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Recent applications (e.g. active gels and self-assembly of elastic sheets) motivate the need 
to efficiently simulate the dynamics of thin elastic sheets. We present semi-implicit time 
stepping algorithms to improve the time step constraints that arise in explicit methods 
while avoiding much of the complexity of fully-implicit approaches. For a triangular lattice 
discretization with stretching and bending springs, our semi-implicit approach involves 
discrete Laplacian and biharmonic operators, and is stable for all time steps in the case 
of overdamped dynamics. For a more general finite-difference formulation that can allow 
for general elastic constants, we use the analogous approach on a square grid, and find 
that the largest stable time step is two to three orders of magnitude greater than for an 
explicit scheme. For a model problem with a radial traveling wave form of the reference 
metric, we find transitions from quasi-periodic to chaotic dynamics as the sheet thickness 
is reduced, wave amplitude is increased, and damping constant is reduced.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In recent years there have been various studies of how spatial variations in the composition of a thin sheet can produce 
global conformational changes. Examples include the appearance of spontaneous curvature due to strain variations across 
the thickness of the sheet [1–3] or non-Euclidean reference metrics induced by in-plane strain variations [4–8]. A theory 
of incompatible elastic plates [9,10] has been developed to determine equilibrium configurations of such sheets. Related 
approaches have been used to develop self-folding origami gels [11]. A catalog of responsive materials is now available 
for investigating the mechanics of thin sheets, including non-uniform responsive gel sheets [12–14], sheets of nematic 
elastomers with a non-uniform director field [15,16], responsive gels combined with oriented micro-rods [17], and sheets 
in confined geometries [18–21].

The dynamics of responsive gels were the focus of work by Yoshida and collaborators, who synthesized a gel that locally 
swells in response to chemical waves propagating entirely within the gel [22]. They used self-oscillating gels in various 
narrow strip geometries to make a variety of soft machines [23–27]. The Balazs group used poroelastic simulations of 
self-oscillating gels to demonstrate additional examples of soft machines with uniaxial bending or isotropic swelling [28–31]. 
Here we will focus on simulating the dynamics of an extensively-studied model, a thin elastic sheet driven by changes in its 
equilibrium metric. We will present an efficient semi-implicit time-stepping algorithm for the case of overdamped dynamics, 
a representative case with the same form of numerical stiffness as more detailed fluid-elastic and fluid-poroelastic models. 
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The approach is also useful in other applications where the dynamics of thin elastic sheets are important, such as the 
self-assembly of thin sheets under magnetic forces [32,33], and the rolling of actuated bilayers [34,35].

A related problem is simulating the dynamics of fluid membrane vesicles with surface tension [36]. Here a similar 
time-step constraint arises for bending forces, while the thin elastic sheets considered in the present work also have stiffness 
due to stretching forces. Like [36], we develop a semi-implicit time-stepping approach for computational efficiency, though 
our formulation differs due to the different mechanical forces.

In general, a semi-implicit (or implicit-explicit) time discretization writes some of the terms (typically those with the 
highest spatial derivatives) implicitly, to improve time-step constraints for stability [37–45]. The implicit terms are typi-
cally linear in the unknowns at the current time step, so they can be solved directly at each time step, avoiding some 
of the complication and computational expense of nonlinear iterative solvers (e.g. Newton-type methods) in fully implicit 
discretizations [46]. If the linearized implicit term is sufficiently large in comparison to the explicit terms, the semi-implicit 
method may be stable for a wide range of time steps. For nonlinear PDEs, a somewhat empirical approach to formulating 
schemes, based on analogies with time-stepping for simpler linear PDEs, is often necessary.

In this work we begin with Seung and Nelson’s discretization of elastic sheets by bending and stretching springs on a 
triangular lattice [47]. We use the approach of [40,43] to split the stretching force into an implicit linear term corresponding 
to zero-rest-length springs, and a nonlinear remainder. The implicit stretching term is proportional to a discrete Laplacian 
matrix multiplying the current sheet position. To stabilize the bending force, we add an implicit bending term that is 
proportional to a discrete biharmonic matrix multiplying the current sheet position. The resulting method was found to be 
numerically stable for all time steps. To allow for general elastic constants, we formulate a finite-difference discretization of 
the elastic energy with the analogous semi-implicit approach. We validate and compare the methods on test problems with 
internal in-plane stretching forces (nontrivial equilibrium metrics) and study the effects of basic physical parameters on the 
sheets’ dynamics.

2. Elastic sheet

We consider a thin sheet or bilayer that undergoes large time-dependent deformations due to internal forces (from 
a prescribed, time- and space-varying reference metric). We assume the sheet obeys linear (Hookean) elasticity, but that 
the midsurface (the set of points located midway through the sheet in the thickness direction) can be an arbitrary smooth 
time-dependent surface, so elastic forces depend nonlinearly on its position. The extension of the Kirchhoff-Love (and Föppl-
von-Kármán) models of elastic plates to nonflat reference metrics and/or large deformations with smooth midsurfaces has 
been called the Koiter shell theory [48–50], or the theory of non-Euclidean plates [9,51] for reference metrics without a 
stress-free configuration. Here we mainly follow the latter’s notation.

The elastic energy involves stretching and bending energy terms determined by the position of the body, r(x). Here r
lies in R3, as does the material coordinate x = (x1, x2, x3). In the classical situation, the sheet has a zero-energy flat state 
r(x) = x, where x3 lies in the interval [−h/2, h/2] (h is the sheet thickness, much smaller than the other dimensions), and 
x1 and x2 lie in a planar region, the same for each x3. For a small line of material �x = x̃−x connecting two material points 
x̃ and x, its squared length on the undeformed surface is dl2 = �xi�xi (with summation over repeated indices). Denote the 
squared length on the deformed surface r(x) by dl′ 2. Using the Taylor series of r(x) up to first derivatives we have

dl′ 2 − dl2 = 2εi j�xi�x j . (1)

Here εi j is the strain tensor,

εi j = 1

2

(
gij − δi j

)
, (2)

where

gij = ∂rk

∂xi

∂rk

∂x j
(3)

is the deformed covariant metric tensor. For curved shells or active materials, the rest state may be curved and/or time-
varying, in which case the reference metric, δi j in (2), becomes ḡi j(x, t), a time- and space-varying function determined for 
example by chemical activity [12,22,28]:

εi j = 1

2

(
gij − ḡi j(x, t)

)
. (4)

The reference metric is assumed to take the form

ḡ =
⎛
⎝ ḡ11 ḡ12 0

ḡ21 ḡ22 0
0 0 1

⎞
⎠ (5)
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with upper 2-by-2 reference metric ḡαβ . The dependence on out-of-plane components ( ḡα3, ̄g3α ) is trivial, so shearing 
though the plate thickness is not imposed and expansion/contraction in the thickness direction occurs only passively, due to 
the Poisson ratio effect. The components of the metric gi3 for i = 1, 2, 3 are determined by the Kirchhoff-Love assumptions 
of no shearing in planes through the thickness, and no stress in the thickness direction. The result is gα3 = g3α = 0 for 
α = 1, 2, and g33 = 1 [9].

We may write the energy in terms of the midsurface deformation by expanding gαβ about the sheet midsurface x3 = 0. 
We obtain, at leading order, its thickness-average aαβ and its thickness-gradient 2bαβ [9]:

gαβ = aαβ − 2x3bαβ + O (h2). (6)

Here aαβ is the upper 2-by-2 part of the metric tensor (3) evaluated at the sheet midsurface, x3 = 0. The thickness-gradient 
is twice bαβ , the second fundamental form

bαβ = ∂2rk

∂xα∂xβ

nk (7)

also evaluated at the sheet midsurface, x3 = 0, with nk the components of the midsurface unit normal vector n. For the 
reference metric ḡ, we write ā and b̄ for the corresponding terms in the expansion about the midsurface.

For an isotropic sheet with Young’s modulus E and Poisson ratio ν , the elastic energy per unit volume is

w = 1

2
Āαβγ δεαβεγ δ, (8)

a quadratic function of the in-plane components of the strain tensor in (4) with elasticity tensor

Āαβγ δ = E

1 + ν

(
ν

1 − ν
ḡαβ ḡγ δ + ḡαγ ḡβδ

)
(9)

where ḡαβ , the contravariant reference metric, has the same entries as ḡ−1
αβ . Integrating w over the sheet thickness h, the 

energy per unit midsurface area is

w2D =
h/2∫

−h/2

wdx3 = ws + wb + h.o.t., (10)

a sum of stretching energy per unit area

ws = h

8
Aαβγ δ

(
aαβ − āαβ

) (
aγ δ − āγ δ

)
(11)

and bending energy per unit area

wb = h3

24
Aαβγ δ

(
bαβ − b̄αβ

)(
bγ δ − b̄γ δ

)
(12)

in terms of the midsurface elasticity tensor

Aαβγ δ = E

1 + ν

(
ν

1 − ν
āαβ āγ δ + āαγ āβδ

)
, (13)

and higher order terms in h. The total elastic energy is, to leading order in h,

W = W s + Wb , W s =
∫∫

ws

√|ā|dx1dx2 , Wb =
∫∫

wb

√|ā|dx1dx2. (14)

W is a function of the midsurface reference metric ā and the midsurface configuration, r(x1, x2, 0), through aαβ in ws (11)
and bαβ in wb (12). These tensors depend on r through (3), (6), and (7).

3. Sheet dynamics

The sheet midplane evolves according a force balance equation, where the elastic force per unit area f acting at a point 
on the midplane is a sum of stretching and bending forces per unit area:

f = fs + fb = δws/δr + δwb/δr (15)

given by taking the variation of ws + wb with respect to r. For a sheet moving in Stokes flow (i.e. at zero Reynolds number) 
the elastic forces would be balanced by external fluid forces which depend linearly on the sheet velocity [36]:
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∂r

∂t
= S[fs + fb](r), (16)

where S is the Stokes operator

S[f](r) =
∫

G(r, r′)f(r′)dA(r′), G(r, r′) = 1

8πμ

(
1

‖ρ‖ I + ρ ⊗ ρ

‖ρ‖3

)
, ρ ≡ r − r′. (17)

In this work, we consider a simplification of (16) which has similar numerical stiffness issues: overdamped dynamics, in 
which the Stokes operator is replaced with a multiple of the identity:

μ
∂r

∂t
= f. (18)

Here μ is a parameter that can be used to model the effects of internal and external damping. The equation can also be used 
to identify equilibria as a gradient descent method [52] with time playing a nonphysical role. Extensions of (18) including 
the inertia of the sheet or a surrounding fluid would add a dependence on ∂2r/∂t2. When discretized, the �t−2 dependence 
of such terms will improve the time-step constraint compared to the overdamped problem, for explicit schemes [53]. In this 
work, we develop a semi-implicit approach for (18), which should also apply with more detailed forms of internal and 
external damping/forcing, e.g. from a fluid. In the subsequent computational results we nondimensionalize the sheet lengths 
by the radius or half-width R (e.g. for hexagonal and square sheets), energy by the bending energy scale Eh3/12, and time 
by the period of ḡαβ(x, t) (assumed to be time-periodic). These choices define dimensionless versions of all the parameters 
(e.g. μ).

4. Triangular lattice with stretching and bending springs

We first consider a simple model of an elastic sheet with material points connected by an equilateral triangular lattice 
mesh. Nearest neighbor points are connected by Hookean springs and the total stretching energy is proportional to the sum 
of the squares of nearest neighbor distances minus the local spring rest length dij :

Us = Ks

2

∑
i, j

(‖ri − r j‖ − dij)
2, (19)

with Ks a stretching stiffness constant. A bending energy is applied to adjacent triangular faces based on the angles between 
the normals to the faces. The total bending energy is a sum over nearest neighbor pairs multiplied by a bending stiffness 
constant Kb:

Ub = Kb

2

∑
k,l

‖nk − nl‖2 = Kb

∑
k,l

1 − nk · nl. (20)

Seung and Nelson used this model to study buckling due to defects in elastic membranes [47], and it was used by many 
other groups to study other deformations of thin sheets and shells due to defects and/or external forces [35,54–61], as well 
as polymerized and fluid membranes [62].

Seung and Nelson showed that for a lattice with dij ≡ d, a constant, as d tends to 0 the stretching energy Us tends 
to that of an isotropic thin sheet with stretching rigidity Eh = 2Ks/

√
3 and Poisson ratio ν = 1/3. The continuum limit 

of the bending energy contains two terms, one proportional to the mean curvature squared and the other proportional to 
the Gaussian curvature. The term involving mean curvature tends to that of an isotropic thin sheet with bending rigidity 
Eh3/12(1 − ν2) = √

3Kb/2. However, with this bending rigidity, the prefactor of the Gaussian curvature term is too large for 
ν > −1/3 (too large by a factor of two at ν = 1/3) [63]. Nonetheless, for many problems, the Gaussian curvature term plays 
a negligible role because it can be integrated to yield only boundary terms. For closed shells, the Gaussian curvature term 
integrates to a constant and thus does not affect the elastic forces [56]. For open sheets (with boundaries), the equilibrium 
shape could be insensitive to the boundary shape or boundary conditions, particularly if the external or internal actuation 
is not localized at the boundary. In this work we will compare the model to a finite-difference discretization with ν = 1/3
in two cases, and find a very small difference in a case of static actuation (also found in another situation by [64]), and a 
somewhat larger difference in a case of dynamic actuation.

The triangular lattice sheet is useful computationally because it has a simple expression for the energy and motivates 
our semi-implicit approach for the more general finite difference discretization given subsequently. The elastic force on the 
triangular lattice is obtained by taking gradients of (19) and (20) with respect to vertex coordinates {ri}. The gradient of 
(19) with respect to ri is

∇ri Us = Ks

∑
(‖ri − r j‖ − dij)

(ri − r j)

‖ri − r j‖ , (21)

j∈nhbrs(i)
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Fig. 1. Triangular lattice mesh with examples of elements in the elastic energy: adjacent vertices ri and r j (red) and adjacent face normals nk and nl (blue). 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

where nhbrs(i) is the set of vertex neighbors to i. Following [40,43] we write the summand as a linear term plus a term 
with constant magnitude,

∇ri Us = Ks

∑
j∈nhbrs(i)

ri − r j − dij
(ri − r j)

‖ri − r j‖ . (22)

To write the algorithms we define

r = [
rᵀx , rᵀy , rᵀz

]ᵀ (23)

as the vector of 3N vertex coordinates, with rx , r y , and rz the N-vectors of x-, y-, and z-coordinates. Thus ri =[
(rx)i ,

(
r y

)
i , (rz)i

]ᵀ . Also note that the italicized r ∈ R3N is different from the position function r(x) and a vertex on 
the discretized surface ri , both of which take values in R3. It turns out that the linear term in (22) can be written as 
the product of Ks and a block diagonal matrix L with r, where L has three blocks (along the diagonal), each of which is 
a discretized Laplacian on the triangular mesh with free-edge boundary conditions (see examples of stencils in Fig. 2, top 
row), a negative semidefinite matrix. Each block multiplies rx , r y , and rz , respectively. We treat the linear term implicitly 
and the constant-magnitude term explicitly. Collecting the terms (22) for all vertices i, we obtain the total stretching force. 
A semi-implicit first-order temporal discretization of (18) with stretching forces only is:

μAp
rn+1 − rn

�t
= KsLrn+1 + fS E(rn) , [fS E(r)i, fS E(r)N+i, fS E(r)2N+i]

ᵀ ≡ −Ks

∑
j∈nhbrs(i)

dij
(ri − r j)

‖ri − r j‖ . (24)

Here Ap = np
√

3d2/12 is the area per point on the undeformed lattice, with np the number of triangles of which the point 
is a vertex, 6 for interior points and fewer for boundary points. fS E(r) is the nonlinear term in (22), with 3N entries, given 
on the right side of (24) for i = 1, . . . , N .

Now assume the spring rest lengths are bounded for all time: dij ≤ d̄, a constant, and each vertex has at most p neighbors 
(6 for the triangular lattice). Rearranging (24) and using the boundedness of fS E (r), we have an upper bound at time step 
n + 1:

∥∥rn+1
∥∥ ≤ ∥∥(I − �t KsL/(μAp))−1rn

∥∥ + ∥∥(I − �t KsL/(μAp))−1fS E(rn)
∥∥ (25)

≤ ∥∥rn
∥∥ + Ks pd̄ (26)

≤
∥∥∥r0

∥∥∥ + (n + 1)Ks pd̄. (27)

So ‖rn+1‖ grows at most linearly in time with this discretization. Empirically, the iteration appears to be bounded for all 
time steps for spring rest lengths dij that are bounded in time. For comparison, a forward Euler discretization of (18) with 
stretching forces only results in

rn+1 = (
I + �t KsL/(μAp)

)
rn + �t

μAp
fS E(rn). (28)

Neglecting the rightmost term in (28), we have a 2D diffusion equation, and stability is possible only when the largest 
eigenvalue of I + �t KsL/(μAp) is bounded in magnitude by 1. Since the eigenvalues of L ∼ 1/�x2 for lattice spacing �x, 
this requires �t < CsμAp�x2/Ks for a constant Cs .

The gradient of the bending energy (20) with respect to a lattice vertex ri is

∇ri Ub = Kb

∑
k,l

sin θkl∇ri θkl, (29)

using nk · nl = cos θkl . The dihedral angle θkl depends on the four points in the union of the neighboring triangles k and l
(see Fig. 1). Two of these points are the endpoints of the edge shared by the triangles. At each of the other two points, 
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Fig. 2. Examples of the stencils corresponding to a discrete Laplacian operator with free edge boundary conditions (one of the diagonal blocks of L defined 
below (22)) (top row), and �̃2

x1,x2
, a discrete biharmonic operator with free edge boundary conditions (bottom row), at different mesh points (circled) away 

from and near a boundary on the triangular lattice.

∇ri θkl is directed along the normal to the triangle in which it lies, with magnitude equal to the reciprocal of its distance 
from the shared edge. At the endpoints of the shared edge, ∇ri θkl can be found by requiring that the net force and torque 
due to θkl is zero, which gives six equations (for the three components of net force and torque) in six unknowns (the forces 
on the two endpoints of the shared edge). The bending force fB is a 3N-vector with components

[fB(r)i, fB(r)N+i, fB(r)2N+i]
ᵀ ≡ −∇ri Ub, i = 1, . . . , N, (30)

similar to fS E in (24). Our linearized approximation to the bending force is similar to that of [36]. They write the terms 
with the highest spatial derivatives in the form B(rn)rn+1. Here B involves fourth derivatives with prefactors that include 
lower-order derivatives extrapolated to time step n + 1 from previous time steps. In fact, we use a simpler expression: 
Brn+1, where B is a block diagonal matrix with each of the three blocks equal to D�̃2

x1 ,x2
. Here D is the bending modulus 

(Eh3/(12(1 −ν2)) in dimensional form, 1/(1 −ν2) in dimensionless form) and �̃2
x1,x2

is the discretized biharmonic operator 
on the triangular lattice in the orthogonal material coordinates x1 and x2. If in-plane strain (shearing and dilation) is not 
very large, x1 and x2 are close to orthogonal arclength coordinates s1 and s2 along the midplane surface. For any surface 
X(s1, s2) parametrized by orthogonal arclength coordinates s1 and s2 we can write

�2
s1,s2

X(s1, s2) = �s1,s2(κ1 + κ2)n̂ + N, (31)

where κ1 + κ2 is twice the mean curvature and N = 2(∇s1,s2 (κ1 + κ2) · ∇s1,s2 )n̂ + (κ1 + κ2)�s1,s2 n̂ involves derivatives of X
that are of lower order than those in the first term on the right hand side. The highest-derivative term in the continuum 
bending force is also the first term on the right hand side of (31) when the equilibrium metric is the identity (see [36,65]). 
Thus the left hand side of (31) is a reasonable linear (and constant-coefficient) approximation to the bending force. A more 
accurate linear approximation to the bending operator could include corrections that take into account the nontrivial inverse 
equilibrium metric ( ḡαβ in (13)) and in-plane strain, e.g. by including nonuniform prefactors extrapolated from previous 
time steps. We find however that the constant-coefficient biharmonic is a sufficiently good approximation in the sense that 
it damps out spurious mesh-scale bending oscillations (as occurs with a fully explicit bending term) up to large-amplitude 
variations in the reference metric, ≈ 0.3 in terms of an amplitude parameter A defined in (34)–(36), below. With larger 
variations in the reference metric, the position vector remains bounded in time, but there is very large deformation and 
self-intersection even for the case of purely planar deformations, without bending forces. We explain how the discrete 
biharmonic operator �̃2

x1,x2
is calculated in appendix A.

Semi-implicit (or implicit-explicit) schemes for cloth animation have sometimes left bending forces explicit, when they 
are much smaller than stretching forces [41]. Considering a forward Euler discretization of (18) with bending forces only, 
and approximating the bending force by Brn , stability requires �t < CbμAp�x4/Kb for a constant Cb , since the eigenvalues 
of B ∼ 1/�x4 for lattice spacing �x. The ratio of bending to stretching time step constraints ∼ Ks�x2/Kb ∼ �x2/h2, the 
square of the ratio of lattice spacing to sheet thickness. For the parameters used in this work, the stretching and bending 
time step constraints are comparable, so a semi-implicit approach needs to address both terms.

Our first-order semi-implicit discretization for sheet dynamics with both stretching and bending forces is:

μAp
rn+1 − rn

= KsLrn+1 + fS E(rn) + Brn+1 − Brn + fB(rn). (32)

�t
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The last two terms on the right hand side approximately cancel in the highest-derivative term, leaving the implicit bend-
ing term Brn+1 as the dominant one. The second-order version with uniform time stepping (an approximate backward 
differentiation formula) is:

μAp
3rn+1 − 4rn + rn−1

2�t
= KsLrn+1 + 2fS E(rn) − fS E(rn−1) + Brn+1 − 2Brn + Brn−1 + 2fB(rn) − fB(rn−1). (33)

For test problems that model the deformation and dynamics of active gel sheets driven by internal swelling [12,22,28,30], 
we construct a uniform triangular lattice with spacing d. We then set the dilatation factor dij/d ≡ η to correspond to 
one of three examples: a static radial distribution, a unidirectional traveling wave, or a radial traveling wave of isotropic 
dilation/contraction:

η1(x1, x2) = 1 + A sin

(
2π

(
k
√

x2
1 + x2

2

))
(34)

η2(x1, x2, t) = 1 + A sin (2π (kx1 − t)) (35)

η3(x1, x2, t) = 1 + A sin

(
2π

(
k
√

x2
1 + x2

2 − t

))
. (36)

The corresponding equilibrium metrics are

āαβ(x1, x2, t) = η2(x1, x2, t)δαβ, (37)

and we take zero reference curvature (b̄αβ = 0) for simplicity. Before presenting results, we describe in the next section a 
more direct finite difference simulation that allows for more general elastic parameters than the triangular lattice model. 
However, the triangular lattice simulations have the advantage of remaining bounded in time for all time steps across wide 
ranges (several orders of magnitude) of values for the parameters (h, A, k, μ) with large mesh sizes (hexagonal domains with 
N up to 58145, for example). Simulations appear smooth up to strain amplitudes A ∼ 0.3. Above this value, sheet shapes 
become jagged and self-intersect, but remain bounded in time. Hence the time step and lattice spacing are constrained only 
by the need to resolve the dynamics at a given parameter set. The method can also be used to converge to static equilibria, 
in which case the time step becomes a step length for a gradient descent algorithm. Here a large step length may be used 
initially to rapidly approach the neighborhood of an equilibrium, and then a smaller step length allows for convergence. The 
resulting convergence is geometric (not superlinear) but generally quite fast, and due to the simplicity of the formulation it 
is a good alternative to Newton and quasi-Newton methods in the static case (as well as the dynamic case).

5. Finite difference algorithm

We now propose a second algorithm, inspired by that for the triangular lattice, but based on a finite difference dis-
cretization of the continuum elastic energy (14), and which therefore allows the full range of values of E , h, and ν (that 
are physically reasonable). We use a square grid with grid spacing �x for simplicity and define second-order accurate 
finite-difference operators:

Dα ≈ ∂α , Dαβ ≈ ∂2
αβ , α,β = {1,2} (38)

In the energy (14) we use

aαβ ≈ Dαrx  Dβrx + Dαr y  Dβr y + Dαrz  Dβrz, (39)

where  denotes a componentwise (Hadamard) product of two vectors. We use the analogous expression for bαβ and 
a trapezoidal-rule quadrature for the integrals in (14). For equilibrium metrics in the form (37) the discrete form of the 
stretching energy (W s in (14)) is

W̃ s = h

8
Aαβγ δ

(
q  η2

)ᵀ [(
aαβ − āαβ

)  (
aγ δ − āγ δ

)]
(40)

where q is the vector of quadrature weights for the trapezoidal rule on the rectangular mesh, and we use the usual sum-
mation rule for repeated indices. We compute ∇rx W̃ s by using the chain rule with (39) and (40):

∇rx W̃ s = h

4
Dᵀ

α

[
Aαβγ δ

(
q  η2  (

aγ δ − āγ δ

))
Dβrx)

]
+ h

4
Dᵀ

β

[
Aαβγ δ

(
q  η2  (

aγ δ − āγ δ

))
Dαrx)

]
(41)

and the same expressions for ∇r y W̃ s and ∇rz W̃ s , with rx in (41) replaced by r y and rz respectively. Our linearized approx-
imation to the stretching force, to compute rn+1 semi-implicitly, is Mn

s rn+1, where Mn
s is a block diagonal matrix with three 

blocks, each given by
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Table 1
Approximate upper bounds on stable time step for the 
semi-implicit finite difference scheme (SI) compared to 
forward Euler (FE), for simulations on a square of side 
length 2 with different mesh spacings dF D .

dF D �t S I
max �t F E

max

1/16 0.04 1.8 × 10−4

1/22 0.03 1.0 × 10−4

1/27 0.025 5 × 10−5

1/32 0.02 3 × 10−5

h

4
Dᵀ

α

[
Aαβγ δ

(
q  η2  an

γ δ

)
Dβ)

]
+ h

4
Dᵀ

β

[
Aαβγ δ

(
q  η2  an

γ δ

)
Dα)

]
. (42)

Mn
s rn+1 is the discrete stretching force with zero reference metric, analogous to the discrete Laplacian on the triangular 

lattice, which gives the stretching force with zero-rest-length springs. The use of an
γ δ instead of an+1

γ δ makes Mn
s independent 

of rn+1. An extrapolation that is higher-order in time can also be used.
We also compute ∇r Wb using the chain rule, resulting in a similar (though somewhat lengthier) expression for the 

bending force. Our linearized approximation to the bending force is Mbrn+1, where Mb is the product of the bending 
modulus and the discrete biharmonic operator, the same as for the triangular lattice but now on a rectangular mesh.

Unlike the triangular lattice algorithm, the finite difference algorithm is only stable for first-order time-stepping, i.e.

μAp
rn+1 − rn

�t
= Mn

s rn+1 − Mn
s rn −

{
∇r W̃ s

}n + Mbrn+1 − Mbrn −
{
∇r W̃b

}n
, (43)

the analogue of (32), with Ap = �x2 the area per point (multiplied by 1/2 at points along the sides and 1/4 at the corners). 
It is unstable for the second-order version,

μAp
3rn+1 − 4rn + rn−1

2�t
= M[n+1]

s rn+1 − 2M[n]
s rn + M[n−1]

s rn−1 − 2
{
∇r W̃ s

}n +
{
∇r W̃ s

}n−1
(44)

+ Mbrn+1 − 2Mbrn + Mbrn−1 − 2
{
∇r W̃b

}n +
{
∇r W̃b

}
n−1 (45)

due to the extrapolated gradient terms (i.e. (44)–(45) becomes stable when the extrapolation reverts to first order for the 
gradient terms in (45)). The superscripts in brackets denote a second-order extrapolation to the indicated time step using the 
two preceding time steps. We note that second-order accuracy can be obtained from the first order method via Richardson 
extrapolation.

While the triangular lattice algorithm is essentially unconditionally stable, the first-order finite-difference algorithm is 
only stable up to moderately large time steps. However, the semi-implicit operators do yield orders-of-magnitude improve-
ments in the largest stable time steps compared to an explicit scheme (forward Euler). As an example, we set η = η3 in 
(36), with A = 0.1, h = 0.03, μ = 1000, and ν = 1/3. In Table 1 we give approximate values for the maximum stable time 
step, defined to be a time step such that the sheet deflection remains bounded (below 108 in maximum norm) up to t = 5. 
The sheet is a square of side length 2, with a square grid of mesh spacing dF D . As dF D is decreased from 1/16 to 1/32, 
the maximum stable time step decreases by a factor of 2 for the semi-implicit method, versus a factor of 6 for the ex-
plicit method. Because the cost of solving the linear systems in (32), (33), and (43) is only slightly larger than the cost of 
the rest of the algorithm for the smallest dF D in Table 1, the orders-of-magnitude difference in time step translates to an 
orders-of-magnitude difference in overall computational cost for these mesh sizes.

6. Results

We now present a sequence of simulation results to display basic aspects of the algorithms and parameters. First, we 
compare the triangular lattice and finite difference methods in two situations. The first is the equilibrium sheet deformation 
with a nontrivial, but static (time-independent) reference metric given by η = η1 in (34), with A = 0.1, k = 1, h = 0.03, 
μ = 1000, and ν = 1/3. The sheets are initially nearly flat squares (z = 0.02(x4

1 + x4
2), −1 ≤ x1 = x, x2 = y ≤ 1), and rapidly 

buckle into the shapes shown in Fig. 3. Three sheets are shown in oblique view (top row) and side view (bottom row). The 
leftmost sheet is computed with the triangular lattice algorithm, with jagged edges along one pair of sides. The center sheet 
is the result of the finite difference algorithm, with a different Poisson ratio value in one of the bending energy terms, to 
match those of the triangular lattice algorithm. For equilibrium metrics (37) we may write (12) as

wb = Eh3

24(1 − ν2)
η4

(
(b11 + b22)

2 − 2(1 − νB)(b11b22 − b2
12)

)
. (46)

In the stretching energy term (11) and the prefactor of the right hand side of (46), we set ν = 1/3. We have denoted the 
second appearance of ν in (46) as νB (within 1 − νB ) on the right hand side of (46). For the center sheet, we set ν = 1/3
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Fig. 3. A static equilibrium for the triangular lattice algorithm (left), and the finite difference algorithms with different Poisson ratios in one of the bending 
energy terms (center and right). The reference metric is η = η1 in (34), with physical parameters A = 0.1, k = 1, h = 0.03, μ = 1000. The Poisson ratio ν
is 1/3 in the stretching energy term in all three cases. The leftmost plot has νB = −1/3 in the (1 − νB ) term in the bending energy (46), a consequence of 
the lattice model. The center plot also has νB = −1/3 in the (1 − νB ) term in the bending energy (46), but with a finite difference model. The rightmost 
plot has νB = ν = 1/3 instead, a fully consistent value.

but νB to -1/3, giving an elastic energy consistent with that of the triangular lattice model according to [63]. The rightmost 
sheet is also given by the finite difference algorithm but with ν = νB = 1/3 in all stretching and bending energy terms. The 
deformations are very close in all three cases. The differences between maximum and minimum z values, �z, are within 1% 
for the center and leftmost sheets, and the difference is about 2% for the center and rightmost sheets. In this case at least, 
the error in Gaussian bending rigidity in the triangular lattice algorithm has only a modest effect, as was found by [64] in 
a different problem.

In Fig. 4 we present another equilibrium shape for the same static reference metric (η = η1 in (34)) and the same 
three models as in Fig. 3. This shape is found by starting from a different initial deformation: z = 0.3(2x2

1 − 1), −1 ≤ x1 =
x, x2 = y ≤ 1. The top two rows show good visual agreement between all three models in this second example, this time 
with finer meshes: dT L = 1/112 for the triangular lattice (left) and dF D = 1/48 for the finite difference models (center and 
right). In the third row, we show the convergence to the equilibria over time for the three models, measured by the decay 
of the energy gradient norm ‖∇W ‖. The convergence is fastest for the triangle lattice model (third row, left), but all the 
algorithms have a similar behavior: an initially rapid decay followed by a slower, but still exponential, decay. The fourth 
row shows the convergence of the total deflection �z to its equilibrium values, for various mesh spacings. The temporal 
convergence is again slower for the finite difference models, while the convergence with mesh refinement is somewhat 
faster, probably because the finite difference models are second-order in space, while the triangular lattice mesh matches 
the square boundary only to first-order accuracy due to the jagged edges.

Table 2 shows the equilibrium values of �z for various mesh spacings for the three models. The convergence with mesh 
refinement is generally somewhat faster for the finite difference models. Unlike the case in Fig. 3, here the values of the 
triangular lattice �z (second column) are closest to those of the finite difference model with νB = 1/3, shown in the fifth 
column. This is somewhat surprising because the case with νB = −1/3 matches the continuum energy of the triangular 
lattice model [63]. We propose a few possible reasons for the discrepancies among the values of �z in the three models. 
First, the triangular lattice model of the square has a jagged boundary. Although its position converges (at first order in 
lattice spacing) to the straight boundary assumed in the finite difference algorithm, its tangent angle does not, which 
may cause a small persistent different with the finite difference models. Second, there is the aforementioned difference 
in the Poisson ratio in one of the bending terms of the triangular lattice model [63], though accounting for this in the 
finite difference model (fourth column of Table 2) increases the discrepancy in �z for the equilibrium in Fig. 4 and Table 2. 
Reference [63] also notes that at large deformations, the resistance to shear in the triangular lattice algorithm differs slightly 
from that of a continuum isotropic elastic sheet, a third possible reason for the discrepancy.

We now consider an unsteady reference metric, η = η2 in (35), a unidirectional traveling wave, in both algorithms. We 
again take square sheets, with the same spatial grids and initial conditions as before, with (smaller) A = 0.03, k = 1, h =
0.03, μ = 1000, and νB = ν = 1/3 only now, i.e. a single finite difference algorithm, for simplicity. The time step �t = 0.005. 
Fig. 5 compares the dynamics. Panels A and B show �z versus time for the triangular lattice and finite difference algorithms, 
respectively at three mesh spacings (labeled). For both algorithms the solutions have a strong oscillatory component with 
the same frequency as the reference metric, as one would expect. The solutions have other components that evolve on 
much longer time scales (tens to hundreds of periods), and even with modest deflections (here, about 7% of the square 
side length), the solutions can evolve in complicated ways over long time scales. The dynamics of �z are qualitatively 
similar, though the peaks and troughs are about 10-15% larger for the finite difference algorithm. The spatial distribution of 
z deflection at t = 31.5 and 32 is shown in panels C and E for the triangular lattice algorithm and D and F for the finite 
difference algorithm, respectively. The distribution of deflection is very similar in both algorithms. We believe the reasons 
for the discrepancies are similar to those for the static cases already mentioned: the Poisson ratio in one of the bending 
terms νB is different in the continuum limits of the two models in Fig. 5, the triangular lattice has a jagged boundary, and 
responds slightly differently to shear at large deformations [63].
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Fig. 4. A second static equilibrium for the reference metric η = η1 in (34), computed with the triangular lattice algorithm (left), and the finite difference 
algorithms with different Poisson ratios in one of the bending energy terms (center and right). The physical parameters are the same as in Fig. 3 but finer 
meshes are used. The top two rows show oblique and side views of the equilibrium. The third row shows the decay of the energy gradient norm in time 
for various mesh spacings (labeled), and the fourth row shows the convergence of �z in time.

Table 2
Comparison of the equilibrium sheet deflection �z as the mesh spacing d is de-
creased for the triangular lattice model (denoted T L) and the finite difference model 
(denoted F D) with two values of one of the Poisson ratio terms (denoted νB ).

dT L �zT L dF D �zF D , νB = −1/3 �zF D , νB = 1/3

1/16 0.70710 1/16 0.69991 0.71035
1/24 0.72011 1/24 0.69884 0.70986
1/48 0.71124 1/32 0.69851 0.70966
1/80 0.71165 1/40 0.69837 0.70950
1/112 0.71178 1/48 0.69829 0.70948

We have illustrated the behavior of the algorithms in three simple cases. We’ve seen close agreement in two equilibria 
found with a steady reference metric, and somewhat less agreement in a dynamical problem with a unidirectional traveling 
wave metric. We now proceed to illustrate some other basic features of the buckling behavior and dynamics, with the 
triangular lattice approach only for brevity.

If a static reference metric cannot be realized by a surface in R3, the sheet has nonzero stretching energy, and in 
general becomes unstable to out-of-plane buckling for sufficiently small h [66]. Intuitively, buckling allows a reduction in 
stretching energy at the expense of bending energy. The relative cost of bending decreases with decreasing h, making 
buckling more favorable. For the static metric with η = η1 in (34), in Fig. 6 we plot a computational estimate of the 
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Fig. 5. A comparison of sheet dynamics with the triangular lattice and finite difference algorithms with reference metric factor η = η2 in (35), a unidirec-
tional traveling wave, starting from a nearly flat sheet. The physical parameters are A = 0.03, k = 1, h = 0.03, μ = 1000, and ν = 1/3. (A) The z-deflection 
over time for the triangular lattice algorithm for lattice spacings dT L = 1/32, 1/48, and 1/64. (B) The z-deflection over time for the finite difference algo-
rithm for grid spacings dF D = 1/32, 1/40, and 1/48. Distributions of z deflection at times t = 31.5 and 32 are shown in panels (C) and (E) for the triangular 
lattice and (D) and (F) for the finite difference method, respectively.

Fig. 6. Change in out-of-plane deflection from t = 0 to t = 2 for a unit hexagon with a small initial deflection z = 10−8x1x2, and imposed reference metric 
(34) with k = 1, varying metric factor amplitude A (horizontal axis) and varying sheet thickness h (vertical axis). The damping constant μ = 12.6 and 
the mesh spacing d = 1/33. The solid red line shows the locus of zero change in deflection, essentially the “buckling threshold.” The red crosses show, at 
several values of h, the values of A on the buckling threshold with a finer mesh spacing, 1/66. The white line shows the scaling A ∼ h2.

“buckling threshold”—for various A ∈ [10−5, 10−1], the values of h at which buckling occurs. Here buckling is defined by 
whether a small initial deflection (z = 10−8x1x2) grows after two time units, with a certain damping constant (μ = 12.6). 
Changes in the time interval and damping constant have only a slight effect on the buckling threshold, plotted as a red 
solid line for d = 1/33. The mesh spacing becomes more important at smaller h, where buckling deformations may occur 
with a smaller wavelength due to the decreased bending energy. To check the effect of mesh refinement, we repeat the 
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Fig. 7. A selection of six buckled equilibria of the unit hexagon. Each is shown in two views: the top row gives views from 60 degrees with respect to the 
z-axis, and the bottom row gives views along the z-axis. The sheet thickness is h = 0.03 and the imposed reference metric factor is η = η1 given in (34)
with A = 0.1 and k = 1. The equilibria are obtained by starting from different initial perturbations, with lattice spacing d = 1/33.

Fig. 8. Snapshots of a unit hexagon, from t = 19 to 20 in time increments of 0.2 (from left to right) with different damping constants μ (top to bottom), 
metric factor amplitude A = 0.1 in (36) and h = 0.03. The colors show the z coordinate value, and the color scale is scaled to the minimum and maximum 
z coordinate value of each sheet.

computations with d = 1/66 at selected points and obtain the red crosses. The white line shows the scaling A ∼ h2, which 
approximately matches the buckling threshold data presented in [66] for a different reference metric. Our data appear to 
follow this trend for h ≥ 0.01. Deviations at smaller h are likely due to the finite mesh spacing.

Next, we study the postbuckling behavior, again with the static metric factor η = η1 in (34) but with A = 0.1, k = 1, and 
different initial perturbations of the form z = crm sin(mφ), where r is the initial distance of sheet points from the hexagon 
center, φ is the azimuthal angle (with respect to the hexagon center), and m is the azimuthal wavenumber, an integer from 
2 to 6. The amplitude c ranges from 0 to 0.1, and μ ranges from 1 to 1000. We obtain buckling into various equilibria akin 
to those studied by [66] with other radially symmetric reference metrics. We show six equilibria in Fig. 7, in two views 
(top and bottom rows). The first three (starting at the left) have a twofold azimuthal rotational symmetry, but are distinct 
configurations. The second has an additional bilateral symmetry and the third has an additional pair of (small) local maxima 
along the sheet edges. The fourth and fifth have a threefold rotational symmetry, and the fourth has bilateral symmetries 
in addition. The sixth has a sixfold rotational symmetry. These are only a selection of local equilibria for a given static 
reference metric, and illustrate the complexity of the energy landscape for such sheets, even without dynamics and/or a 
time-dependent reference metric.

6.1. Parameter sweeps

We next study the effects of parameters on the sheet dynamics, using the reference metric factor η = η3 in (36), a radial 
traveling wave. We perform a sequence of parameter sweeps, varying one of A, h, or μ while keeping the others fixed. We 
fix the wavenumber k at 1 in all cases. If k is much smaller, the sheet does not buckle because the reference metric is almost 
uniform, and planar dilation/contraction is preferred energetically. If k is much larger, buckling is also inhibited because the 
reference metric averaged over a local region approaches the identity tensor. As a base case, we take A = 0.1, μ = 1000, and 
h = 0.03, and vary each physical parameter in turn with numerical parameters d = 1/33 and �t = 0.005 (sufficiently small 
that further decreases do not qualitatively change the results). We initialize the sheet with a small out-of-plane deflection 
(z = 0.02(x4 + x4), −1 ≤ x1 = x, x2 = y ≤ 1).
1 2
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Fig. 9. Snapshots of sheet dynamics with various sheet thicknesses h (top to bottom), from t = 19 to 20 in time increments of 0.2 (from left to right). Here 
A = 0.1 and μ = 1000.

Fig. 10. Snapshots of sheet dynamics with various metric factor amplitudes A (in (36)), from t = 19 to 20 in time increments of 0.2 (from left to right). 
Here h = 0.03 and μ = 1000.

In Fig. 8 we show snapshots of a unit hexagon from t = 19 to 20 in time increments of 0.2 (from left to right), for four 
different values of μ, with A = 0.1 and h = 0.03. When μ is large, the sheet responds more slowly to the reference metric. 
The tendency is to oscillate about a mean state of no deformation (because the long-time-average reference metric is the 
identity tensor), and at sufficiently large μ the sheet does not buckle out of plane. At the largest μ (3000), the dynamics are 
essentially periodic (with period 2, so only a half-period is shown; the position at time t +1 is that at time t but reflected in 
the z = 0 plane). The out-of-plane deflection is smaller and more symmetric than at smaller μ, where the dynamics become 
more chaotic and asymmetric. At smaller μ, the sheet moves more rapidly through the complicated, time-dependent elastic 
energy landscape. At μ = 1000, the sheet deflection �z(t) has a large component with the same period as the reference 
metric, but also large components that are not periodic. At μ = 300, bilateral symmetry is lost, while at μ = 100, the sheet 
almost assumes a threefold symmetry.

Next, we vary h, with A = 0.1 and μ = 1000. Snapshots are shown in Fig. 9. With larger h, bending is relatively more 
costly, so the deformation is smoother, and at sufficiently large h the sheet relaxes back to a planar state (h = 0.06). 
At smaller h, the sheet motion is more chaotic and asymmetric, as for decreasing μ. Notably, at smaller h fine wrinkling 
features appear, and the deformation is far from any kind of symmetry. Eventually the sheet may intersect itself (not shown) 
because forces due to self-contact are not included.

We vary A next, with h = 0.03 and μ = 1000. Here (Fig. 10) there is a sequence of dynamics from slow relaxation to 
planar motions (A = 0.03), to periodic and symmetric (A = 0.06, with period 2), to aperiodic but still bilaterally symmetric 
(A = 0.1 and 0.2). At larger A the deflection amplitude increases but the deformation remains relatively smooth, and in this 
sense the dynamics are more similar to smaller μ than to smaller h.

Finally, we consider the effect of the sheet shape on the dynamics. We consider the two cases with periodic dynamics 
above, (A = 0.1, μ = 3000) in Fig. 8 and (A = 0.06, μ = 1000) in Fig. 10, both with h = 0.03. In the top two rows of 
Fig. 11, we compare the hexagonal sheet snapshots with those of a square sheet with the same parameters. Both sheets 
have width 2 when the reference metric is the identity. The bottom two rows make the same comparison with A = 0.06 and 
μ = 1000. At each time, the hexagonal and square sheets have qualitative similarities. At the first time (leftmost snapshots), 
the sheets have a central peak. At the second time, an upward ring (yellow) appears. Third, the ring breaks up into an 
array of peaks with sixfold symmetry for the hexagons, and either six- or fourfold symmetry for the squares. Fourth, the 
peaks reach the sheet boundary. Fifth, a central trough forms, and sixth, it widens and is surrounded by an upward ring. 
The main differences between the squares and hexagons are that the squares more often have a fourfold rather than sixfold 
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Fig. 11. Comparisons of the dynamics of hexagonal and square sheets with A = 0.1 and μ = 3000 in the top two rows and A = 0.06 and μ = 1000 in the 
bottom two rows. All other parameters and initial conditions are the same as in Figs. 8 and 10 (e.g. h = 0.03), and the snapshots run from t = 19 to 20 in 
time increments of 0.2 (from left to right).

symmetry, the maximum deflections of the squares are larger, and the squares have a significant nonperiodic component 
in the dynamics. The comparison illustrates that periodic dynamics can be somewhat sensitive to sheet shape, which is 
perhaps not surprising given that chaotic dynamics are common and small changes in the parameters can shift periodic 
dynamics to chaotic dynamics. In Appendix B we extend the comparison to ranges of values of μ and A, including cases 
that are nonperiodic (but still with approximate bilateral symmetry). We find that the sheet shape strongly affects the 
preferred azimuthal mode of deformation across these ranges of parameter values.

7. Conclusion

We have presented semi-implicit algorithms that can simulate the dynamics of thin elastic sheets with large time steps. 
We focus on the case of elastic sheets with nontrivial steady or time-varying reference metrics in overdamped dynamics, 
but the methods should apply to other problems with internal or external forcing. The first algorithm simulates a triangular 
lattice mesh, and uses a splitting of the stretching force that has been used previously for computer graphics simulations of 
hair and cloth [40,43]. The semi-implicit bending force uses a biharmonic operator with free-edge boundary conditions. The 
algorithm was found to be unconditionally numerically stable for a time-periodic reference metric. The second algorithm 
simulates a rectangular grid with finite-difference derivatives of the energy, and allows for general values of the Poisson ratio 
(and unlike the triangular lattice, a consistent value in all terms of the bending and stretching energies). The semi-implicit 
finite difference algorithm is analogous to that for the triangular lattice, involving a stretching force operator with zero 
equilibrium metric, and the biharmonic operator for an approximate bending force. The finite difference algorithm is not 
unconditionally stable, but typically has a maximum stable time step two to three orders of magnitude greater than that of 
an explicit scheme.

The two algorithms agree very closely for the deformation of a square sheet under a static reference metric, even al-
lowing a different Poisson ratio (−1/3 instead of 1/3) in one of the bending energy terms. There is more disagreement in 
the deflection amplitude and pattern for a unidirectional traveling wave reference metric, but the dynamics are qualitatively 
similar. For the triangular lattice, we see phenomena similar to those reported previously with different radially-symmetric 
reference metrics [66]: a 1/2-power-law scaling of the buckling threshold in the space of sheet thickness and reference 
metric factor amplitude, and the presence of multiple stable equilibria with varying types of azimuthal and bilateral sym-
metries. For the case of a radial traveling wave reference metric, we showed some of the basic effects of sheet and metric 
parameters. In general, as the metric factor amplitude increases, the sheet thickness decreases, or the damping parameter 
decreases, the sheet moves from flat, periodic oscillations, to buckled periodic oscillations with various types of symme-
tries, and then to buckled motions with a combination of periodic and nonperiodic components, and varying degrees of 
symmetry/asymmetry. Below a critical sheet thickness, the motions have little semblance of symmetry or periodicity.
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Appendix A. Bending force

We denote the discrete biharmonic operator on the triangular mesh with free-edge boundary conditions as �̃2
x1,x2

, and 
because it is independent of the sheet configuration we may derive it for a sheet that is a portion of a flat triangular lattice 
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Fig. 12. Comparisons of the dynamics of hexagonal and square sheets with various μ at A = 0.1 (top eight rows) and various A at μ = 1000 (bottom 
eight rows). All other parameters and initial conditions are the same as in Figs. 8 and 10 (e.g. h = 0.03), and the snapshots run from t = 19 to 20 in time 
increments of 0.2 (from left to right).
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with edge length d. �̃2
x1,x2

is a mapping from (small) out-of-plane displacements at each point to the bending force at that 
point. The mapping is a sum of the force-displacement mappings for each pair of adjacent equilateral triangles, because the 
bending energy is also a sum over such units. For the four vertices in a given pair of neighboring triangles, a unit upward 
displacement of one of the two outer vertices (those not on the shared edge) yields a downward bending force at each of 
the outer vertices, equal by symmetry, and an upward force at each of the inner two vertices (those on the shared edge), 
equal and opposite to those at the outer vertices, to give net force and torque balance. The forces are proportional to the 
displacement by a constant that gives the desired bending modulus of the sheet. The bottom row of Fig. 2 shows examples 
of the stencils for this biharmonic operator at a few mesh points: an interior point (analogous to the 13-point biharmonic 
stencil on a rectangular mesh), a next-to-boundary point, and a boundary point. The discrete biharmonic operator �̃2

x1,x2
has 

these stencil values multiplied by the triangle altitudes raised to the −4 power (
√

3d/2)−4, while the linearized bending 
force operator has instead the same stencil values multiplied by (

√
3d/2)−2 because the bending force is the gradient of the 

bending energy, which is approximately the biharmonic of the deflection multiplied by the sheet area per vertex.

Appendix B. Effect of sheet shape on dynamics

In Fig. 12 we present additional comparisons of hexagonal and square sheets’ dynamics, now for a range of μ at fixed 
A = 0.1 (top half of figure), and for a range of A at fixed μ = 1000 (bottom half of figure). In each pair of rows, the hexago-
nal sheet is at the top and the square sheet is at the bottom. For each pair, the qualitative features of the deformations (such 
as the typical wavelengths of the out-of-plane deflection) are similar, but the numbers of local maxima and minima—i.e. the 
buckled modes—differ in several cases.
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