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Abstract—Designers of artificial agents have goals and pur-
poses that implicitly define a preference over possible agent
behaviors. Nevertheless, it is rare that the designer knows
the most preferred behavior in a form that allows it to
be simply programmed into the agent. Instead, in building
autonomous agents it is often more robust and useful for
the designer to build an internal representation of goals into
the agent itself. In particular, in reinforcement learning (RL)
approaches the agent’s goals are captured as maximization
of cumulative reward. From the designer’s point of view, the
agent’s goals (the reward function in RL) are parameters of
agent design. It is standard to assume that the artificial agent’s
goals should be the same as the agent designer’s goals. In this
paper we show that this view unnecessarily and detrimentally
confounds preferences of the agent designer with parameters
of the artificial agent. We provide a formal framework that
breaks the confound and defines a new problem in RL agent
design: the search for the best reward function. We empirically
demonstrate several implications of breaking the confound, the
most important of which is the possibility of building RL agents
that significantly outperform agents built with the confounded
notion of reward. We briefly discuss how the new framework
offers distinct advantages over other approaches to modifying
reward functions.

INTRODUCTION

In most artificial intelligence (AI) approaches to building
agents, the agent designer’s goals and purposes implicitly
define a preference over possible behaviors of the agent in
its environment: given two different behaviors, the designer
is able to decide which (if any) of the two is preferred. Ax-
iomatic decision theory shows that (under mild conditions)
this assumption is equivalent to a utility function that maps
entire behavior traces to scalar values, such that a behavior
trace with a larger associated utility value is preferred to
a behavior trace with a lower associated utility value [1].
Without loss of generality, then, we identify the goals of an
agent designer with such utility functions.

Having such a utility function leaves open the question of
how to design the agent. It is rare that the agent designer

knows the most preferred or optimal behavior in a form
that allows him or her to simply program it into the agent.
More often the designer must produce an agent able to
function in a complex environment, and must do so without
access to a complete and accurate model of that environment.
Additionally, the agent should work well in that environment
despite having limited computational resources. In this paper
we are interested in approaches to building autonomous
agents in which the agent designer builds goals and purposes
into the artificial agent itself, with the result that the agent’s
behavior in its environment is driven at least in part by its
own internal representation of goals.

From the agent designer’s point of view, the agent’s
goals are parameters of agent design: changing agent goals
changes agent behavior. This is useful and powerful because
it allows the agent designer to define what the agent is
to do without having to worry about how it is to do it.
This leads to more robust and adaptive behavior than does
an attempt to program a fixed way of behaving. We focus
here on reinforcement learning (RL) approaches that capture
an agent’s goals as the maximization of some cumulative
measure of a received scalar signal or reward. We adopt
the view that any agent with this formulation of goals
is an RL agent (whether the agent learns through online
interaction with its environment or plans offline with a model
is irrelevant to this paper’s discussion).

Note that there are at least two notions of goals (rep-
resented by distinct mathematical functions): the agent de-
signer’s goals and the artificial autonomous agent’s goals.
Should the two notions of goals be the same? This is the
question of central interest to this paper. To the best of our
knowledge, RL theory and more generally decision-theoretic
and other AI approaches to building autonomous agents
ignore this question by focusing on what the artificial agent
should do to achieve its goals—however they came to be
defined. This has served the very useful purpose of allowing
great progress in algorithm development.



In practice, however, there is always a designer with his
or her own goals, and these have to be translated somehow
into the agent’s goals. Indeed, in applying RL to practical
problems, designers typically experiment with a variety of
reward functions and other agent parameters to try to best
achieve their design objectives. However, the adjustment
of rewards is usually viewed by the designer as refining
one’s own goal because RL does not recognize a distinction
between the designer’s and the agent’s goals: it implicitly
or explicitly confounds them by assuming that the artificial
agent’s goals should be the same as the goals of the agent
designer. Indeed, it is perhaps hard to see intuitively how
it could be otherwise. But in this paper we will show that
it is in fact otherwise. More specifically, our objective is to
(a) clearly define the confound, (b) clearly define a meta-
problem in agent design (a search for good agent reward
functions) that results from breaking the confound, and (c)
empirically demonstrate the benefit of solving the meta-
problem. Put negatively, we will empirically demonstrate
that the confound can be detrimental—that is, assuming
equivalence between the two kinds of goals can lead to
poorer performance (as assessed by the designer’s goals)
than permitting their separation.

Although for concreteness we focus our subsequent for-
malisms, results, and empirical investigations on RL agents,
we expect that the need for separating agent goals from
agent-designer goals holds for most if not all approaches
to building autonomous agents (where we define an au-
tonomous agent as one with its own internal goals.)

SEPARATING BEHAVIOR-PREFERENCES AND
AGENT-PARAMETERS IN RL

We first briefly define the conventional framing of the RL
problem and then present a new framing that separates the
goals of the agent designer and the goals of the agent itself.

RL Problem Formulation

Dynamics: At each time step, an agent G receives an
observation o from its environment M, takes an action a,
and repeats this process until a time horizon. The state
at time step k, denoted hk, is the history of interaction
o1a1 · · · ok−1ak−1ok to time step k (subscripts denote time).
The transition dynamics define a probability distribution
over possible next states hk+1 as a function of hk and ak.
Although representations of state more compact than full
histories are used in practice, for this paper it is convenient
to use the history as state for complete generality.

Reward Function: The reward function R maps states to
scalar rewards. Associated with R is a cumulative measure
that defines a return function, denoted FR, that maps a
trajectory of states to a cumulative reward. For example:
FR(hk) =

∑k
i=1 γ

iR(hi
k), where hi

k is the ith state in a
history of length k ≥ i, and 0 ≤ γ < 1 is a discount factor.

Our results hold for undiscounted formulations of return as
well.

The Dual Role: The reward function, R, specifies pref-
erences over agent behaviors; a history hk is preferred over
history h′k if and only if FR(hk) > FR(h′k). R also serves as
agent parameters as follows. Fixing R and all the other agent
parameters (denoted θ) makes the agent G(R; θ) a fixed
algorithm for extending every history by choosing actions,
possibly stochastically, i.e., G(R; θ) : H → PA, where H is
the set of all histories and PA is a probability distribution
over the set of available actions A. Any optimization or
learning specified by R is internal to the agent, and from the
agent designer’s point of view, agent G(R; θ) just produces
a fixed distribution over nonstationary and possibly adaptive
behaviors. Thus, the conventional RL formulation confounds
behavior-preferences and agent-parameters, i.e., it invests
both of these roles into the same function R of state (hence
the name “preferences–parameters” confound).

Breaking the Confound

We break the confound by (1) reserving the reward
function R for its role as an agent parameter, and (2) defining
a separate objective utility function to capture behavior pref-
erences. To emphasize this, we relabel the reward function
as an agent-internal1 reward function denoted RI .

Objective Utility Function: We denote the objective utility
function E , which maps a set of complete histories (Hc)
to scalar utilities, i.e., E : Hc → <. What constitutes a
complete history is part of the definition of the designer’s
goals. Common choices include a fixed (small or large)
time horizon, an indefinite but finite horizon determined
by some event such as the environment transitioning to a
terminal state, or perhaps an infinite horizon. Note that this
definition is very general. In particular, this does not require
(but allows) there to be the kind of compositional additive
form often assumed for reward.

The most important consequence of the separation af-
forded by our new RL problem formulation is this: the agent
designer, who has access to the objective utility function,
now faces the meta-problem of designing the internal re-
ward function for the RL agent, so that in maximizing its
expected cumulative internal reward, the agent achieves the
highest possible utility (for the designer) as measured by the
objective utility function.

OPTIMAL INTERNAL REWARDS

The interaction between environment M and agent
G(RI ; θ) will produce a distribution, denoted µ, over the
set of complete histories, such that for any h ∈ Hc,
µ(h|M,G(RI ; θ)) is the probability of obtaining sequence

1Note that the use of the adjective “internal” does not imply that the
reward function is somehow modifiable by the agent itself; it remains
immutable to the agent. Thus, all progress on RL algorithms remains
available under our new framework proposed here.



h from the interaction. Presumably, the histories are the
result of the RL agent somehow attempting to optimize
internal returns defined by RI (and the associated cumulative
measure) under the architectural constraints imposed by θ.
For example, the agent could be a Q-learning agent that
uses a linear function approximator for storing the Q-value
function, uses a step-size of 0.1, an exploration rate of 0.1,
etc. These details can be complex and their impact hard to
analyze, but fortunately for our purposes it is possible to
abstract away from these details as follows.

How good is an agent G(RI ; θ) in environment M for
the agent designer with objective utility function E? The ex-
pected utility to the designer is denoted E[E|RI ], where for
ease of exposition we have dropped the explicit dependence
on the other quantities, M and θ, and is defined as follows:

E[E|RI ] =
∑

h∈Hc

E(h)µ(h|M,G(RI ; θ)). (1)

The meta-reward-optimization problem faced by the
agent designer is to find the optimal internal reward function,
defined as

R∗I = arg max
RI∈R

E[E|RI ]

= arg max
RI∈R

∑
h∈Hc

E(h)µ(h|M,G(RI ; θ)), (2)

where R is the space2 of possible RI . For simplicity, the
optimal internal reward’s dependence on the objective utility
function and the other agent parameters is suppressed in
the notation. Note that although we focus on the unusual
aspect of optimizing the internal reward function parameters
in this paper, in general the agent designer faces the joint
optimization problem of optimizing all the agent parameters,
including θ.

COMPARING AGENTS BASED ON OPTIMAL AND
CONFOUNDED REWARD FUNCTIONS

We can now consider comparing the performance of
agents developed by solving the meta-reward-optimization
problem to agents developed under the (conventional) con-
founded view of reward. Such comparisons—either the-
oretical or empirical—require specifying the confounded
reward function that results from adopting the assumption
that agent goals and designer’s goals must be equivalent. We
denote the confounded reward function by RE , to emphasize
its direct dependence on the objective utility function E . In
some domains (such as our example below) E may already
be defined in an additive form making the formulation of
RE transparent, in more general cases E would have to be
transformed (perhaps approximately) into an additive form
as required by the RL formulation. The following theorem
follows immediately from the definitions above.

2In general, this will be determined by the constraints imposed by the
agent architecture.

Theorem. For any decision processM, any objective utility
E , and any class of agents G(·; θ), if R∗I is the optimal
internal reward function found by solving the meta-problem
as above from a reward search space R that includes RE ,
then E[E|R∗I ] ≥ E[E|RE ].

The theorem states that provided the search space of
internal-reward functions, R, includes the confounded re-
ward function RE , the agent G(R∗I ; θ) defined by solving
the meta-problem under the new view of reward achieves at
least as large an expected objective utility measured by E as
the agent G(RE ; θ) defined under the confounded view of
reward.

While the proof of the theorem is straightforward, the
implications of the theorem are not. In particular it shows
that breaking the confound never hurts, at least in principle.
This provides the foundation for further work on internal
rewards.

When do we expect the inequality in the theorem to
be a strict inequality, and when do we expect it to be an
equality? Intuitively, when the agent’s time and resources
are “unbounded” we expect to obtain equality between
the confounded and optimal internal rewards. For example,
consider pairing a Markov environment, in which the agent
designer’s utility is defined additively as the average con-
founded reward over an infinite horizon, with a Q-learning
agent with provably convergent settings of learning and
exploration rates and a large enough discount factor and
one that has enough memory to represent the Q-function as
a look-up table. In such cases, we would not expect to benefit
from breaking the confound, because it is known that such
a Q-learning agent will converge to the optimal behavior
with respect to the confounded reward and with an infinite
horizon the slow rate of convergence will be overcome in
the limit.

However, whenever the agent is “bounded” in some
fashion, either through time or resource constraints or both,
we expect to obtain a strict inequality—and in most inter-
esting and real-world problems, agents will be bounded by
constraints. We explore this intuition empirically here and
leave its formalization to future work.

EMPIRICAL ILLUSTRATION

We present empirical results to highlight three conse-
quences of breaking the confound. For some agent and
environment pairs:

1) Breaking the confound yields an agent that outper-
forms the agent which uses the confounded reward
function (E[E|R∗I ] > E[E|RE ]).

2) The optimal reward function R∗I depends on the ob-
jective utility function E — but that dependence is
more complex and interesting than might initially be
thought.

3) The optimal reward function R∗I depends on the agent
parameters θ, i.e., all else being equal, the best reward



for one agent may not be the best reward for a different
agent.

Although it can be demonstrated that breaking the con-
found can help many types of RL agents—including Q-
learning agents, model building and planning agents, policy-
gradient agents, and others—due to a lack of space, we focus
here on a single agent–environment pair that illustrates each
of the consequences listed above.

Figure 1. Fish-or-Bait Domain. See text for details

Fish-or-Bait Domain with a Learning Agent: Figure 1
shows a representation of a 6 × 6 grid world we call the
Fish-or-Bait Domain. In the top right corner of the grid is
an inexhaustible supply of worms (bait), and at the bottom
right corner is an inexhaustible supply of fish. The thick
lines represent barriers that have to be navigated around.
The agent is shown as a circle. In each location the agent
can move deterministically North, South, East or West.
Any action that takes the agent off the grid or crosses a
barrier fails with no resulting movement. In addition to
the movement actions, the agent has actions pick-up and
eat. At the worm location, pick-up results in the agent
carrying a worm, and eat results in the agent eating a worm.
The agent cannot carry more than one worm at a time. If
the agent executes eat at the fish location, it succeeds in
eating one fish, but only if it is carrying a worm; otherwise
the action fails. At any other location, eat results in the
agent consuming the worm if it is carrying one. The agent
is not-hungry for one time step after eating a fish, medium-
hungry for one time step after eating a worm, and hungry at
all other times. The agent observes its (x, y) grid-location,
whether it is carrying a worm, and its level of hunger; thus,
the agent faces an MDP and its observations comprise the
state.

The agent uses look-up-table-based Q-learning with an
initial Q-value function of zero, a learning step-size of 0.1,
and behaves according to an ε-greedy selection of actions
(with probability 1 − ε the agent selects the greedy action
with respect to the Q-value function, and with probability
ε selects a random exploratory action). Unless stated other-
wise, we use ε = 0.1.

The objective utility function is of additive form: the
utility for a history is 0.04 times the number of worms
eaten (being in state medium-hungry) plus 1.0 times the
number of fish eaten (being in state not-hungry) in that

history. Correspondingly, the confounded reward function
RE assigns the small reward of 0.04 to being in state
medium-hungry and a large reward of 1.0 to being in state
not-hungry.3 We examined the effect of the choice of horizon
by exploring the range of horizons from 1, 000 to 50, 000 in
steps of 1, 000. Note that longer horizons are not extensions
of smaller horizons, i.e., each horizon value corresponds
to a distinct objective utility function and thus requires an
independent experiment.

The search space of internal reward functions, R, was
defined as the set of all mappings from each of the three
mutually disjoint hunger levels to scalars. Without loss of
generality, we restricted each scalar to lie between −1.0 and
1.0. At each time step, the agent received reward equal to
the scalar corresponding to its current hunger level. Note
that the theorem’s requirement that the reward search space
contain RE was satisfied by our choice of R.

We solved the meta-reward-optimization problem by dis-
cretized brute-force search4, although to show the advantage
conferred by breaking the confound we do not need to
find the optimal internal reward function, just one that
outperforms the confounded reward. We denote the result
of our brute-force search R̂∗I to emphasize its approximate
nature.

The six panels in Figure 2 show our main results. Fig-
ure 2(a) plots for each horizon value the mean (over 200
runs) objective utility for the agent with the best internal
reward function for that horizon and the mean objective
utility for the agent with the best3 confounded reward
for that horizon. We emphasize that the two curves in
Figure 2(a) are not standard learning curves because the x-
axis is not time steps; each point on the x-axis corresponds to
a separate experiment with a distinct horizon in the objective
utility function and we have connected the separate points
into a curve for visual clarity.

Dominance of the internal rewards: The best internal
reward agent outperforms the best confounded reward agent
for all values of the horizon. Although visually the difference
between the two is small for the first 25,000 horizon values,
the difference is strictly in favor of the best internal reward
by an absolute amount more than 3.0. This validates our
main empirical claim that a strict advantage is attained by
breaking the confound.

3 More precisely, we define RE by fixing the reward for being not-
hungry, medium-hungry and hungry to to 1.0 + c, 0.04 + c, and c,
respectively, and we optimize via search the value of c ∈ [−1, 1] separately
for each finite horizon. We do this optimization to not unnecessarily put
RE at a disadvantage. Shifting the rewards by c is equivalent to initializing
the value function to −c/(1 − γ). This effectively allows for optimistic
initialization of the value function (which is initialized to 0 in all our
experiments).

4For each level of hunger we searched over the following: the point 0,
points in the range ±[0.01, 0.1] in increments of 0.01, and points in the
range ±[0.2, 1] in increments of 0.1. These intervals and increments were
determined through several iterations of the experiment.
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Figure 2. Results for the Fish-or-Bait Domain. See text for details.

Sensitivity to the horizon: Figure 2(a) has another interest-
ing property: the low constant initial advantage is followed
by a sharp rise in the advantage at a horizon of 26,000,
which is followed by a roughly constant absolute advantage
of about 450 after a horizon of 40,000. This results from
an interesting intuitive property of the Fish-or-Bait domain.
Specifically, the behavior to eat bait is rather simple—find
the worm location and then stay there eating. The behavior
to eat fish is more complex—find the worm location, pick
up a worm and carry it to the fish location without eating the
worm at any time, eat the fish, and then go back to the worm
location to repeat the cycle. Thus, it is far easier for the agent
to learn to eat bait than to learn to fish. However, the longer
the horizon, the more it becomes worth it for the agent to
learn to fish because there is time within the horizon both
to learn to fish and to exploit the greater reward that comes
from fishing. Figure 2(b) shows this effect of horizon. It plots
the proportion of mean objective utility obtained by eating
bait as a function of horizon. For horizons of 25,000 or less
almost all the utility comes from eating bait. For horizons
of 26,000 and above almost all the utility comes from eating
fish. Solving the meta-reward-optimization problem thus
specializes the internal reward function to detailed properties
of the objective utility function, in this case the horizon. To
illustrate that this is indeed what is happening, Figure 2(c)
compares the performance of two specific agents. The first
uses the R̂∗I found for a horizon of 25,000, i.e., just before
the shift from eating bait to fishing. The second uses the
R̂∗I found for a horizon of 26,000, i.e., just after the shift
from eating bait to fishing. As can be seen in Figure 2(a),

the first agent quickly learns to find the bait location and
steadily eat there to achieve a constant reward increment of
0.04, while the second agent takes some time (about 12,000
steps) to learn how to fish and then achieves a constant rate
of reward by fishing that is higher than that of eating bait. By
time 26,000 the second agent’s increased rate of reward helps
it overtake the total reward of the first agent. Another effect
of the relative difficulty of learning to fish versus learning to
eat bait is seen in Figure 2(a): the agent based on breaking
the confound can learn to eat fish and gain the higher rate of
return much sooner (at a horizon of 26,000) than an agent
that preserves the confound (at a horizon of 40,000).

Violation of monotonicity: Figure 2(d) plots as a function
of horizon the optimal reward coefficients for the two
hunger-level conditions of not-hungry (when the agent has
just eaten fish) and medium-hungry (when the agent has just
eaten bait). For the 12,000 steps it takes the agent to learn to
first get fish, the best internal reward gives a small positive
reward to medium-hungry (eating bait) and no reward to not-
hungry (eating fish) because there is no point in rewarding
eating-fish up until this horizon.

Something very interesting happens for horizons between
12,000 and 25,000, when it is possible to learn to eat fish
but there isn’t enough time to exploit that learning. The best
internal reward makes it very rewarding to eat bait and very
costly to eat fish. This ensures that for this range of horizons
the agent eats bait and avoids fish.

From 26,000 steps onwards this polarity reverses and
the agent highly rewards eating fish and highly negatively
rewards eating bait. The latter negative reward serves to



make sure that the agent is not distracted from the goal of
learning to fish. Note that in the middle range of horizons
the best internal reward in effect reverses the desirability of
bait versus fish expressed in the objective utility function.

The general point here is that the optimal reward function
need not be a monotone transform of E—that is, the optimal
reward may not even preserve all preference orderings over
states imposed by the objective utility. For comparison to
Figure 2(d), which plots the optimal reward coefficients,
Figure 2(e) plots as a function of horizon the same two
coefficients for the best3 confounded reward, which by
definition preserves the relative ordering of fish and bait in
the objective utility function. The switch from slight positive
reward for being medium-hungry to slight negative reward
for being not-hungry at about 40,000 steps is crucial because
as explained above prior to that horizon the best confounded
reward agent should eat bait and after that horizon should
avoid eating bait.

Sensitivity to agent parameters: Finally, Figure 2(f) shows
the sensitivity of R̂∗I to other parameters of the agent, in this
case the exploration rate parameter ε. The larger the ε, the
more often the agent will do a random action. This makes
it more difficult for the agent to learn to fish because it has
to avoid eating the bait for the many steps it takes to carry
the bait to the fish pond. As seen in Figure 2(f), the horizon
at which the optimal-reward induced crossover from eating
bait to eating fish occurs increases as a function of ε. As it
gets harder to learn to fish, the best internal reward focuses
on the bait for longer horizons.

Summary: Our results for the Fish-or-Bait domain illus-
trate the three consequences of breaking the confound that
we set out at the beginning of this section. First, using
an internal-reward function that solves the meta-reward-
optimization problem can lead to significantly better agents
as measured by the objective utility function when compared
to agents using the confounded reward function, i.e., agents
using the objective utility function transformed into reward.
Second, the best internal reward function depends on the
details of the objective utility function, but the nature of
this dependence is not necessarily simple: the best reward
function need not be a straightforward (perhaps monotonic)
transformation of the objective utility function. Third, the
best internal reward function depends on the internal pa-
rameters of the agent.

Finally, we note that the experimental results reported
here were designed to illustrate the existence and interesting
properties of simple forms of good internal reward functions.
The reward functions were much simpler, for example,
than reward functions that would more directly provide the
optimal value function or an optimal policy to the agent
to speed up learning. The derivation of efficient search
algorithms for finding good and simple internal rewards and
compact representations for expressing internal rewards is
left to future work.

RELATED WORK

Previous work has recognized that the reward function
itself is an important element of an agent’s design, e.g., work
on curious agents [2], Dyna [3], exploration bonuses [4],
reward shaping [5], Rmax [6], PAC-MDP [7] intrinsically
motivated RL [8], and contributions from the developmental
robotics community [9], [10], [11], [12]. While each of these
approaches modify what we termed the confounded reward
to improve performance, they differ from our framework in
that they do not make explicit a fully independent repre-
sentation of the agent designer’s goals, do not identify the
preferences–parameters confound, and do not make explicit
the resulting meta-optimization problem. As a result, the
common objective of the alternative approaches referenced
above is to help accelerate the achievement of asymptotic
behavior (what the agent with confounded reward function
would do in the limit). This is most clearly seen in the
reward shaping work which provides conditions under which
a modified reward function will provably lead to the same
asymptotic behavior as a given confounded reward function,
with the hope that this will be achieved faster. In our frame-
work, on the other hand, the form of a good internal reward
function is unconstrained by the form of the objective utility
function. A consequence of this is that the behavior learned
by an agent on the basis of its internal reward function can
be qualitatively very different from the asymptotic behavior
that would be learned via a confounded reward function, as
was seen with the monotonicity violation in the Fish-or-Bait
domain for objective utility functions with small horizons.

In the most closely related prior work, Singh, Lewis, and
Barto ([13]) provided an evolutionary perspective on the
origin of rewards in natural agents faced with distributions of
environments. However, they did not explicitly identify the
confound central to the present paper which instead focuses
on the machine learning perspective of designing an artificial
agent, possibly for a single environment, thereby yielding the
theoretical framework and results reported here.

CONCLUSION

In this paper we identify the need to separate autonomous
agent goals from agent designer goals in general, and
the confounded nature of reward in conventional RL in
particular, as well as provide a new framework that puts
into sharp focus the search for good reward functions as a
well-defined computational problem in agent design whose
solution has significant implications for performance. The
results reported here are early steps toward understanding
this problem. But they do suggest that the relationship
between good internal reward functions on the one hand,
and domains, agent architectures, and designer goals on the
other, is sufficiently rich and of sufficient practical import
to warrant much further theoretical and empirical work.
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