each individual. The choice phase allowed us to test the prediction that

people would not only adapt but that they would do so by choosing a list length, and

therefore a strategy, that maximized utility. The findings (Experiment 2) are consistent

with previous findings (Gray et al., 2006) that people are able to adapt their use of mem-

ory; on average, people choose to remember a different number of items depending on

the payoff regime. In addition, both Experiments 1 and 2 offered evidence that adapta-

tions of the majority of participants were bounded optimal. In both experiments, the

boundedly optimal strategy offered significantly better predictions of average performance

than strategies with fewer items, or more items, than the boundedly optimal strategy—
suggesting that the hypothesis that people minimize the use of memory (Ballard et al.,

1997; Hollan et al., 2000) is inconsistent with the evidence and further supporting the

hypothesis that people are adaptive to costs and benefits (Gray et al., 2006; Payne et al.,

2001). Further, in Experiment 1 regression analysis indicated that with practice partici-

pants became significantly more likely to select the boundedly optimal strategy as they

experienced more trials. Correlations between optimal and selected for each individual

suggest that in both experiments the majority of participants adapted to their own individ-
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ual performance characteristics. The individual differences between these participants

were therefore not merely described but predicted by the bounded optimality analysis.

The validity of these findings is contingent on the effectiveness of the no-choice/choice

utility learning paradigm (Siegler & Lemaire, 1997; Walsh & Anderson, 2009) which

allowed us to determine the utility of strategies other than that chosen by the participants.

Validity was also contingent on the fact that participants were asked to maximize an

explicit utility function. Errors were operationalized in terms of time. To the extent that

the results showed which participants were bounded optimal, they did so, given a para-

digm in which utility, and therefore optimality, involved a quantifiable speed/accuracy

trade-off. People can, it appears, adjust what they choose to remember over short time

periods so as to maximize utility given speed/accuracy constraints; at least, they did so in

the reported studies.

5.1. The value for the current work

Experiments 1 and 2 go beyond previous work (e.g., Gray et al., 2006; Payne et al.,

2001) in three important respects. First, the experiments add support for the idea that the

majority of people can not only adapt their use of memory but in addition they can adapt

to just the right extent. On the whole, if a participant could achieve his or her highest rate

with a list length of say 5, then this is the list length that he or she used when given a

choice. No previous experiments requiring people to remember items for short time peri-

ods has demonstrated that behavior is substantially consistent with a theory that demands

boundedly optimal adaptation. Second, the results show that these participants maximized

the rate at which items were copied by choosing an individually appropriate list length.

The correlations between boundedly optimal list length and chosen list length in both

experiments show that participants who copied items at a higher rate with a particular list

length chose that list length during the choice phase of the experiment.

Third, the results show that some participants failed to choose a boundedly optimal list

length. The fact that the experience of some of these individuals led to no clear bound-

edly optimal list length suggests one explanation, but other participants failed to choose

what the analysis shows was a clear bounded optimum. We discuss, below, the implica-

tions of this apparent form of “suboptimality” and its relationship with the findings of Fu

and Gray (2004).

5.2. Future work

5.2.1. Explaining behavior that was not bounded optimal
There were 13 (of 60) participants in the two studies who persistently selected a list

length, and therefore a strategy, that was not bounded optimal, for example, participant 8

in Fig. 6. Visual inspection of the probability boundedly optimal for each list length, as

presented in Fig. 6, suggests that given the evidence available to these participants, they

should not have been unsure about which was best, yet they persistently failed to select

this list length. If there was a clear boundedly optimal strategy, then exploration of
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suboptimal list lengths should have been unnecessary. These participants did not all select

a larger, or all select a smaller list length; although 10 of the 13 participants selected a

list length that was larger, usually by 1 more memory item, than that associated with the

boundedly optimal strategy.

One explanation for the behavior of these 13 participants is that they were somehow

less able than others to determine the relative utility of different list lengths; in other

words, it is plausible that they simply failed to appreciate the correct utility ranking. Just

as some participants were less able to remember items, so some may have been less able

to determine the relative utility of remembering more or fewer items. If this is the case,

then it is possible that these participants are boundedly optimal given their utility discrim-

ination capacity. However, further studies are required to test this hypothesis.

Another possible explanation is that participants believed that practising suboptimal

strategies would make the strategies optimal. Many of the participants who did eventually

achieve a boundedly optimal remembering strategy did so by practising a list length that

was initially suboptimal. Practice both improved the performance of the strategy and

reduced uncertainty about its performance. For example, see participant 4 in Fig. 6.

Again, further evidence is required.

Lastly, it is possible that people exhibit stable suboptimalities (Fu & Gray, 2004). Evi-

dence reported by Fu and Gray (2004) who studied users of computer applications sug-

gests that the preferred, less efficient procedures, have two characteristics: (a) the

preferred procedure is well practised and can be deployed for a variety of task environ-

ments, and (b) the preferred procedure has a structure that gives step-by-step feedback on

progress or, in other words, it is more interactive. According to Fu and Gray (2004),

these participants are suboptimal because they are biased to use more interactive and gen-

eral procedures. This bias toward procedures that are globally efficient leads people to

exhibit stable local suboptimalities. However, Payne and Howes (2013) point out that

“any conclusion of suboptimality is relative to a particular theory of utility, and local sub-

optimalities may well be globally optimal.” The challenge is to find a theory of utility,

context (global or local), and mechanism that explains the observed behavior. One aspect

of such an approach would involve a systematic exploration the implications of different

theories of subjective reward (Janssen & Gray, 2012; Singh, Lewis, Barto, & Sorg,

2010). Ultimately suboptimal adaptation to memory must be explained. The character of

the explanation, we anticipate, will have the form: “people were not adapting to X but to

Y” (p. 76).

5.2.2. Explaining exploration
When people learn a new task, over repeated trials, they engage in both exploratory

and exploitative behaviors. They must sometimes choose strategies in order to exploit

knowledge about likely rewards, and they must sometimes choose strategies in order to

explore what the rewards are for each strategy (Cohen, McClure, & Yu, 2007; Sutton &

Barto, 1998). Indeed, exploration is one benefit of probability matching. For the most

part, the studies reported in the current article focused on how people exploit the knowl-

edge that they have gained during a no-choice phase, which might be described as a
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forced exploration of the strategy space. More specifically, the focus was on how, during

the choice phase, people exploit the knowledge that they have gained on previous trials.

While our analysis focused on exploitation, it is evident that participants may have

engaged in some exploratory behavior, at least at the beginning of the choice phase.

Regression analysis of the Experiment 1 data showed that participants were significantly

less likely to select the boundedly optimal strategy at the beginning of the choice phase

than toward the end. Further, analyses suggested that probability matching did not do

well at explaining how exploration/exploitation was managed (Figs. 3 and 8). A fuller

analysis of the observed exploratory behavior might test an optimal data selection theory

of which strategies people choose to explore (Lelis & Howes, 2011; Nelson, 2005, 2008;

Oaksford & Chater, 1994, 2003; Oaksford & Wakefield, 2003). For example, it might be

the case that on earlier choice trials, when the performance of each strategy is still rela-

tively unclear, that participants choose a strategy so as to maximize gain in information,

rather than to maximize immediate reward. One possibility is that participants in our

experiments operationalized the value of information in terms of the extent that it facili-

tated discrimination between the alternative memory strategies. Another possibility is that

they operationalized value as the expected gain in choice utility obtained by a likely

choice reversal (assuming that when not deliberately exploring they would exploit the

boundedly optimal choice). See Lelis and Howes (2011) for a discussion.

Discriminating between these theories in the utility learning paradigm that we have

investigated above is beyond the scope of the current article, but the no-choice/choice

paradigm may be useful in the future. The key strength of the paradigm—that it exposes

the distribution of the reward for each strategy in the strategy space—should allow a pri-

ori prediction of the information gain from each choice.
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Fig. S1. Probability that a policy was bounded optimal

for each participant against trial in Experiment 1. The

selected strategy is represented by a circle.

Fig. S2. Probability that a policy was bounded optimal

for each participant against trial in Experiment 2. The

selected strategy is represented by a circle.

32 A. Howes et al. / Cognitive Science (2015)


