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Particulate suspensions under vibrations can support stable, localized, vertical, free-surfaces [1].
The most robust of these structures are persistent holes: deep and stable depressions of the in-
terface. We show the existence of hysteresis in the rheological response of an aqueous suspension
of cornstarch, and experimentally demonstrate how this can lead to motion that is opposite to
the time-averaged applied force. A simple one-dimensional model illustrates how such motion can
explain the existence of persistent holes.

The production and processing of particulate suspen-
sion is a core activity in a vast number of disparate in-
dustries from petroleum to cosmetics to consumer elec-
tronics. The most outstanding property of these ma-
terials is their propensity at high volume fractions to
shear thicken [2]: their shear viscosity rises with shear
rate. Despite the importance of these materials and
decades of study, the physics of shear thickening remains
controversial. The debate has largely pitted the order-
disorder theory [3] against the hydrodynamic clustering
theory [4]. Recently, Head, Adjari, & Cates introduced
an alternative model, based on a mesoscopic model of
the fluid [5]. Their model predicts a bistable hysteretic
rheology. Here we show that particulate suspensions do
indeed exhibit hysteresis in oscillatory stress tests, and
furthermore demonstrate that hysteresis can give rise to
dynamically stabilized states.

We begin by showing that the rheology of a shear thick-
ening fluid undergoes a transition around a shear rate of
1 s−1. We then incorporate this result into a ordinary
differential equation which shows that hysteresis can give
rise to time-averaged forces opposite to the applied force.
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FIG. 1: Viscosity of cornstarch solution as measured in in-
creasing shear stress ramp. The error bars correspond to the
observed variation from run-to-run or sample-to-sample.

We conclude with experimental results that demonstrate
the latter phenomenon.

Rheology Measurements. Our samples were pre-
pared by mixing cornstarch (Alrich) with a 200.0 mM
CsCl aqueous solution in proportions of 30%:70% by
weight. The rheological properties of freshly prepared
samples drifted as the sample aged, but stabilized af-
ter ∼48 hours. All measurements described below were
performed after this initial aging period. A salt solu-
tion instead of pure water was used to prevent separa-
tion to due to sedimentation by density matching the
granules and the solvent; no visible separation occurred
in our samples over a timescale of several months. Our
measurements were done on a stress controlled rheometer
(AR-2000ex, TA Instruments) in a cone-plate geometry
with an acrylic cone of radius R = 3.0 cm and angle
α = 2o. Samples were loaded such that the normal stress
never exceeded 0.1 N. Evaporation was minimized by an
enclosure around the test geometry that all but sealed
the test fluid from the room.

Steady-state shear viscosity measurements from shear-
rate ramps exhibit the characteristic profile of particulate
suspensions as shown in Fig. 1: shear thinning for low
shear rates followed by shear thickening at higher shear
rates. Sequential tests on the same and freshly loaded
sample were reproducible to within 10%. Higher shear
rates than shown in Fig. 1 produced non-rheometric flows
as evidenced by the formation of waves on the meniscus
and ultimately to the ejection of the fluid from the ge-
ometry.

Our primary results are from oscillatory stress tests for
various stress amplitudes and frequencies. We applied a
sinusoidal torque to the test fixture τ = τo sin 2πft and
recorded the angular displacement θ(t). For frequencies
above 0.1 Hz, the combined inertia of the instrument’s
spindle and the test geometry is a significant factor in
the motion. We subtracted this contribution from the
applied stress to extract the stress on the material as
follows:

σ(t) = G
[

τ(t) − I(d2θ/dt2)
]

(1)

where G is a geometry factor for the test fixture
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FIG. 2: Shear stress σ versus shear rate γ̇ for an aqueous corn-
starch mixture from oscillatory measurements at f = 0.5 Hz
for increasing stress amplitude with low at the top. The data,
as described in the text, corresponds to the instantaneous val-
ues of stress and strain rate during a single oscillation cycle.
The arrows indicate increasing phase of the cycle. When the
shear-rate increases beyond 1 s−1 the curves begin to show a
hysteretic response.
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, and I is the total inertia of the apparatus.

The shear-rate was calculated as γ̇ = cotαdθ
dt

where α is
the cone angle.

There is only a narrow frequency and shear rate win-
dow in which quantitatively reliable data was produced.
Wavelike distortions of the meniscus appeared above
γ̇ ≈ 50 s−1, indicating the onset of non-rheometric flows.
As the frequency of oscillation increases, the contribution
of inertia to the measured torques grows as the frequency
squared and ultimately dominates the signal. Extracting
the material response from the signal requires twice dif-
ferentiating θ(t) which introduces noise. Above 0.5 Hz
the material response contribution to the torque is lost

FIG. 3: Oscillatory measurements of shear stress σ versus
shear rate γ̇ as in Fig. 2 but for higher stresses. The black
squares show the results from a steady shear measurements.

in the noise from the inertial contribution.

Figure 2 shows a selection of the results at f = 0.5 hz.
These measurements were obtained by applying a low
pass filter to the raw data, and averaging over 30-50 cy-
cles. The plot shows the stress σ(t) versus the strain rate
γ̇ during a single oscillation cycle. For induced shear
rates less than 1 s−1, these curves are essentially single
valued. The small enclosed area by these curves is equiv-
alent in magnitude to what we measure for a newtonian
fluid (glycerol-water mixture) of similar viscosity. Above
a shear rate of 1 s−1, the stress response exhibits a qual-
itative change in character in which hysteresis appears.
During the phases when |γ̇| is increasing, the stress is
lower than during the phases when |γ̇| is decreasing. Fig-
ure 3 shows similar data to Fig. 2 but for larger torque
amplitudes.

Block model of persistent holes. Merkt et al dis-
covered that above an acceleration threshold a vertically
vibrated suspension of non-Brownian particles supports
localized structures, called persistent holes. These are
approximately cylindrically symmetric depressions with
a depth spanning 90% of the layer and a radial extent
equal to the depth. The radius of persistent holes os-
cillates with the period of the drive, growing during the
downward acceleration phase and shrinking during the
upward phase. Persistent holes are stable despite the
destabilizing action of hydrostatic pressure and surface
tension which act to pull fluid into the cavity. Merkt et

al examined various newtonian and non-newtonian fluids
under similar experimental conditions, but were only able
to produce persistent holes in shear thickening fluids.

We consider if the onset of hysteresis in the stress re-
sponse above a stress rate threshold might explain the
anomalous stability of persistent holes. We model the
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behavior of persistent holes using a one degree of free-
dom representation for the fluid elements that comprise
the walls of a persistent hole (see Fig. 4(a)). The stress
on this block of fluid arises from pressure, surface ten-
sion, and stress response of the material. The pres-
sure P is assumed to be dominated by the hydrostatic
pressure; thus on the inner surface P = Po where Po

is the atmospheric pressure, and on the outer surface
P = Po + ρ(g + a sinΩt)z where g is the acceleration due
to gravity, a and Ω are the externally applied accelera-
tion and frequency, and ρ is the fluid density. Surface
tension is neglected given the smallness of the the cap-
illary number

√

(γ/ρaR2) ∼ 0.1, where γ is the surface
tension, and R is the size of the persistent hole. These
elements yield the equation:

mr̈ = FP − σ̃ (2)

where m is the mass of the block, r is the position of the
center of mass of the block, FP ∝ (g + a sinΩt) is the
depth averaged force due to hydrostatic pressure, and σ̃
is the dissipative force that arises due to shearing of the
fluid. We assume that σ depends only on the speed of
the block v, is antisymmetric (σ̃(ṙ) = −σ̃(−ṙ)) and hence
independent of flow direction, and respect Le Chatelier’s
principle d

dṙ
σ̃(ṙ) > 0.

Introducing the non-dimensionalized variables t′ = Ωt,

v = mΩ
2

Cg
ṙ, Γ = a/g, and σ(v) = σ̃(ṙ)/Cg yields the

equation

dv

dt′
= −1 + Γ sin t′ − σ(v) (3)

Increasing r is equivalent to a growing persistent hole,
and vice versa; henceforth, we say the motion is ‘opening’
when r(t′) is bigger after one cycle , and ‘closing’ if r is
smaller.

For Γ = 0, v will monotonically approach v∗ defined
by σ(v∗) = −1. As d

dt
σ̃(ṙ) > 0, it follows that v∗ < 0,

which corresponds to closing motion. This results is as
expected for any fluid (with no yield stress), including
shear thickening fluids: the free surface of a fluid will
seek to restore its equilibrium configuration following a
disturbance.

For Γ 6= 0 and arbitrary σ there is no analytical solu-
tion to Eq. 3. For the specific case σ = ηv the equation is
analytically solvable and yields that the average steady-
state speed 〈v〉 = −η−1. This solution corresponds to the
closing type solutions expected for a Newtonian fluid.

Other likely constitutive relations were examined nu-
merically. Models with shear thickening, with shear thin-
ning, with shear thinning followed by shear thickening,
with a yield stress, and with other discontinuities in the
stress were tried. None produced opening type behavior.
In all cases and for all tried parameters, r(t′) becomes
progressively more negative, indicating that closing-type
behavior is the rule for single valued constitutive models.
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FIG. 4: (a) Schematic cross-section of persistent hole. Cross-
hatched area is assumed to move as a rigid unit in the block
model. Striped area is the supporting substrate. (b) Hys-
teretic model of viscosity. Solid horizontal lines are viscosity
as a function of v. Dashed lines indicate I → II or II → I

transitions when |v| exceeds v2 or falls below v1, respectively.
Dotted line shows velocity history of block during a single
cycle just above acceleration threshold for opening behavior.

A hysteretic constitutive relations does produce open-
ing solutions. To model the hysteresis observed in the
rheological measurements, we set σ(v) = η(s)v where s
is a state variable, and η depends on s as follows:

η =

{

η1 for s = I
η2 for s = II

(4)

The state variable evolves such that s remains unchanged
unless |v| increases above v2, in which case s → II, or
|v| decreases below v1, in which case s → I. This re-
lationship between viscosity and speed is illustrated in
Fig. 4(b).

With this rheological model, Eq. 3 produces opening
type solutions as well as closing type. Figure ?? show
the result of a numerical integration of Eq. 3 for val-
ues which produce closing, stable and opening behavior.
The physical basis of the opening solution is illustrated
in Fig. 4(b). The additional forcing in the negative r di-
rection due to gravity causes the block to reach higher
speeds during the negative acceleration phase of the cy-
cle. As the applied forcing is increased, a threshold is
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passed such that the maximum speed during the nega-
tive acceleration phase surpasses the I → II transition
threshold, but not during the positive phase. For this
motion the effective viscosity of the system is higher dur-
ing the negative phase than during the positive phase,
and on average the block moves less during the former
phase.

The block model predicts a counterintuitive behavior
for a particle subjected to a hysteretic damping. If we
apply to a particle a steady force in some particular di-
rection, say to the right, and also apply a sinusoidal forc-
ing, then above a threshold in the sinusoidal forcing the
move particle moves to the left. The presumption thus
far is that the same counterintuitive motion can manifest
in a fluid. We confirmed this assumption by simultane-
ously applying a steady clockwise torque τDC and a sinu-
soidal torque τAC to the cone plate in cone-plate geome-
try loaded with our sample. For low values of τAC/τDC ,
the cone turns in the clockwise directions as expected.
But above a threshold τAC/τDC ≃ 20 the cone turns
counterclockwise.

We also attempted to extend the results of the block
model to the continuum limit. We examined a shallow
layer model in which the vertical momentum balance is
assumed to be negligible. Due to the steepness of the
persistent hole’s walls, our assumption is not justifiable.
Nonetheless, we pursued this course because the shal-
low layer approximation is often successful in non-shallow
cases, it greatly simplifies the numerical integration of the
resulting model, and is in the spirit of our approach to
seek a minimal model of the persistent persistent holes in
particulate suspensions. As in the single block model, the
elements of fluid in the high viscosity state can initially
maintain a steep surface profile. However, the high vis-
cosity elements are surrounded by low viscosity elements
which relax by diffusion and erode the high viscosity frac-
tion. This tends to flatten the persistent hole wall and
eventually the stress on the fluid, which is proportional
to the surface gradient, no longer exceeds the thresh-
old to produce hysteresis, and collapse is inevitable. In
short, a shallow layer model does not support persistent
holes. Further development of a continuum model should
include fully 2D structures, like vortices, which were ex-
cluded from the shallow-layer model by construction but
which are observed on the walls of persistent hole [1].

In summary, our study shows that particulate suspen-
sions exhibit hysteresis. Our incorporation of a hysteretic
rheology into the minimal model for persistent holes il-
lustrates that hysteresis can generate motion opposite
to the time-averaged applied stress. Our block model
suggests that hysteresis can account the for the wall-like
structures observed in vertically oscillations particulate
suspensions [1]. This behavior, though counterintuitive,
is observed in our experiments with a fluid between two
plates in which a clockwise steady stress can produce
counter-clockwise motion.

Our study has implications for particulate suspensions
in particular and complex fluids in general. First, the ex-
istence a shear rate threshold for hysteresis in the stress
response of our material suggests a microstructural tran-
sition of the fluid. While the exact nature of the mecha-
nism responsible for shear thickening in non-Brownian
suspensions is controversial (see [6, 7]), the notion of
a dynamically driven structural transition is generally
accepted [5, 8, 9]. Thresholds in shear [10–13], shear
rate [2], and stress [14] have been alternately proposed as
order parameters for this transition. Our rheology mea-
surements are consistent with a two state system with a
shear rate driven transition.

Second, our model implies that the anomalous flow
found in particulate suspensions might be present in a
wide range of complex fluids. We showed here that an
anomalous flow can arises from hysteresis. Hysteresis is
a generic feature of phase transitions, and dynamically
driven microstructural transitions are common in com-
plex fluids. Hence, we might expect similar unusual flows
in complex fluids in the vicinity of microstructural tran-
sitions.

We thank Richard Kerswell for providing the shallow
layer model, the Bristol Colloid Centre for use of their
facility, Cheryl Flynn for assistance with the rheology
measurements, Roy Hughes for discussions, and Michael
Cates for helpful discussions and a critical reading of an
earlier version of the manuscript.

∗ Electronic address: rddeegan@umich.edu

[1] F. Merkt, R. Deegan, D. Goldman, E. Rericha, and
H. Swinney, Physical Review Letters 92, 184501 (2004).

[2] H. A. Barnes, Journal of Rheology 33, 329 (1989).
[3] R. L. Hoffman, Journal of Colloid and Interface Science

46, 491 (1974).
[4] G. Bossis and J. F. Brady, Journal of Chemical Physics

91, 1866 (1989).
[5] D. A. Head, A. Ajdari, and M. E. Cates, Physical Review

E 64, 061509 (2001).
[6] B. J. Maranzano and N. J. Wagner, Journal of Chemical

Physics 117, 10291 (2002).
[7] R. L. Hoffman, Journal of Rheology 42, 111 (1998).
[8] H. M. Laun, R. Bung, and F. Schmidt, Journal of Rhe-

ology 35, 999 (1991).
[9] O. Hess and S. Hess, Physica A 207, 517 (1994).

[10] H. Watanabe, M. L. Yao, A. Yamagishi, K. Osaki, T. Shi-
tata, H. Niwa, and Y. Morishima, Rheologica Acta 35,
433 (1996).

[11] H. Watanabe, M. L. Yao, K. Osaki, T. Shikata, H. Niwa,
and Y. Morishima, Rheologica Acta 36, 524 (1997).

[12] H. Watanabe, M. L. Yao, K. Osaki, T. Shikata, H. Niwa,
and Y. Morishima, Rheologica Acta 38, 2 (1999).

[13] Y. S. Lee and N. J. Wagner, Rheologica Acta 42, 199
(2003).

[14] J. Bender and N. J. Wagner, Journal of Rheology 40, 899
(1996).


