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Abstract

The Cauchy’s theorem for balance laws is proved in a general context using a
simpler and more natural method in comparison to the one recently presented
in [1]. By ”generality” we mean that the ambient space is considered to be an
orientable smooth manifold, and not only the Euclidean space.
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1 Introduction

During the past decades there has been an interest to generalize different notions
in continuum mechanics to smooth manifolds [e.g. 2, 3, 4]. This interest is
mostly due to three advantages that smooth manifolds might have.

Firstly, manifolds are the suitable place where one can formulate many the-
ories in physics, including continuum mechanics, because the notion of smooth
manifolds makes it possible to formulate the theory without referring to any
particular coordinate system. This allows us to state the theory in an arbitrary
coordinate system without too much difficulty.

Secondly, as Marsden [2] notes, a basic message that we receive from Einstein
is that any theory that purports to be fundamental ought to be generalizable so
the underlying physical space is a manifold and not just Euclidean space. By
implementing the geometry of manifolds, one can examine whether a specific
law in continuum mechanics can be generalized to smooth manifolds or not, so
if a law is generalizable it would be more fundamental. For example, it can be
shown that if we interpret forces as vector fields the Conservation of Momentum
law in its integral form cannot be stated on an arbitrary orientable manifold.
This examination helps us to generalize the theory of continuum mechanics in
a proper way.

Finally, there are practical examples in which modeling a body as an open
subset of IRn is not possible. For instance, consider the motion of a shell in
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IR3. In this example the body cannot be considered as an open subset of IR3,
but it can be modeled as a 2-dimensional submanifold of IR3. Another famous
example involves liquid crystals (see [5]). In these materials the orientations of
molecules affect the macroscopic behavior of the material. In order to include the
orientation of molecules more degrees of freedom and hence, more dimensions are
required. For example, liquid crystals with inextensible oriented rod molecules
are modeled as specific submanifolds of IR3 × S2.

The above discussion motivates generalizing different notions in continuum
mechanics to smooth manifolds. This generalization includes both kinematics
and balance laws [2]. As for the balance laws, a fundamental theorem, Gen-
eralized Cauchy’s Theorem, is required to be proved on smooth manifolds. In
this regard, different contributions have been made. For example, Marsden and
Hughes [2], as they stated, proved the Cauchy’s theorem in a three dimensional
Riemannian manifold, although in their rough proof, the manifold is consid-
ered to be locally flat which is an additional assumption they made. Segev
[1], proved the Cauchy’s Theorem in the most general form. He considered an
oriented manifold (not necessarily Riemannian) and replaced the scalar fields
in the classical form of Cauchy’s Theorem with suitable differential forms. The
theorem, in this case, is called the Generalized Cauchy’s Theorem, and the ob-
jective of the present paper is to prove this theorem by a simpler method in
comparison to [1].

In our proof of the Generalized Cauchy’s Theorem we first, prove the theorem
in Euclidean space IRn. Then using local coordinates which are local orientation
preserving diffeomorphisms, we translate the statement of the Cauchy’s theorem
to IRn. Finally, pulling back the result obtained in IRn by coordinate functions,
and using a theorem concerning partition of unity on manifolds, we complete
the proof of the Generalized Cauchy’s Theorem.

2 Generalized Cauchy’s Theorem

First, we state the ordinary form of Cauchy’s Theorem in IRn. Then, stating
its generalized form, we explain the relationship between the classical and the
generalized format of the theorem. The proofs are provided in the next section.

Definition 2.1 A simple body B is an open subset of IRn with Lipschitz bound-
ary. Furthermore, every open subset of B (usually denoted by P) with Lipschitz
boundary is called a material part of B.

Theorem 2.2 Let B ⊆ IRn be a simple body and α : B → IR, β : B → IR be
bounded functions. Moreover, suppose that τ : UB → IR, where UB is the unit
tangent bundle of B, is a continuous function. Also, for a material part P ⊆ B,
define

τP(X) := τ(X,N(X)) X ∈ ∂P,

where N is the smooth unit normal outward-pointing vector field on ∂P. Now,
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if the equation ∫
P
αdV =

∫
P
βdV +

∫
∂P

τPdA,

is satisfied for every bounded material part P ⊆ B, then there exists a unique
continuous vector field γ on B such that for every point X ∈ B

τ(X,N) = 〈γ(X),N〉.

Remark 2.3 In the above theorem note that since the boundary is chosen to be
Lipschitz the smooth unit normal vector field exists for almost every x on the
boundary with respect to the Lebesgue measure induced on ∂P. As a consequence,
τP is defined almost everywhere on the boundary.

A common example of the application of the Cauchy’s Theorem is in the case
of First Law of Thermodynamics. When no work is involved α is regarded as
the rate of change of internal energy per unit volume, β is considered to be the
rate of energy per unit volume generated in the body and τ(N) is the rate of
energy per unit area which leaves the boundary of the body (or the material
part) in the N direction.

As it is well-known, in the case of n = 3, i.e. IR3, the above theorem is
proved by considering tetrahedra whose volumes approach zero. When n 6= 3,
tetrahedra cannot be used anymore, but instead, using n-simplexes, as it can
be seen in the next section, we prove Theorem 2.2.
Before stating the Cauchy’s Theorem on smooth manifolds, we need to present
a more general definition of body.

Definition 2.4 LetM be an oriented n-dimensional smooth manifold with cor-
ners. A subset B of M is said to be a body in the ambient space M if it is an
orientable embedded submanifold with corners. By a material part of B we mean
a subset P ⊆ B which is an embedded submanifold with corners whose dimension
is the same as the dimension of B.

In the above definition the dimension of B can be less than the dimension of the
ambient space M, but the dimension of P is always equal to the dimension of
B. Also note that Definition 2.1 is a special case of Definition 2.4.

Now, we are ready to state the generalized Cauchy’s theorem. An analog of
Theorem 2.2 is to be stated, however as Definition 2.4 suggests, the manifold is
not necessarily Riemannian and hence, in general, there is no volume element
as is in Theorem 2.2. This requires us to replace the scalar fields in Theorem
2.2 with suitable differential forms. We must replace the scalar fields α and β
with n-forms α and β. Hence, for example if v1,v2, . . . ,vn are oriented vectors
in the tangent space at x, TxB, then β(x)(v1,v2, . . . ,vn) can be interpreted as
the rate at which the property, denoted by β, is generated in the infinitesimal
volume generated by v1,v2, . . .vn. Finally, we must replace τ : UB → IR with
a suitable differential form field. In the case of a smooth manifold which is not
Riemannian there is nothing known as unit tangent bundle UB. However, not-
ing that every unit vector at x actually specifies an oriented (n−1)-dimensional
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subspace of TxB, called a hyperplane, we can replace UB with the bundle of ori-

ented hyperplanes on B, denoted by
−→
HB. Therefore, instead of the continuous

scalar field τ we assume the existence of a continuous function τ which assigns

an (n − 1)-form in T
(n−1)
x H to the oriented hyperplane H at x. That is if H

is an oriented hyperplane at x, τ (x,H) is an (n−1)-form on the vector space H.

Remark 2.5 If Ω is the orientation form on B,
−→
HB can be identified with a

triple (x,H,n) where n ∈ TxB\H and the orientation form on H is nyΩ (nyΩ
is the contraction of Ω with vector n). So, if v1,v2, . . . ,vn−1 are vectors in H,
(v1,v2, . . . ,vn−1) is positively oriented in (x,H,n) when (n,v1,v2, . . . ,vn−1)
is positively oriented in B. As a result,

(x,H,n) ∼ (x,H,n′)⇔ ∃c > 0 s.t. nyΩ = c(n′yΩ).

defines an equivalence relation on the set consisting of (x,H,n)’s. However,
from now on for the sake of simplicity an equivalence class is shown by its
representative say, (x,H,n). It is obvious that every hyperplane H at x, adopts
two different orientations such that for an arbitrary n ∈ TxB\H, one oriented
hyperplane is (x,H,n) and the other is (x,H,−n).

In order to be able to state the generalized form of Theorem 2.2 we need to

define the concept of continuity of a map whose domain is
−→
HB. To this end,

we can simply define the continuity of the required map in the next theorem by
implying coordinate systems as follows.

Lemma 2.6 Let B be an oriented smooth manifold. If ψ is a coordinate system
at x ∈M then to each oriented hyperplane (x,H,n) corresponds a unit normal
N at X = ψ(x) such that

(x,H,n) = (ψ−1(X), ψ∗(N⊥), ψ∗(N)).

where ψ∗ is the tangent map of ψ−1.

Proof Denoting tangent map of ψ by ψ∗, there are exactly two unit normals
to ψ∗(H). Choose the one, say N , for which (ψ∗N) y Ω = c(n y Ω) for a
positive number c, where Ω is the orientation form of B. Referring to Remark
2.5, the above equation is clear. �

Lemma 2.7 Let B be an oriented smooth manifold. Suppose τ is a function

on the bundle of oriented hyperplanes
−→
HB such that for each (x,H,n) in

−→
HB,

τ (x,H,n) is an (n− 1)-form on hyperplane H. If ψ is a coordinate system at
x ∈M then there exists a scalar function τψ such that 1

τψ(X,N)(NydV )|N⊥ = (ψ−1)∗τ (x,H,n)

where N is the unit normal at X = ψ(x) for which

(x,H,n) = (ψ−1(X), ψ∗(N⊥), ψ∗(N)).

1Here, (ψ−1)∗ is considered to be pullback under ψ−1.
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Proof By lemma 2.6, noting that (NydV ) is an (n−1)-form the proof is obvi-
ous. �

In the above lemma τψ is a scaler function defined on the unit tangent bundle
of an open subset of Euclidean space. This permits us to define the continuity
of the map τ as follows.

Definition 2.8 Map τ in the above lemma is said to be continuous if τψ is
continuous for every coordinate system ψ.

Now, having found suitable substitutions for the notions in Theorem 2.2, we are
prepared to state the Generalized Cauchy’s Theorem.

Theorem 2.9 Let M be an oriented smooth manifold with corners and B be
an n-dimensional body in M. Suppose that α and β are bounded n-forms on B
and τ is a continuous function on the bundle of oriented hyperplanes

−→
HB such

that for each (x,H,n) in
−→
HB, τ (x,H,n) is an (n− 1)-form on hyperplane H.

Also, for a material part P ⊆ B, define

τP(x) := τ (x, Tx∂P,n(x)) x ∈ ∂P,

where n is a smooth outward-pointing vector field on ∂P. Now, if the equation∫
P
α =

∫
P
β +

∫
∂P
τP ,

is satisfied for every compact material part P ⊆ B, then there exists a unique
continuous (n− 1)-dimensional form field σ on B such that for every x ∈ B, if
H is a hyperplane at x and n ∈ TxB\H we have

σ(x)|H = τ (x,H,n).

The above theorem says that if the stated integral equation holds for every
compact material part P, then there exists a global form σ whose restriction to
each hyperplane equals τ . This is similar to the existence of the global vector
field γ in Theorem 2.2, whose projection in any direction equals τ calculated in
that direction.

The proof of Theorem 2.9 is postponed until section four, after stating the
proof of the Cauchy’s Theorem on IRn in section three. Later, when Theorem
2.9 is proved it would be clear that the Cauchy’s Theorem on IRn is a special
form of Theorem 2.9.
Also note that a similar description as in remark 2.3 is stated in Theorem 4.1.

3 Proof of Cauchy’s Theorem in IRn

As mentioned before to prove the Generalized Cauchy’s Theorem, we first prove
the Cauchy’s Theorem in IRn.
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Proof of Theorem 2.2 In case of n = 3 the theorem is proved by con-
sidering a tetrahedron as a material part whose volume approaches zero. Here,
in our proof, in case of an arbitrary natural number n, an n-simplex is used
instead of a tetrahedron. For the sake of simplicity we prove the equation
τ(X,N) = 〈γ(X),N〉 at X = 0 for a body B containing the point X = 0.
Suppose that for nonzero real numbers a1, a2, . . . , an and the real variable t ∈ IR,
P0, P

t
1 , . . . , P

t
n are the vertices of the n-simplex St = (P0, P

t
1 , . . . , P

t
n) where

P0 = (0, 0, . . . , 0)
P t1 = t(a1, 0, . . . , 0)

...
P tn = t(0, 0, . . . , an)

Clearly, there exists an ε > 0 such that for every t ∈ (o, ε), St ⊆ B. Since
the stated integral equation holds for every bounded material part P ⊆ B we
have ∫

St

αdV =

∫
St

βdV +

∫
∂St

τStdA 0 < t < ε,

or, ∫
St

(α− β)dV =

∫
∂St

τStdA 0 < t < ε. (1)

To make use of this equation properly, we need to compute ∂St as follows

∂St =

n⋃
i=0

Sti s.t. Sti = (P0, P
t
1 , . . . , P

t
i−1, P

t
i+1, . . . , P

t
n).

Now, if the unit normal vector field on Sti is denoted by N i, then for i 6= o

N i(X) = −ei ∀X ∈ Sti ,

where ei = (0, 0, . . . , sign(ai)︸ ︷︷ ︸
ith

, . . . , 0).

For i = 0,

St0 =

{
(X1, X2, . . . , Xn) s.t.

1

a1t
X1 +

1

a2t
X2 + . . .+

1

ant
Xn = 1

}
,

thus, defining b = (a−11 , a−22 , . . . , a−1n ), we have

N0(X) =
b

‖b‖
∀X ∈ St0.

Define
K = sup

{
|α(X)− β(X)| s.t. X ∈ St

}
.
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From equation (1) ∣∣∣∣∫
∂St

τStdA

∣∣∣∣ ≤ KV t,
where V t is the volume of St. From the above inequality∣∣∣∣∣

∫
St
0

τStdA+

n∑
i=1

∫
∂St

i

τStdA

∣∣∣∣∣ ≤ KV t. (2)

Using the mean value theorem for integral on IRn, there exist points Qti ∈ Sti
such that if Ati is the area of Sti ,∫

St
i

τStdA = τSt(Qti)A
t
i = τ(Qti,N i(Q

t
i))A

t
i.

Substituting this equation into (2) and dividing by At0∣∣∣∣∣τ(Qt0,N0(Qt0)) +

n∑
i=1

τ(Qti,N i(Q
t
i))
Ati
At0

∣∣∣∣∣ ≤ KV t

At0
.

Now let t approach zero, due to the continuity of τ

lim
t→0

τ(Qti,N i(Q
t
i)) = τ(0,N i(0)).

Furthermore,

V t =
a1a2 . . . an

n!
tn ⇒ lim

t→0

V t

At0
= 0.

Also, considering the unit normal vector to the area Ati and At0,

lim
t→0

Ati
At0

=
bi
‖b‖

i 6= 0,

where bi is the ith component of the vector b displayed in the basis {ei}. Sub-
stituting the above equation into the last inequality we have

τ(0,N0(0)) +

n∑
i=1

bi
‖b‖

τ(0,−ei) = 0. (3)

Now, since ai’s are arbitrary nonzero real number, bi is also an arbitrary nonzero
real number. As a result, in (3) we can let N0(0) approach ei and consequently
from (3) and continuity of τ

τ(0, ei) = −τ(0,−ei).

Substituting this into (3) and considering the the equation we had for N0,

τ(0,
b

‖b‖
) =

n∑
i=1

bi
‖b‖

τ(0, ei). (4)
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If the vector field γ at 0 is defined as

γ(0) =

n∑
i=1

τ(0, ei)ei,

equation (4) implies
τ(0,N) = 〈γ(0),N〉.

As mentioned before we can construct the above proof for every X ∈ B just as
the case X = 0, consequently if for X ∈ B

γ(X) :=

n∑
i=1

τ(X, ei)ei,

we have
τ(X,N) = 〈γ(X),N〉 ∀X ∈ B.

The continuity and uniqueness of the vector field γ follows readily from the
above equation. �

An interesting point in the above proof is that the equation τ(0, ei) = −τ(0,−ei)
is shown during the main proof, so the following corollary doesn’t need a sepa-
rate proof.

Corollary 3.1 With the assumptions of Theorem 2.2

τ(X,N) = −τ(X,−N) ∀X ∈ B.

where N is any unit vector at X.

4 Proof of The Generalized Cauchy’s Theorem

Before starting off with the proof of Theorem 2.9, let’s recall a few famous the-
orems from Geometry of Manifolds (e.g. see [6]). In the following theorems, as
usual, the smooth manifold B is assumed to be Hausdorff and second countable.

Theorem 4.1 If B is any smooth manifold with corners, there is a smooth
outward-pointing vector field for almost every x ∈ ∂B. In other words, if (ψ,U)
is a boundary chart the image under ψ of points at which this vector field does not
exist has measure zero with respect to Lebesgue measure induced on ψ(∂B ∩U).

Theorem 4.2 Let B be an oriented smooth manifold with boundary. Then ∂B
is orientable, and the orientation determined by any outward-pointing vector
field along ∂B is independent of the choice of vector field.

Note that if B is a smooth manifold with corners its boundary is be a union of
smooth manifolds each of which is orientable using an outward-pointing vector
field.
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Theorem 4.3 If B is a smooth manifold with corners and U = {Uα} is any
open cover of B, there exists a smooth partition of unity subordinate to U .

Lemma 4.4 Let ψ : N → P be a diffeomorphism, and N1 be an embedded
submanifold of N , if ψ̂ : N1 → P1, where P1 = ψ(N1), is the restriction of ψ to
N1, then for every tangent vector v ∈ Tn1

N1

(ψ̂)∗(v) = ψ∗(v),

in particular
ψ∗(v) ∈ Tp1P1,

where p1 = ψ(n1).

Proof First, note that since ψ is a diffeomorphism, ψ̂ is differentiable the left
hand side of the above equation is well-defined. Every tangent vector on N1,
such as v, can be thought of as a tangent to a curve, say θ, in N1. However,

(ψ̂)∗(v) = (ψ̂)∗θ̇ =
˙

ψ̂oθ = ˙ψoθ = (ψ)∗(v).

Note that since N1 and P1 are embedded submanifolds, Tn1
N1 and Tp1P1 can

be considered as subspaces of Tn1N and Tp1P , respectively. �

Lemma 4.5 If γ is a vector field on a set U ⊆ IRn and N is a unit vector at
X

(γ(X) y dV (X))|N⊥ = 〈γ(X),N〉(N y dV (X))|N⊥ .

Proof If (v1,v2, . . . ,vn−1) is a basis for N⊥, then (N ,v1,v2, . . . ,vn−1) is a
basis for the tangent space at X, and therefore there exist scalars a1, a2, . . . , an
such that

γ(X) = 〈γ(X),N〉 N +

n−1∑
i=1

aivi.

Substituting this into (γ(X) y dV (X))|N⊥ the desired equation follows. �

Using 2.2, 2.7 and 4.1 to 4.5 we are ready to prove the Generalized Cauchy’s
Theorem.

Proof of Theorem 2.9 From 4.1 and 4.2 it is clear that τP is well-defined
almost everywhere (in the sense explained in 4.1). Since B is a smooth manifold,
it is second countable locally Euclidean and consequently, B admits a countable
atlas of coordinate charts {(Um, ψm)} such that ψm is orientation preserving on
Um. We show that for every m there exist an (n− 1)-form σm on Um with the
property stated in Theorem 2.9.

Pick a compact submanifold with corners P ⊂ Um such the interior points of
ψm(P) form an open set with Lipschitz boundary. Writing the integral equation
in Theorem 2.9 for P ∫

P
α =

∫
P
β +

∫
∂P
τP .
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Now, since ψm is an orientation preserving diffeomorphism from Um to ψm(Um)
by diffeomorphism invariance property of integrals on manifolds∫

ψm(P)
(ψ−1m )∗α =

∫
ψm(P)

(ψ−1m )∗β +

∫
∂ψm(P)

(ψ̂−1m )∗τP , (5)

where ψ̂m is the restriction of ψm to ∂P, and so itself is an orientation preserving
diffeomorphism on ∂P. Define

αm := (ψ−1m )∗α, βm := (ψ−1m )∗β,

and,
τψm(P) := (ψ̂−1m )∗τP ,

τm(X,N) := (ψ−1m )∗τ (ψ−1m (X), ψ∗mN
⊥, ψ∗m(N)), (6)

where N is any unit vector at X ∈ Um and N⊥ is the (n − 1)-dimensional
subspace normal to N . Note that due to the fact that ψm is diffeomorphism,
the boundedness and continuity properties of α, β and τ are transferred to αm,
βm and τm respectively. In order to apply Theorem 2.2 to (5) we require to
show that for the unit normal outward-pointing vector field N on ∂ψm(P)

τψm(P)(X) = τm(X,N(X)).

If X ∈ ∂P by definition of τψm(P) and τP(see Theorem 2.9) for x = ψ−1m (X)
we have

τψm(P)(X) = (ψ̂−1m )∗(τP(x)) = (ψ̂−1m )∗(τ (x, Tx∂P,n(x)), (7)

where n is an outward-pointing vector field on ∂P. Note that because N(X) is
normal to ∂ψm(P), we have

TX∂ψm(P) = N(X)
⊥
,

and so,
Tx∂P = ψ∗m(N(X)

⊥
).

Since N is the smooth outward-pointing vector field on ∂ψm(P), ψ∗m(N) is a
smooth outward-pointing vector field on ∂P. Therefore, since ∂P is an embed-
ded submanifold, using lemma 4.4 , from (7)

τψm(P)(X) = (ψ−1m )∗(τ (x, ψ∗m(N(X)
⊥

), ψ∗m(N)(x)).

Finally, using (6)
τψm(P)(X) = τm(X,N(X)).

Now, substituting the above results into (5) we have∫
ψm(P)

αm =

∫
ψm(P)

βm +

∫
∂ψm(P)

τψm(P).

10



where,
τψm(P)(X) = τm(X,N(X)).

Note that by compactness of P the set ψm(P) is bounded. Therefore, since ψm
is a diffeomorphism, from the above integral equation we deduce that for every
bounded open subset Q of ψm(Um) with Lipschitz boundary∫

Q
αm =

∫
Q
βm +

∫
∂Q
τQ, (8)

where
τQ(X) = τm(X,N(X)).

There exist unique scalar functions αm and βm, τm on ψm(Um) such that

αm = αm dV , βm = βm dV

τm(X,N) = τm(X,N) dA(X,N)

where dV is the volume form on IRn, N is a unit vector at X and dA(X,N) is
the area formNydV (X) restricted toN⊥. Furthermore, for everyQ ⊆ ψm(Um)
there exists a unique function τQ on ∂Q such that

τQ = τQ dAQ,

where dAQ is the area form on ∂Q which is oriented by an outward-pointing
vector field. As a consequence of these definitions,

τQ(X) = τm(X,N(X)).

Substituting these equations into (8)∫
Q
αm dV =

∫
Q
βm dV +

∫
∂Q

τQ dAQ,

Since the above equation is an integral equation in IRn we can interpret the
integral of forms as multiple integrals, that is for every Q ⊆ ψm(Um),∫

Q
αm dV =

∫
Q
βm dV +

∫
∂Q

τQ dA,

such that,
τQ(X) = τm(X,N(X)).

By assumption and definition 2.8, τm is continuous. Therefore, applying Theo-
rem 2.2 there exists a unique continuous vector field γm on ψm(Um) such that
for every point X ∈ ψm(Um) and every unit vector N at X

τm(X,N) = 〈γm(X),N〉.

Define the (n− 1)-form field σm on Um as follows

σm = (ψm)∗(γm y dV ). (9)
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We claim that for every x ∈ Um, if H is a hyperplane at x and n ∈ TxB\H we
have

σm(x)|H = τ (x,H,n). (10)

To show this, by lemma 2.6 it suffices to show that for every unit normal N at
X ∈ ψm(Um)

σm(x)|ψ∗m(N⊥) = τ (x, ψ∗mN
⊥, ψ∗mN).

From (9) the previous equation reduces to

(ψm)∗(γm(X) y dV (X))|N⊥ = τ (x, ψ∗mN
⊥, ψ∗mN).

Thus, by (6) and definition of τm it remains to show

(γm(X) y dV (X))|N⊥ = τm(X,N)(N y dV (X))|N⊥ .

However, since τm(X,N) = 〈γm(X),N〉, the above equation is an immediate
result of lemma 4.5 and hence (10) is satisfied.

To complete the proof we construct σ on B using Theorem 4.3. Let U =
{Um}, by Theorem 4.3 there is a collection of smooth functions {φm : B → IR}
subordinate to U . Define σ as follows

σ =
∑
m

φmσm.

Now, by (10) for a hyperplane H at x ∈ B

σ(x)|H =
∑
m

φm(x)σm(x)|H =
∑
m

φm(x)τ (x,H,n).

Finally, since for every x ∈ B,
∑
m φm(x) = 1, the last equation implies

σ(x)|H = τ (x,H,n) ∀x ∈ B, n ∈ TxB\H.

The uniqueness and continuity of σ follows from the above equation. �

Similar to Theorem 2.2, here, there is an important result that follows read-
ily from Theorem 2.9.

Corollary 4.6 With the assumptions of Theorem 2.9,

τ (x,H,n) = τ (x,H,−n) ∀x ∈ B, n ∈ TxB\H.

In other words, the value of τ at a hyperplane H is independent of the orienta-
tion of the hyperplane H.

This result might seem to be in contradiction to Corollary 3.1 and our physical
intuition. However, in fact, it is completely consistent with Corollary 3.1 and
our physical intuition! What does τ (x,H,n) show? It is an (n−1)-form on the
oriented hyperplane H such that if (v1,v2, . . . ,vn−1) is an oriented basis for H,
τ (x,H,n)(v1,v2, . . . ,vn−1) is the amount of the physical property, for example
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heat flux, that leaves the infinitesimal area generated by (v1,v2, . . . ,vn−1) in
the oriented hyperplane (x,H,n). Now let us reverse the orientation of H.
We expect that the amount that leaves (x,H,−n) be minus of the amount
that leaves (x,H,n).(For example the heat flux in a body in IR3 that flows
in direction n is negative to the heat flux that flows in direction −n). To
compute this amount we need to choose an oriented basis for (x,H,−n), but
since (v1,v2, . . . ,vn−1) is oriented in (x,H,n), (−v1,v2, . . . ,vn−1) is oriented
in (x,H,−n). So, τ (x,H,−n)(−v1,v2, . . . ,vn−1) is the amount of physical
property that leaves (x,H,−n). However, since τ (x,H,−n) = τ (x,H,n) is an
(n− 1)-form on H

τ (x,H,−n)(−v1,v2, . . . ,vn−1) = −τ (x,H,n)(v1,v2, . . . ,vn−1),

and this is exactly the expected result. Furthermore, the consistency of Corol-
laries 3.1 and 4.6 can be shown as follows. Suppose that in Theorem 2.9 Ω is
the orientation form on B. Let (x,H,n) be an arbitrary oriented hyperplane.
Clearly, nyΩ(x) is an (n−1)-form at x, so for the oriented hyperplane (x,H,n),
there exists a scalar τ(x,H,n) such that,

τ (x,H,n) = τ(x,H,n) (nyΩ(x))|H .

This equation defines a scalar function τ on oriented hyperplanes. τ(x,H,n)
can be thought of as a representative of the amount of the physical property
that leaves the oriented hyperplane (x,H,n). Now, if the orientation of the
hyperplane is reversed

τ (x,H,n) = τ (x,H,−n).

So,
τ(x,H,n) (n y Ω(x))|H = τ(x,H,−n) (−n y Ω(x))|H .

this equation is satisfied if and only if,

τ(x,H,n) = −τ(x,H,−n),

and this is what we had in Corollary 3.1.
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