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Abstract

In this paper, we study the stability of a class of coupled Hill’s equa-
tions. Different possible forms of solutions are discussed. Assuming cer-
tain odd-even symmetries, using Floquet theory, a simplified form of the
monodromy matrix and a closed form formula for its eigenvalues, as a
function of the first element of the monodromy matrix, is derived. The
Lorentz oscillator model and its connection to the coupled Hill’s equations
is discussed and Lyapunov theory is used to prove its stability. Finally,
using our formula for the eigenvalues, the stability diagrams of a system of
coupled Mathieu equations, as an example of the coupled Hill’s equations,
are generated.
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1 Introduction

In this paper, we study the stability of a class of coupled Hill’s equations of the
form

ẍ+ p(t)x = −q(t)z,
z̈ + p(t)z = q(t)x ,

(1)

where p(t) is an even continuous periodic function and q(t) is an odd continuous
periodic function so that p(t+ T ) = p(t) and q(t+ T ) = q(t) for a fixed T > 0.
A particular example is the system of coupled Mathieu equations

ẍ+ [a+ b cos(2t)]x = −c sin(t)z,
z̈ + [a+ b cos(2t)] z = c sin(t)x

(2)

which, in a special case, is a transformation of the Lorentz Oscillator Model
(LOM), a model of an electron bound to the nucleus by a harmonic potential
that undergoes forced motion under electromagnetic fields subject to damping
[4].

System (1) is in the form of a linear periodic differential equation, where Floquet
theory is the standard tool of analysis [8]. In this paper, incorporating the odd-
even symmetries in (1), we classify the solutions of this dynamical system based
on the possible values of the Floquet multipliers and derive a formula for the
Floquet multipliers of the system as a function of only the first element of
the monodromy matrix. Finally, using our simplified formula for the Floquet
multipliers, as an example, we generate the stability regions for system (2).

Further, the connection between the Lorentz Oscillator Model and system (2)
is explained and stability of a general homogeneous LOM is discussed based on
the Lyapunov theory.

There is a large literature on the 1-dimensional Hill’s equation ẍ + p(t)x = 0.
The classic reference is [12]. This class of equations has many applications to
dynamical systems, including the original question of lunar stability, inflationary
dynamics in astrophysics, electron motion in crystals and accelerator physics for
example. Estimates on the boundaries of stability regions of the 1-dimensional
Hill’s equation may be found in [6], for example. Further work may be found in
e.g. Loud [11], where the case of p(t) an even function is considered. Weinstein
and Keller [16] studied the asymptotic behavior of the stability regions. In pre-
vious work, Hill’s equation with random variation of some parameters (random
forcing terms) was studied [1].

While much research has been done on the 1-dimensional Hill’s equation, less
work has been done on the coupled Hill’s equations which is the subject of
the current paper. Hsu [7] studied a restricted class of coupled Hill’s equa-
tions which can be transformed to separate independent 1-dimensional Hill’s
equations. Mahmoud [13] analyzed a class of coupled Hill’s equations using per-
turbation theory, where some parameters are assumed to be small. See also [?],
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[?], [?]. Coupled Mathieu equations, which are special cases of coupled Hill’s
equations, have been studied in e.g. [3], [5] and [10]. Our work extends this
literature to an interesting class of coupled Hill’s equations motivated by the
transformation of the Lorentz Oscillator Model. We remark that, in contrast to
most systems analyzed in the literature, the system (2) does not have a canonical
Hamiltonian structure (the coupling terms terms destroy the canonical struc-
ture) which makes the analysis of particular interest. While a noncanonical form
can be found for certain values of the parameters the corresponding Hamilto-
nian is not postive in a useful sense. The system is also not of gyroscopic type
(as in [2] for example).

The contents of the paper are as follows. In Section 2, we describe general
coupled Hill’s equations and the particular case of two such equations. In Sec-
tion 3, we consider the particular symmetric case of interest in this paper and
classify the various possible solutions. In Section 4, we analyze stability using
Floquet theory and present a general result on the structure of the monodromy
matrix. In particular, a formula for the eigenvalues of the monodromy matrix
is derived as a function of only the first element of the matrix. In Section 5,
we relate the coupled Hill’s equations to the equations of the Lorentz Oscillator
Model (LOM) and study the stability of the LOM. Section 6 presents numerical
stability regions in parameter space for the system consisting of two coupled
Mathieu equations.

2 General Coupled Hill’s equations

We begin by defining a general system of coupled Hill’s equations.

Definition 2.1. A general n-dimensional system of coupled Hill’s equations
(CHE) is a system of the form [7]

ẍ+B(t)x = 0,

where x ∈ Rn and B(t) is an n × n periodic real matrix that is a continuous
function of t.

In this paper, we study the the case when n = 2, that is, the system

ẍ+ px(t)x = −qx(t)z,
z̈ + pz(t)z = qz(t)x ,

(3)

where px(t), qx(t), pz(t) and qz(t) are continuous periodic functions with a com-
mon period T > 0. Defining v = [x, ẋ, z, ż]tr, with tr denoting transpose, this
system can be written in the form

dv

dt
= A(t)v, (4)
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where

A(t) =


0 1 0 0

−px(t) 0 −qx(t) 0
0 0 0 1

qz(t) 0 −pz(t) 0

 .
The matrix A(t) is periodic with period T . If Φ(t) is a fundamental matrix
of (4), then M = Φ−1(0)Φ(T ) is a monodromy matrix of (4). From standard
Floquet theory [8], the determinant of the monodromy matrix is given by

det(M) = exp

[∫ T

0

trace(A(s))ds

]
.

Since trace(A(t)) ≡ 0, we have det(M) = 1.

For the rest of this paper we assume that M = Φ(T ), where Φ(t) is the funda-
mental matrix such that Φ(0) is the 4 × 4 identity matrix. We note that the
Floquet analysis is independent of the choice of monodromy matrix.

Remark 2.2. Since det(M) is equal to the product of the Floquet multipliers
(i.e., eigenvalues of the monodromy matrix), this result shows that the product
of the Floquet multipliers is unity, that is,

n∏
j=1

ρj = 1, (5)

where ρj are the Floquet multipliers. Thus, the solutions of the general CHE
are never asymptotically stable because if the system is stable, |ρj | ≤ 1 for
every Floquet multiplier ρj , and from equation (5), necessarily |ρj | = 1 for
j = 1, 2, . . . , n.

Note that stability of the solutions of system (4) means that all solutions remain
bounded, or equivalently, the zero solution of the system is globally Lyapunov
stable.

In the next section, where various forms of the solutions of a class of the CHE
are derived, we use the result (5).

3 Classifying the Solutions of the Coupled Hill’s
Equations

In this section, we study a special class of the general CHE defined in equation
(3). We assume that in system (3), px = pz = p and qx = qz = q to obtain the
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forms

ẍ+ p(t)x = −q(t)z,
z̈ + p(t)z = q(t)x ,

(6)

where p(t) and q(t) are continuous periodic functions. In Proposition 3.4 below,
we classify solutions of this system. Later, these results will be used in the study
of Floquet theory and stability of the CHE.

Lemma 3.1. Suppose that ρ is a Floquet multiplier of the CHE defined in
equation (6), and assume that µ is a corresponding Floquet multiplier, that is,
ρ = eµT . Assuming that the CHE is non-trivial (i.e., p(t) and q(t) are not both
zero functions), there exist T -periodic functions p1(t) and p2(t) such that[

p1(t)
p2(t)

]
eµt and

[
−p2(t)
p1(t)

]
eµt

are two independent solutions to the CHE.

Proof. From Floquet analysis [8], for the Floquet multiplier ρ, there exists a
solution of the form [

x(t)
z(t)

]
=

[
p1(t)
p2(t)

]
eµt

for the CHE. Due to the symmetry that exists in (6), one can easily check that
if [x(t), z(t)] is a solution, so is [−z(t), x(t)]. As a result,[

x(t)
z(t)

]
=

[
−p2(t)
p1(t)

]
eµt

is a second solution to the CHE. Since the CHE is assumed to be non-trivial,

det

([
p1(t) −p2(t)
p2(t) p1(t)

])
= p21(t) + p22(t) 6= 0.

As a result, the two solutions are independent.

Corollary 3.2. By the above lemma, the Floquet multipliers of the CHE de-
fined in (6) have either multiplicity 2 or 4. Therefore, the Floquet multipliers
can either be written as {ρ1, ρ2}, where each has multiplicity 2 or ρ1 is the only
Floquet multiplier of the CHE.

Note that in the case of the trivial CHE, that is, when p(t) ≡ q(t) ≡ 0, the above
corollary holds, since in the case of the trivial CHE all the Floquet multipliers
are equal to unity.

Proposition 3.3. Suppose that the Floquet multipliers of the CHE defined in
equation (6) are λ1, λ2, λ3 and λ4. From Corollary 3.2, without loss of generality,
assume that λ1 = λ2 and λ3 = λ4. Let ρ1 = λ1 and ρ2 = λ3. We have ρ1ρ2 = 1.
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Proof. From Remark 2.2, (ρ1ρ2)2 = 1. We immediately see that ρ1ρ2 = 1 or
ρ1ρ2 = −1. We show below that the second case cannot occur.

Each CHE can be identified by (p(t), q(t)) where p(t) and q(t) are continuous
functions and p(t + T ) = p(t) and q(t + T ) = q(t). Let’s denote the space of
all such (p(t), q(t)) defined on [0, T ] by Q. To each (p, q) ∈ Q corresponds a
monodromy matrix M. Therefore, we can define the function M : Q → R4×4,
where M(p, q) is the monodromy matrix of the CHE defined in equation (6),
which can be written as a first order system

dv

dt
= A(t)v, (7)

where

A(t) =


0 0 1 0
−p(t) 0 −q(t) 0

0 0 0 1
q(t) 0 −p(t) 0

 , (8)

and v = [x, ẋ, z, ż]tr. Since the space Q is closed under summation and scalar
multiplication, it is a linear subspace of C0([0, T ],R2), the space of continuous
functions from [0, T ] to R2. We endow Q with sup norm, denoted by ‖·‖∞. Our
goal is to show that the function M(·, ·) is continuous at any point (p, q) ∈ Q.
To this end, let (pk(t), qk(t)) be a sequence in Q that approaches an element
(p(t), q(t)) ∈ Q, that is, ‖(pk(t), qk(t)) − (p(t), q(t))‖∞ → 0. Denote the CHE
corresponding to (pk, qk) by v̇ = Ak(t)v as defined in equations (7) and (8),
and denote the CHE corresponding to the point (p, q) ∈ Q by v̇ = A(t)v. Since
‖(pk(t), qk(t))− (p(t), q(t))‖∞ → 0, on [0, T ] we have∥∥∥∥∫ t

0

(Ak(s)−A(s))ds

∥∥∥∥
∞
→ 0.

As shown in [15], this result implies that with the same initial conditions, the
solution vk(t) of the system v̇ = Ak(t)v uniformly converges to the solution
v(t) of the system v̇ = A(t)v as k → ∞. This result proves the continuity of
the function M(p, q) on Q. Define

Q1 = {(p, q) ∈ Q|ρ1ρ2 = 1},
Q2 = {(p, q) ∈ Q|ρ1ρ2 = −1}.

Therefore, Q = Q1 ∪Q2 and Q1 ∩Q2 = ∅. If we show that Q2 is empty we are
done. It is easy to check that Q1 is non-empty (for instance, one can numerically
check that (cos(2πt/T ), sin(2πt/T )) ∈ Q1). Let (p1, q1) ∈ Q1. Assume that
Q2 is nonempty and let (p2, q2) ∈ Q2. We will show that the non-emptiness
assumption of Q2 leads to a contradiction. Let r(τ) be a continuous curve in
Q that starts from (p1, q1) and ends at (p2, q2), that is, r(τ) is defined on an
interval [τ1, τ2], and

r(τ1) = (p1, q1) ∈ Q1,

r(τ2) = (p2, q2) ∈ Q2.
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Let m(τ) = M(r(τ)). Since M(p, q) and r(τ) are continuous, we conclude that
m(τ) is a continuous curve in R4×4. Let Pm(τ) be the characteristic polynomial
of m(τ). By endowing the complex numbers with a proper order, the func-
tion which maps the coefficients of Pm(τ) to its roots, (ρ1, ρ2), is a well-defined
continuous function [14]. Therefore, the functions ρ1(τ) and ρ2(τ) are well-
defined and continuous on [τ1, τ2]. Since r(τ1) ∈ Q1, ρ1(τ1)ρ2(τ1) = 1, and since
r(τ2) ∈ Q2, ρ1(τ2)ρ2(τ2) = −1. However, this is a contradiction because 1 and
-1 are the only values that the continuous function ρ1(τ)ρ2(τ) can take. Since
we know that Q1 is non-empty, we conclude that Q2 has to be empty.

Proposition 3.4. Let ρ1, ρ2 be the Floquet multipliers of the CHE defined in
equation (6). Then one of the following cases holds.

1. ρ1 is real and |ρ1| 6= 1. In this case, ρ2 = 1/ρ1 and the system is unstable.
Moreover, if ρ1 > 0, ρ1 = exp(µT ) for a real number µ and there exist
T -periodic functions p1(t), p2(t), p3(t) and p4(t) such that[

p1(t)
p2(t)

]
eµt,

[
−p2(t)
p1(t)

]
eµt,

[
p3(t)
p4(t)

]
e−µt and

[
−p4(t)
p3(t)

]
e−µt

are four independent solutions of the system. When ρ1 < 0, ρ1 = exp(µT+
iπ) for some real number µ. In this case, the four independent solutions
are in the form[

q1(t)
q2(t)

]
eµt,

[
−q2(t)
q1(t)

]
eµt,

[
q3(t)
q4(t)

]
e−µt and

[
−q4(t)
q3(t)

]
e−µt

for 2T -periodic functions q1(t), q2(t), q3(t) and q4(t).

2. ρ1 = ρ2 = 1 and the system can be stable or unstable. In the stable case,
there exist T -periodic functions p1(t), p2(t), p3(t) and p4(t) such that[

p1(t)
p2(t)

]
,

[
−p2(t)
p1(t)

]
,

[
p3(t)
p4(t)

]
and

[
−p4(t)
p3(t)

]
are four independent solutions of the system.

In the unstable case, there exist T -periodic functions p1(t), p2(t), p3(t) and
p4(t) such that[

p1(t)
p2(t)

]
,

[
−p2(t)
p1(t)

]
,

[
tp1(t) + p3(t)
tp2(t) + p4(t)

]
and

[
−tp2(t)− p4(t)
tp1(t) + p3(t)

]
are four independent solutions of the system.

3. ρ1 = ρ2 = −1 and the system can be stable or unstable. In the stable case,
there exist 2T -periodic functions q1(t), q2(t), q3(t) and q4(t) such that[

q1(t)
q2(t)

]
,

[
−q2(t)
q1(t)

]
,

[
q3(t)
q4(t)

]
and

[
−q4(t)
q3(t)

]
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are four independent solutions of the system.

In the unstable case, there exist 2T -periodic functions q1(t), q2(t), q3(t)
and q4(t) such that[

q1(t)
q2(t)

]
,

[
−q2(t)
q1(t)

]
,

[
tq1(t) + q3(t)
tq2(t) + q4(t)

]
and

[
−tq2(t)− q4(t)
tq1(t) + q3(t)

]
are four independent solutions of the system.

4. ρ1 is not real and ρ2 = ρ̄1, that is, ρ1 and ρ2 are complex conjugates.
In this case, ρ1 = exp(iσT ) and ρ2 = exp(−iσT ) for some σ > 0, and
the system is stable. Moreover, there exist real T -periodic functions
p1(t), r1(t), p2(t) and r2(t) such that the real and imaginary parts of[

p1(t) + ir1(t)
p2(t) + ir2(t)

]
eiσt and

[
−p2(t)− ir2(t)
p1(t) + ir1(t)

]
eiσt

define four independent solutions of the system.

Proof. By Proposition 3.3, ρ1ρ2 = 1. We have the following cases.

Case 1. Since |ρ1| 6= 1, at least one of the Floquet multipliers lies outside the
unit circle. Hence, the system is unstable. By standard Floquet theory, since
ρ1 is real, if ρ1 > 0, there exists a real number µ such that ρ1 = exp(µT ) and
there exist T -periodic functions p1(t) and p2(t) such that[

p1(t)
p2(t)

]
eµt

is a solution. By Lemma 3.1 a second solution[
−p2(t)
p1(t)

]
eµt

exists. Since ρ2 = 1/ρ1, ρ2 = exp(−µT ). Similarly, there exist T -periodic
functions p3(t) and p4(t) such that[

p3(t)
p4(t)

]
e−µt and

[
−p4(t)
p3(t)

]
e−µt

are solutions. In the case when ρ1 < 0, we have ρ1 = exp((µ+ iπ/T )T ) for some
real number µ. The results follow similarly to the case ρ1 > 0, except that since
exp(iπt/T ) = cos(πt/T )+ i sin(πt/T ), we obtain 2T -periodic functions q1, q2, q3
and q4 instead of T -periodic functions p1, p2, p3 and p4.

Case 2. This case is similar to the case above with µ = 0. However, from
standard Floquet theory, in the unstable case, a t multiple of the first two
solutions has to be added to the third and fourth solutions.
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Case 3. Since ρ1 = −1, we can set µ = iπ/T . In the stable case, there exist
T -periodic functions p1(t) and p2(t) such that[

p1(t)
p2(t)

]
e
iπ
T t (9)

is a solution. Writing exp(iπt/T ) = cos(πt/T ) + i sin(πt/T ), since cos(πt/T )
and sin(πt/T ) are 2T -periodic real functions, from equation (9), we conclude
that there exist 2T -periodic functions q1(t) and q2(t) such that[

q1(t)
q2(t)

]
is a solution. By Lemma 3.1, a second solution of the form[

−q2(t)
q1(t)

]
exists. Similarly, there exist 2T -periodic functions q3(t) and q4(t) such that[

q3(t)
q4(t)

]
and

[
−q4(t)
q3(t)

]
are solutions. In the unstable case, t multiples of the first two solutions are
added to the third and fourth solutions.

Case 4. Since ρ2 = ρ̄1 and ρ1ρ2 = 1, we get |ρ1| = 1. Therefore, ρ1 = exp(iσT )
for some real number σ. The rest follows from standard Floquet theory and
Lemma 3.1.

4 Stability of the Symmetric Coupled Hill’s Equa-
tions: Floquet Theory

In this section, we impose further conditions on the CHE studied in the previous
section and study the stability of the resulting system by applying the Floquet
theory. Consider the CHE

ẍ+ p(t)x = −q(t)z,
z̈ + p(t)z = q(t)x ,

(10)

where p(t) is now assumed to be an even continuous periodic function and q(t)
an odd continuous periodic function of common period T > 0. Because of
the odd-even symmetries, we refer to this system as symmetric CHE or simply
SCHE. We show that out of 16 elements of the monodromy matrix of the SCHE
at most 4 of them are independent. Moreover, we derive a formula for the
Floquet multipliers as a function of only the first element of the monodromy
matrix. In Section 6, using this result, the stability regions of an SCHE are
found numerically.
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Lemma 4.1. Let [x(t), y(t)] be a solution of the T -periodic SCHE with the
following initial data:

x(0) = 1, ẋ(0) = 0, z(0) = 0, ż(0) = 0.

Then

1. x(t) is an even function and z(t) is an odd function.

2. ż(T ) = 0.

Proof. Since [x(t), z(t)] is a solution,

ẍ(−t) + p(−t)x(−t) = −q(−t)z(−t),
z̈(−t) + p(−t)z(−t) = q(−t)x(−t) . (11)

Since p(t) is odd and q(t) is even, this reduces to

ẍ(−t) + p(t)x(−t) = q(t)z(−t),
z̈(−t) + p(t)z(−t) = −q(t)x(−t) .

If x̂(t) = x(−t) and ẑ(t) = −z(−t), then ¨̂x(t) = ẍ(−t) and ¨̂z(t) = −z̈(−t).
Substituting these equations into the system above, we obtain

¨̂x(t) + p(t)x̂(t) = −q(t)ẑ(t),
¨̂z(t) + p(t)ẑ(t) = q(t)x̂(t).

Consequently, [x̂(t), ẑ(t)] is a solution of the SCHE as well. On the other hand,
by definition of x̂ and ẑ and from the initial conditions, the following holds:

x̂(0) = x(0) = 1,
˙̂x(0) = −ẋ(0) = 0,
ẑ(0) = −z(0) = 0,
˙̂z(0) = ż(0) = 0.

Therefore, [x̂(t), ẑ(t)] satisfies the same initial conditions as [x(t), y(t)]. By the
uniqueness property of the initial value problem, we conclude that x̂(t) = x(t)
and ẑ(t) = z(t). Thus, by definition of x̂(t) and ẑ(t), we get x(−t) = x(t) and
z(−t) = −z(t), that is, x(t) is even and z(t) is odd.

To prove ż(T ) = 0, we examine all possible solutions discussed in Proposition
3.4.

Case 1. ρ1 is a positive real number and |ρ1| 6= 1. In this case, by Proposition
3.4, the general solution is

x(t) = (Ap1(t)−Bp2(t))eµt + (Cp3(t)−Dp4(t))e−µt,

z(t) = (Ap2(t) +Bp1(t))eµt + (Cp4(t) +Dp3(t))e−µt .
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Using the fact that z(t) is odd, we can show that

z(t) = A(p2(t)eµt − p2(−t)e−µt) +B(p1(t)eµt − p1(−t)e−µt) .

Since ż(0) = 0, we have

A(ṗ2(0) + µp2(0)) +B(ṗ1(0) + µp1(0)) = 0 . (12)

On the other hand, since p1(t) and p2(t) are T -periodic,

ż(T ) = [A(ṗ2(0) + µp2(0)) +B(ṗ1(0) + µp1(0))]eµT

+ [A(ṗ2(0) + µp2(0)) +B(ṗ1(0) + µp1(0))]e−µT .

Therefore, by equation (12), ż(T ) = 0.

When ρ1 < 0, same calculations, with µ replaced by µ + iπ/T , proves that
ż(T ) = 0.

Case 2. ρ1 = ρ2 = 1. In the stable case, the solutions are T -periodic. Hence,
ż(T ) = ż(0) = 0. In the unstable case,

z(t) = Ap2(t) +Bp1(t) + Ctp4(t) +Dtp3(t) .

Since z is odd, and pj are all periodic functions, we conclude that p1(t) and
p2(t) are odd, and p3(t) and p4(t) are even functions. Since ż(0) = 0, we have

Aṗ2(0) +Bṗ1(0) + Cp4(0) +Dp3(0) = 0 . (13)

Using the fact that p1, p2, p3 and p4 are T -periodic,

ż(T ) = Aṗ2(0) +Bṗ1(0) + Cp4(0) +Dp3(0) + T (Cṗ4(0) +Dṗ3(0)) .

By equation (13) and the fact that p3 and p4 are even functions, from the
equation above, ż(T ) = 0.

Case 3. ρ1 = ρ2 = −1. In the stable case,

z(t) = Aq2(t) +Bq1(t) + Cq4(t) +Dq3(t),

where q1 and q2 are 2T -periodic functions. Therefore, z(t) is an odd 2T -periodic
function. Since z(t) is continuous, it has a convergent Fourier series expansion:

z(t) = b1 sin(
π

T
t) + b3 sin(

3π

T
t) + b5 sin(

5π

T
t) + · · ·

Because ż(0) = 0, we get b1 + 3b3 + 5b5 + · · · = 0. From this equality, it is easy
to see that ż(T ) = 0. In the unstable case,

z(t) = Aq2(t) +Bq1(t) + Cq4(t) +Dq3(t) + Ctq2(t) +Dtq1(t) .
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Since z(t) is an odd function, and qj are periodic functions, we conclude that
Aq2(t)+Bq1(t)+Cq4(t)+Dq3(t) is odd and Cq2(t)+Dq1(t) is an even function.
For simplicity we write z(t) = z1(t) + tz2(t) with z1(t) = Aq2(t) + Bq1(t) +
Cq4(t) +Dq3(t) and z2(t) = Cq2(t) +Dq1(t), where z1(t) is an odd 2T -periodic
and z2(t) is an even 2T -periodic function. Since ż(0) = 0,

ż1(0) + z2(0) = 0 .

On the other hand,

ż(T ) = ż1(T ) + z2(T ) + T ż2(T ) . (14)

Since ż1(t) + z2(t) is an even 2T -periodic function and ż1(0) + z2(0) = 0, from
its Fourier series expansion, it is easy to show that ż1(T ) + z2(T ) = 0. On the
other hand, because ż2(t) is an odd 2T -periodic function, from its Fourier series
expansion, one can show that ż2(T ) = 0. Hence, as desired, from equation (14),
ż(T ) = 0.

Case 4. ρ1 is not real. For convenience we denote p1(t) by p1, p2(t) by p2,
cos(σt) by c and sin(σt) by s. In this case, by Proposition 3.4, the general
solution is

z(t) = (Ap2 +Br2 + Cp1 +Dr1)c+ (−Ar2 +Bp2 − Cr1 +Dp1)s .

Since ρ1 is not real, σ 6= 2nπ/T for any integer n. Using the fact that z(t) is odd,
pj and rj are T -periodic, and σ 6= 2nπ/T , we can show that R(t) := Ap2+Br2+
Cp1 +Dr1 is an odd T -periodic function and S(t) := −Ar2 +Bp2 −Cr1 +Dp1
is an even T -periodic function. With these definitions of R(t) and S(t), we have

z(t) = R(t) cos(σt) + S(t) sin(σt).

From the fact that ż(0) = 0, R(t) is odd and S(t) is even, we have

Ṙ(0) + σS(0) = 0. (15)

On the other hand, because R(t) and S(t) are T -periodic,

ż(T ) = (Ṙ(0) + σS(0)) cos(σT ) + (−σR(0) + Ṡ(0)) sin(σT ).

Using equation (15) and the fact that R(t) is odd and S(t) is even, we conclude
that ż(T ) = 0.

Lemma 4.2. Let [x(t), y(t)] be a solution of the T -periodic SCHE with the
following initial data

x(0) = 0, ẋ(0) = 1, z(0) = 0, ż(0) = 0 .

Then

1. x(t) is an odd function and z(t) is an even function.

2. z(T ) = 0.

12



Proof. The proof is similar to that of Lemma 4.1.

Lemma 4.3. The monodromy matrix of a T -periodic SCHE has the form

M =

[
A −B
B A

]
,

where A and B are 2× 2 matrices.

Proof. Let ξ(t) = [x(t), ẋ(t), z(t), ż(t)]tr. Let ej be the jth column of the 4×4
identity matrix. Then,

M = [ξ1(T ), ξ2(T ), ξ3(T ), ξ4(T )],

where ξj(0) = ej . If [x(t), z(t)] is a solution to the T -periodic SCHE, so is
[−z(t), x(t)]. Therefore, if ξ1(t) = [x1(t), ẋ1(t), z1(t), ż1(t)]tr is the solution to

the system with initial condition ξ1(0) = e1, ξ̂1(t) = [−z1(t),−ż1(t), x1(t), ẋ1(t)]tr

is a solution to the system with initial condition ξ̂1(0) = e3. Similarly, if
ξ2(t) = [x2(t), ẋ2(t), z2(t), ż2(t)]tr is the solution to the system with initial con-

dition ξ2(0) = e2, then ξ̂2(t) = [−z2(t),−ż2(t), x2(t), ẋ2(t)]tr is a solution to

the system with initial condition ξ̂2(0) = e4. Consequently,

M13 = −M31, M14 = −M32, M23 = −M41, M24 = −M42,
M33 = M11, M34 = M12, M43 = M21, M44 = M22.

This proves that the monodromy matrix has the form

M =

[
A −B
B A

]
,

where A and B are 2× 2 matrices.

Theorem 4.4. The monodromy matrix of a T -periodic SCHE has the form

M =


a11 a12 −a31 0
a21 a11 0 a31
a31 0 a11 a12
0 −a31 a21 a11

 . (16)

The eigenvalues of M (i.e., the Floquet multipliers) have the form

λ = a11 ±
√
a211 − 1 . (17)

Proof. By Lemma 4.1, 4.2 and 4.3, the monodromy matrix M has the form

M =


a11 a12 −a31 0
a21 a22 0 −a42
a31 0 a11 a12
0 a42 a21 a22

 .
13



Suppose ξj(0) = ej for j = 1, 2, 3, 4. Define

M′ = [ξ1(−T ), ξ2(−T ), ξ3(−T ), ξ4(−T )].

By odd-even symmetries that exist in the SCHE, one can show that

M′ =


a11 −a12 a31 0
−a21 a22 0 a42
−a31 0 a11 −a12

0 −a42 −a21 a22

 .
From standard Floquet theory [8], we have MM′ = I4×4, where I4×4 is the 4×4
identity matrix. This equation gives rise to the following equalities:

a12(a22 − a11) = 0,

a21(a22 − a11) = 0,

a21(a42 + a31) = 0,

a12(a42 + a31) = 0,

a211 + a231 − a12a21 = 1,

a242 + a222 − a12a21 = 1.

This system has two sets of solutions:

1. a11 = a22, a42 = −a31, a211 + a231 = 1 + a12a21.

2. a12 = 0, a21 = 0, a211 + a231 = a242 + a222 = 1.

In the first case, the monodromy matrix has the form

M1 =


a11 a12 −a31 0
a21 a11 0 a31
a31 0 a11 a12
0 −a31 a21 a11

 , (18)

and its characteristic equation is

det(M1 − ρI) = (ρ2 − 2a11ρ+ 1)2.

From this equation, the eigenvalues are found to be

ρ1 = a11 +
√
a211 − 1 and ρ2 = a11 −

√
a211 − 1,

where each has a multiplicity 2, which is consistent with Corollary 3.2.

In the second case, the monodromy matrix is

M2 =


a11 0 −a31 0
0 a22 0 −a42
a31 0 a11 0
0 a42 0 a22

 ,
14



and its characteristic equation is

det(M2 − ρI) = (ρ2 − 2a11ρ+ 1)(ρ2 − 2a22ρ+ 1).

From this equation, the eigenvalue are found to be

ρ1 = a11 ±
√
a211 − 1 and ρ2 = a22 ±

√
a222 − 1.

However, by Corollary 3.2 either a11 = a22 or a11 = 1 and a22 = −1 or a11 = −1
and a22 = 1. The case a11 = a22 is the same as the first scenario above.
Therefore, the only other possible case that could occur is when ρ1ρ2 = −1.
However, this is a contradiction to Proposition 3.3. Consequently, the only
possible form of the monodromy matrix is the one given in equation (18) for
which the eigenvalues have the form

ρ1 = a11 +
√
a211 − 1 and ρ2 = a11 −

√
a211 − 1.

In Section 6, as an example of the SCHE we study the coupled Mathieu equations
which were defined in equation (2).

5 Lorentz Oscillator Model and Coupled Hills
Equations

In this section, we describe the Lorentz Oscillator Model (LOM) and its connec-
tion to the coupled Mathieu equations defined in (2). In particular, we study
the stability of the LOM and will show that, under a suitable transformation
it is equivalent, in a special case, to a class of coupled Mathieu equations. In
Section 6, where the stability diagrams of the coupled Mathieu equations are
found, we will use the results of this section.

5.1 Lorentz Oscillator Model

In the Lorentz Oscillator Model, an electron is bound to the nucleus by a har-
monic potential and undergoes forced motion subject to damping [4]. Under
external electromagnetic fields one can show that the equations of motion of the
electron are [4]:

χ̈+ γχχ̇+ ω2
χχ = qE0

m cos(ωt)− qB0

m cos(ωt)ζ̇ ,

ζ̈ + γζ ζ̇ + ω2
ζζ = qB0

m cos(ωt)χ̇ ,
(19)

where (χ, ζ) is the relative position of the electron with respect to the nucleus,
γχ, γζ are the phenomenological damping coefficients, and ωχ, ωζ are the natural
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frequencies in the χ and ζ directions. The charge and mass of the electron are
q and m, respectively, while E0 and B0 are the electric and magnetic fields
amplitudes.

Our goal is to analyze the stability of the homogenous LOM and establish its
connection with CHE. To this end, we first write a dimensionless form of (19).
We divide all of the terms by ω2, where ω is the frequency of the driving terms
on the right-hand-side of the differential equations, and scale the parameters as
follows:

t→ ωt , γ → γ

ω
, and Ω→ Ω

ω
.

Similarly, we define the coupling amplitudes

ε =
qE0

mω2
and β =

qB0

mω
.

The dimensionless LOM then becomes

χ̈+ γχχ̇+ Ω2
χχ = ε cos(t)− β cos(t)ζ̇ ,

ζ̈ + γζ ζ̇ + Ω2
ζζ = β cos(t)χ̇ .

The homogenous form of the dimensionless LOM, which we will study, becomes

χ̈+ γχχ̇+ Ω2χ = −β cos(t)ζ̇ ,

ζ̈ + γζ ζ̇ + Ω2ζ = β cos(t)χ̇ .

5.2 Rotation of the symmetric homogenous LOM to CHE

The LOM is said to be symmetric if

γχ = γζ = γ, Ω2
χ = Ω2

ζ = Ω2.

Therefore, the equations of the symmetric homogenous LOM are

χ̈+ γχ̇+ Ω2χ = −β cos(t)ζ̇ ,

ζ̈ + γζ̇ + Ω2ζ = β cos(t)χ̇ .
(20)

We can use a transformation to write this system as a CHE. Define

χ+ iζ = (x+ iz) exp

[
−1

2
γt+

i

2
β sin(t)

]
. (21)

Let

a = Ω2 − γ2

4
+
β2

8
and b =

β2

8
. (22)

16



Under this transformation, one can show that the differential equations govern-
ing (x, z) are

ẍ+ [a+ b cos(2t)]x = 1
2β (γ cos(t)− sin(t)) z,

z̈ + [a+ b cos(2t)] z = − 1
2β (γ cos(t)− sin(t))x .

(23)

Clearly, this is a CHE which we call the equivalent CHE of the symmetric LOM
defined in (20).

Although these equations seem simple and straightforward, the relationship
between these functions, x and z, and the original coordinates, χ and ζ, is
complicated:

χ = exp

[
−1

2
γt

]{
x cos

[
1

2
β sin(t)

]
− z sin

[
1

2
β sin(t)

]}
, (24)

ζ = exp

[
−1

2
γt

]{
z cos

[
1

2
β sin(t)

]
+ x sin

[
1

2
β sin(t)

]}
. (25)

If we assume that the damping, γ, is zero, system (23) becomes an SCHE as
defined in equation (10).

Proposition 5.1. The undamped LOM

χ̈+ Ω2χ = −β cos(t)ζ̇,

ζ̈ + Ω2ζ = β cos(t)χ̇

is stable if and only if its equivalent CHE is stable.

Proof. From equations (24) and (25), if we set γ = 0, a solution (χ(t), ζ(t)) of
the undamped LOM can be found from a solution (x(t), z(t)) of the equivalent
CHE by a rotation of angle 1

2β sin(t). Hence, the undamped LOM is stable if
and only if its equivalent CHE is stable.

5.3 Stability of the Homogenous LOM

Below, we show that the homogenous LOM is stable for any parameter set
(γχ,Ω

2
χ, β, γζ ,Ω

2
ζ) for which γχ > 0 and γζ > 0. We can show this by the

Lyapunov method (see e.g. [9]). The general homogenous LOM is in the form

χ̈+ γχχ̇+ Ω2
χχ = −β cos(t)ζ̇,

ζ̈ + γζ ζ̇ + Ω2
ζζ = β cos(t)χ̇.

(26)

Let

V =
1

2
(χ̇2 + ζ̇2 + Ω2

χχ
2 + Ω2

ζζ
2).
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Function V is a Lyapunov function for the time-varying system (26). We have

V̇ = χ̇χ̈+ ζ̇ ζ̈ + Ω2
χχχ̇+ Ω2

ζζζ̇

= χ̇(−γχχ̇− Ω2
χχ+ β cos(t)ζ̇) +

ζ̇(−γζ ζ̇ − Ω2
ζζ − β cos(t)χ̇) +

Ω2
χχχ̇+ Ω2

ζζζ̇

= −γχχ̇2 − γζ ζ̇2

≤ 0.

Since V is a positive definite function which does not depend on t, and V̇ ≤ 0,
system (26) is stable [9].

Note that experimental realizations of the LOM system sometimes exhibit in-
stability [4], which must result from the forcing terms that are not included in
this present analysis.

6 Stability Regions for the Coupled Mathieu Equa-
tions

In this section, we study the stability regions for the coupled Mathieu equations
both in the case where it is a transformation of the LOM and for general choices
of the parameters. In the former case, an analytic result is presented.

Recall the equations of the coupled Mathieu equations are given by:

ẍ+ [a+ b cos(2t)]x = −c sin(t)z,
z̈ + [a+ b cos(2t)] z = c sin(t)x.

(27)

Proposition 6.1. The system of coupled Mathieu equations is

1. stable if a > b > 0 and c =
√

2b.

2. unstable if 0 < a < b and c =
√

2b.

Proof. 1. Define β =
√

8b. Since c =
√

2b, we have c = β/2. Therefore, with
these parameters, the coupled Mathieu equations become

ẍ+ [a+ b cos(2t)]x = −β2 sin(t)z,

z̈ + [a+ b cos(2t)] z = β
2 sin(t)x .

(28)

Let Ω =
√
a− b. One can easily check that with these definitions, equation (22)

holds with γ = 0. Hence, under transformation (21), the governing differential
equations of (χ, ζ) are the undamped LOM that are equivalent to the coupled
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Mathieu equations defined above. Thus, the proof follows from Proposition 5.1
and the fact that the homogeneous LOM is always stable.

2. In this case, define Ω =
√
b− a, and β =

√
8b. If we transform equation (28)

back to LOM using the inverse of transformation (21), we get

ẍ− Ω2x = −β cos(t)ż,
z̈ − Ω2z = β cos(t)ẋ.

(29)

It is easy to check that the curves

1

2
(ẋ2 + ż2 − Ω2x2 − Ω2z2) = C

are integral curves of system (29) for arbitrary constant C. These curves are
hyperbolic type curves which show that system (29) is unstable. Since γ = 0,
similar to the proof of Proposition 5.1 we can show that the stability of system
(29) is equivalent to that of (28). Hence, in this case, because system (29) is
unstable, the system of coupled Mathieu equations is unstable as well.

Fig. 1 to 3 show the stability regions in the parameter space (a, b, c) of equation
(27). To generate these stability regions, for each given set of parameters,
(a, b, c), the monodromy matrix M is calculated by integrating the differential
equations. Then, the largest eigenvalue of M is calculated from equation (17).
We note that this method compared to the standard algorithms for calculation
of eigenvalues is faster and more accurate.

Fig. 1 shows the stability regions when c = k
√

2b for different values of k. The
numerical simulation in part (c) illustrates Proposition 6.1. Fig. 2 plots, in
addition, level sets of the Floquet multiplier, where the special case of the LOM
again appears in part (b).

Fig. 3 fixes c and varies a and b. We note that the pictures generalize the
Arnold tongue picture found in the usual Mathieu equation.

7 Conclusion

In this paper, we studied a class of Coupled Hill’s equations in the form

ẍ+ p(t)x = −q(t)z,
z̈ + p(t)z = q(t)x ,
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(a) c = 0 (b) c = 1
4β

(c) c = 1
2β (d) c = 9

16β

(e) c = 3
4β (f) c = β

Figure 1: Stability regions for the Hill’s equations for different values of c,
varying a and b between 0 and 20, where β =

√
8b. Shaded area shows unstable

region. Part (c) is clearly consistent with Proposition 6.1.
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Figure 2: (a, a′) Stability diagrams for c = β. (b, b′) Stability diagrams for
c = β/2. (c, c′) Stability diagrams for c = 0. In the stability regions, blue
denotes the stable region and red denotes the unstable region. In the stability
contours, the color bar shows the log10 of the magnitude of the largest eigenvalue
of the monodromy matrix.
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Figure 3: (a, a′) Stability diagrams for c = 1, where a and b vary from 0 to 20.
(b, b′) Stability diagrams for c = 5, where a and b vary from 0 to 20. (c, c′)
Stability diagrams for c = 10, where a and b vary from 0 to 20.
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where p(t + T ) = p(t) and q(t + T ) = q(t) for some T > 0. Floquet theory
was used to identify different possible forms of the solutions of this system. As-
suming that p(t) and q(t) are even and odd functions, respectively, exploiting
the existing symmetries, we proved that out of 16 elements of the monodromy
matrix only 4 of them are independent. A general simplified form of the mon-
odromy matrix, as in equation (16), was derived and it was shown that the
eigenvalues of the monodromy matrix are only functions (see equation (17)) of
the first element of the matrix. The formula that was found for eigenvalues
is also numerically useful, as it gives a closed form for the eigenvalues of the
monodromy matrix which will be more accurate and computationally less cum-
bersome compared to the standard algorithms that are used to find eigenvalues.
Next, the Lorentz Oscillator model and its connection to the system of coupled
Mathieu equations (which is an example of the coupled Hill’s equations) was
introduced. It was shown that this system in its homogenous case is always
stable. Finally, the stability diagrams of the coupled Mathieu equations were
presented and it was shown that the results are consistent with the stability of
the corresponding Lorentz oscillator model.

In future work, we intend to study this problem in presence of stochastic dis-
turbances as well as the related quantum problem.
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