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Abstract— Dynamic and agile walking or running gaits for
legged robots correspond to periodic orbits in the dynamic
model. As the number of degrees of freedom of the models
grows, obtaining periodic gaits for these systems through nu-
merical optimization is not always straightforward. In contrast
to common numerical search methods for periodic orbits, this
paper introduces a class of holonomic constraints, called sym-
metric virtual constraints, which when enforced by controllers,
ensure the existence of periodic orbits. The main advantage of
symmetric virtual constraints is that they relax the need for
online or offline parameter search for periodic orbits, and at
the same time lead directly to feedback controllers that realize
a periodic orbit.

I. INTRODUCTION

It is known that, compared to static and ZMP walking [15],
limit cycle walking can allow agile, fast and human-like
walking [11], [16]. However, obtaining such periodic orbits
for legged robots is not always straightforward.
Perhaps, the most common method of obtaining periodic
orbits for a system is based on numerical search for fixed
points of a Poincaré map [10], [7], [17], [5], [6], [4]. This
numerical search, however, especially for higher order sys-
tems, is very cumbersome because the differential equations
describing the system need to be integrated for each trial,
and it is then checked wether the solution returns back to
the starting point (in order to have a periodic orbit).
To reduce the computational costs of the numerical search,
Grizzle et al. [7] have used the notion of virtual constraints
and Hybrid Zero dynamics (HZD) to conduct the search
on a lower dimensional system. Virtual constraints are re-
lations between the generalized coordinates of the system
that are enforced by controllers. By using a class of Bézier
polynomials for virtual constraints, Grizzle et al. [8] have
demonstrated the possibility of gait design together with
optimization on energy, torque limit, etc.
In contrast to search methods, the symmetry method, pre-
sented in this paper, relaxes the need for any offline or
online searches for periodic orbits. Based on this method,
as described in Fig. 1, first, the natural symmetries of the
legged robot are detected. Then virtual constraints are chosen
such that the symmetry is preserved while the dimension of
the system is reduced (i.e., the resulting HZD is symmetric)
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by enforcing the virtual constraints using controllers. Such
virtual constraints are called Symmetric Virtual Constraints
(SVC). It is then shown that the resulting HZD is a Sym-
metric Hybrid System (SHS) [14], and consequently, has
an infinite number of symmetric periodic orbits, which can
be identified easily (i.e., without any searches). The SVCs
also allow gait design (with possible optimization on energy,
torque limit, etc.). Moreover, it will be shown that with SVCs
the resulting SHS automatically has a family of symmetric
periodic gaits (rather than one single periodic orbit).
Even though the resulting SHS possesses symmetric periodic
orbits, such periodic orbits at best are only neutrally stable.
However, as described in Fig. 1, by introducing appropriate
asymmetries to the system or by foot placement the neutrally
stable periodic orbits become asymptotically stable. This
paper, however, for the most part discusses steps 1 and 2
in Fig. 1.
The rest of the paper is organized as follows. In Section
II, our notion of symmetry is defined intuitively through
a few examples. In Section III, the notions of Symmetric
Vector Fields and SHSs are presented, and it is shown that
with a proper transition map the symmetric solutions of an
SHS can become symmetric periodic orbits. Reduction of the
dimension of the system by using an appropriate control law
is explained in Section IV. SVCs are discussed in Section
V. Section VI briefly discusses the stabilization mechanisms,
and Section VII includes the concluding remarks.
It should be noted that due to limited space, some of the
proofs are not provided, and this paper includes only 2D
biped examples, while the notion of SVCs is applicable to
3D legged locomotion as well. In a related paper, which
will serve as an extension of the current paper more detailed
proofs together with 3D legged locomotion examples will be
presented.

II. NOTION OF SYMMETRY

In the literature, the word “symmetry” has been used to refer
to various concepts. To avoid possible confusion, this section
includes a few examples to serve as a quick and intuitive
introduction to the notion of symmetry for legged robots
presented here.
The symmetry that we refer to in this paper is an invariance
in the equations of motion under a discrete transformation
of variables. For instance, the kinetic and potential energies
of the 2D Double Inverted Pendulum (DIP) depicted in Fig.
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Fig. 1. High-level control algorithm for stable limit cycle walking. In
the second step, we use symmetric virtual constraints which preserve the
symmetry while reducing the dimension of the system.

2 are invariant under the map G which sends (θ1, θ2, θ̇1, θ̇2)
to (−θ1,−θ2, θ̇1, θ̇2). As a result, in the equations of motion
of the 2D DIP, which can be written as

θ̈1 = f(θ1, θ2, θ̇1, θ̇2),

θ̈2 = g(θ1, θ2, θ̇1, θ̇2),

we have f(−θ1,−θ2, θ̇1, θ̇2) = −f(θ1, θ2, θ̇1, θ̇2) and
g(−θ1,−θ2, θ̇1, θ̇2) = −g(θ1, θ2, θ̇1, θ̇2).
Similarly, the Spring Loaded Inverted Pendulum (SLIP) and
the 5-DOF biped as explained in Fig. 3 and Fig. 4 are
symmetric under the specified transformations.
In fact, many legged robots have similar symmetries either
exactly or approximately. Sources of possible asymmetries
in a legged robot include the knees (which can rotate only
in one direction), the feet and asymmetric mass distribution.
However, such asymmetries are generally small compared to
the overall symmetric structure of the system. Furthermore,
as briefly described in Section VI and with more details in
[14], such asymmetries could help with asymptotic stability
of the symmetric periodic orbits.
Raibert [12] has noted the same notion of symmetry for
planar legged robots, and has shown that for a planar hopper
(even though many 3D experiments are presented as well),
such symmetry can lead to steady-state running. The current
paper and [14] generalize the notion of symmetry in [12]
to a large class of legged robots (2D or 3D) and build
a mathematical basis for what we call Symmetric Hybrid
Systems. Moreover, a study of stability and a method for
stabilization of symmetric periodic orbits are presented.
Finally, this paper introduces the novel notion of Symmetric
Virtual Constraints which allow gait design while exploiting
the advantages of the notion of symmetry.
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Fig. 2. The kinetic and potential energy of the Double Inverted Pendulum
(DIP) is invariant under the map (θ1, θ2, θ̇1, θ̇2) 7→ (−θ1,−θ2, θ̇1, θ̇2).
The fixed points of this map, as shown in the middle figure, occurs at
θ1 = 0 and θ2 = 0, with arbitrary θ̇∗1 and θ̇∗2 .

(x, z)(0, z∗)(−x, z)

Fig. 3. The kinetic energy and potential energy of the SLIP are invariant
under the map (x, z, ẋ, ż) 7→ (−x, z, ẋ,−ż). The fixed points of the map
G, which correspond to the configuration in the middle figure the middle
SLIP model in the figure above, are (0, z∗, ẋ∗, 0) for arbitrary z∗ and ẋ∗.

III. SYMMETRIC VECTOR FILEDS AND SYMMETRIC
HYBRID SYSTEMS

The equations of motion of the examples presented in Section
II all can be described with what we call Symmetric Vector
Fields (SVF). In this section, we discuss SVFs, SHSs and
their symmetric solutions. We show that the symmetric
solutions of an SHS can become symmetric periodic orbits.

Definition 1. The smooth vector field X defined on a
manifold X is said to be symmetric under the smooth map
G : X → X (or in short G-symmetric) if

X ◦G(x) = −dG(x) ·X(x), (1)

Moreover, G is said to be a symmetry map for X .

This type of symmetry of a vector field, which has been
referred to as time reversal symmetry in [1], is closely related
to the notion of equivariant vector fields [3].

Proposition 2. Let X be a symmetric vector field (SVF)
defined on a manifold X , and let G : X → X be a symmetry
map for X with a fixed point x∗, that is, G(x∗) = x∗. Then
the solution of X (a.k.a. integral curve of X) passing through
x∗ is invariant under G. That is, if x : I → X , where
I = (−a, a) is an open interval of R for some a > 0, and
ẋ(t) = X(x(t)) with x(0) = x∗, and C = {x(t)|t ∈ I}, then
C is invariant under G. Moreover, G(x(t)) = x(−t) for all
t ∈ I.
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Fig. 4. Let (x, z, θp, xfh, zfh) denote the generalized coordinates, where
(x, z) is the position of the hip, θp is the pitch angle and (xfh, zfh) is the
swing leg end position relative to hip. Assuming that the legs are identical
and the mass distribution is uniform, the Lagrangian is invariant under the
map G which maps (x, z, θp, xfh, zfh) 7→ (−x, z,−θp,−xfh, zfh).

Proof. Define x̂(t) = G(x(−t)) for t ∈ I. We have x̂(0) =
G(x(0)) = G(x∗) = x∗. Therefore, x̂(t) and x(t) satisfy the
same initial conditions. Next we show that x̂(t) is an integral
curve of X . By definition of x̂(t), ˙̂x(t) = −dG·ẋ(−t). Thus,
since x(t) is a solution of X , ˙̂x(t) = −dG · X(x(−t)).
From (1), ˙̂x(t) = X(G(x(−t)), and by definition of x̂(t),
˙̂x(t) = X(x̂(t)), which proves that x̂(t) is a solution of X .
By uniqueness of the solution of the initial value problem,
x̂(t) = x(t), that is, G(x(−t)) = x(t) for all t ∈ I;
equivalently, G(x(t)) = x(−t) for all t ∈ I.

Example 3. Consider the following dynamical system de-
fined on R2,

ẋ1 = x2 sin(x2) + x2x
2
1,

ẋ2 = x21 sin(x1) + 2x1x2.

This system can be written as [ẋ1; ẋ2] = X(x1, x2),
where X(x1, x2) = [x2 sin(x2)+x2x

2
1;x21 sin(x1)+2x1x2].

Define G : R2 → R2 by G(x1, x2) = (−x1, x2).
Since X ◦ G(x1, x2) = X(−x1, x2) = (x2 sin(x2) +
x2x

2
1;−x21 sin(x1)− 2x1x2), and

−dG ·X(x1, x2) =

(
1 0
0 −1

)[
x2 sin(x2) + x2x

2
1

x21 sin(x1) + 2x1x2

]
=

[
x2 sin(x2) + x2x

2
1

−x21 sin(x1)− 2x1x2

]
,

we conclude that X ◦ G(x) = −dG · X(x); hence, X is
G-symmetric.

As the next proposition shows, for a Lagrangian system we
can check the symmetry of the corresponding vector field by
just looking at the Lagrangian.

Proposition 4. Let L be the Lagrangian defined on the
configuration space Q, and let F : Q → Q be a smooth
map. Define G : T Q → T Q by

G(q, q̇) = (F (q),−dF (q) · q̇).

If L is invariant under G, that is,

L ◦G(q, q̇) = L(q, q̇),

and x∗ = (q∗, q̇∗) is a fixed point of G, then for the solution
x(t) = (q(t), q̇(t)) defined on I = (−a, a) for a > 0, with
x(0) = x∗, we have G(x(t)) = x(−t). Equivalently,

F (q(t)) = q(−t). (2)

Finally, if X is the vector field defining the state space rep-
resentation of the Lagrangian system, then X is symmetric
under G.

Proof. Suppose that x(t) = (q(t), q̇(t)) is the solution of
the Lagrangian system for which x(0) = x∗, where x∗ is a
fixed point of G. Define x̂(t) = G(x(−t)). At t = 0, x̂(0) =
G(x(0)) = G(x∗) = x∗. Therefore, x̂(t) and x(t) satisfy the
same initial conditions. To prove that x̂(t) = x(t) for all t ∈
I, we show that x̂(t) satisfies the Euler-Lagrange equations
of motion. To this end, from the Hamilton’s principle [2],
it suffices to show that δ

∫ ti
−ti L(x̂(t))dt = 0. However, by

definition of x̂(t), δ
∫ t
−t L(x̂(t))dt = δ

∫ t
−t L(G(x(−t)))dt.

Invariance of L under G yields L(G(x(−t)) = L(x(−t)).
Thus for any ti ∈ (−a, a) we have δ

∫ ti
−ti L(x̂(t))dt =

δ
∫ ti
−ti L(x(−t))dt = δ

∫ ti
−ti L(x(t))dt = 0, where the

second equality is obtained by simple substitution of t →
−t, and the last equality follows from the fact that x(t)
is a solution to the Lagrangian system. Therefore, x̂(t)
satisfies the Euler-Lagrange equations as x(t) does, and since
x̂(t) and x(t) both satisfy the same initial conditions, by
uniqueness of the solution of the initial value problem, we
have x̂(t) = x(t); thus, G(x(−t)) = x(t), as desired.

It should be noted that in the above proposition G is not a
coordinate transformation because G is defined as (F,−dF )
not (F, dF ).

Example 5. (2D Double Inverted Pendulum (2D DIP)
Consider the double inverted pendulum depicted in Figure 2.
In the coordinates (θ1, θ2), the kinetic and potential energies
are

K =
1

2
m1(l21θ̇

2
1) +

1

2
m2(l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2),

V = m1l1 cos(θ1) +m2(l1 cos(θ1) + l2 cos(θ2)).

Define F (θ1, θ2) = (−θ1,−θ2). Thus, as defined in Propo-
sition 4, G(θ1, θ2, θ̇1, θ̇2) = (−θ1,−θ2, θ̇1, θ̇2). Clearly, the
Lagrangian L = K − V is invariant under G. Since,
x∗ = (0, 0, θ̇∗1 , θ̇

∗
2) for θ̇∗1 , θ̇

∗
2 ∈ R are fixed points of G, the

solutions x(t) = (θ1(t), θ2(t), θ̇1(t), θ̇2(t)) for which x(0) =
x∗ satisfy the equation F (θ1(t), θ2(t)) = (−θ1(t),−θ2(t));
equivalently, θ1(−t) = −θ1(t), θ2(−t) = −θ2(t).

Next we discuss the notion of symmetry for hybrid systems.
Throughout this paper we adopt the notion of hybrid systems
as in [16]. The following proposition shows that the sym-
metric solutions of a symmetric system can become periodic
orbits if an appropriate transition map is added to the system.



Proposition 6. Consider the following hybrid system defined
on a manifold X .

Σ =

{
ẋ = X(x) x /∈ S,
x+ = ∆(x−) x ∈ S, (3)

where S is a hypersurface called the switching surface, and
∆ is the impact map (a.k.a. transition map). Suppose that X
is symmetric under a map G : X → X , and let x∗ /∈ S be
a fixed point of G. If x(t) is a solution to the hybrid system
Σ such that x(0) = x∗, then G(x(t)) = x(−t). Moreover, if
the set A := {t > 0|x(t) ∈ S} is non-empty with a minimum
ti, and for x0 = x(ti)

∆(x0) = G(x0), (4)

then x(t) is a periodic solution of Σ with period T = 2ti.

Equation (4) simply says that the impact map sends the
solution back to the point x(−ti) in which case x(t) is
periodic, and is said to be a symmetric periodic orbit of Σ.

Example 7. (2D Linear Inverted Pendulum (LIP) Biped)
As shown in [14], the 2D LIP biped taking constant swing
foot end to hip strides of length x0 is a hybrid system with
the following equations.

ẍ = ω2x,

S = {(x, ẋ)|x = x0 > 0},
∆(x−, ẋ−) = (−x0, ẋ−).

In the state space representation of this system with x1 = x
and x2 = ẋ, the vector field X(x1, x2) = (x2, ω

2x1) which
is symmetric under the map G(x1, x2) = (−x1, x2) has fixed
points of the form (0, ẋ∗). Let (x(t), ẋ(t)) denote a solution
with x(0) = 0 and ẋ(0) = ẋ∗ > 0. Noting that ẋ(0) > 0,
and ẍ > 0 for x > 0, (x(t), ẋ(t)) crosses the switching
surface S at x = x0 at which point the velocity is ẋ−.
However, G(x0, ẋ

−) = (−x0, ẋ−) = ∆(x0, ẋ
−). Hence, by

Proposition 6, x(t) is a symmetric periodic solution of the
system.

Example 8. (2D Spring-Loaded Inverted Pendulum (2D
SLIP)) Next we look at the 2D SLIP model in Fig. 3. Let z
denote the length of the spring, and let θ denote the angle of
the leg with respect to the center-line. Suppose that V (θ, z)
denotes the potential and K(θ, z) denotes the kinetic energy
of the system. If k is the spring constant, and l0 is the no-load
length of the spring,

V = mgz cos(θ) + 1
2k(z − l0)2,

K = 1
2m(ż2 + z2θ̇2).

The Euler-Lagrange equations of motion result in

θ̈ = −2
ż

z
θ̇ − g

z
sin(θ), (5)

z̈ = zθ̇2 + ω2(l0 − z)− g cos(θ). (6)

To derive the equation of the transition map, we note that
the flight phase starts when the spring length reaches its no-
load length (i.e., z = l0); therefore, the switching surface is

defined as S = {(θ, z, θ̇, ż)|z = l0}.
The flight phase consists of a projectile motion at the end
of which, when z = l0, the next stance phase starts. We
assume that at the start of each step the leg is at an angle
−θ0. Therefore,

θ+ = −θ0, z+ = l0. (7)

Hence, the transition occurs when the height of the mass is
l0 cos(θ0). Writing the equations of motion of a projectile
yields

ẋ+ = ẋ−,
ẏ+ = −((ẏ−)2 − 2g(y− − y0))1/2,

(8)

where, x = z sin(θ), y = z cos(θ) and y0 = l0 cos(θ0).
Equation (8) implicitly defines the transition map of the SLIP.
Equations (5) to (8) define the equations of motion of the
SLIP, excluding the flight phase.
Looking at the SLIP kinetic and potential energies, it is
clear that the Lagrangian L = K − V is invariant under
the map F (θ, z) = (−θ, z) (note that according to Propo-
sition 4, G(θ, z, θ̇, ż) = (−θ, z, θ̇,−ż)). As a consequence,
the corresponding vector field is symmetric under G. The
fixed points of G are of the form χ∗ = (0, z∗, θ̇∗, 0).
Let φ(t, χ∗) = (θ(t), z(t), θ̇(t), ż(t)) be the solution for
which φ(0, χ∗) = χ∗. Based on Proposition 6, φ(t, χ∗) is
invariant under G, in the sense that G(φ(t, χ∗)) = φ(−t, χ∗);
equivalently, θ(t) is an odd function, and z(t) is an even
function of t:

θ(−t) = −θ(t), z(−t) = z(t).

With numerical simulations it can be shown that there are
infinitely many symmetric solutions φ(t, χ∗) that cross the
switching surface for different values of χ∗. Let χ(t) denote
one of those solutions and assume that χ(t) crosses S at
χ− = (θ0, l0, θ̇

−, ż−). From the impact map defined by
equations (7) and (8), we can show that ∆(θ0, l0, θ̇

−, ż−) =
(−θ0, l0, θ̇−,−ż−) which is equal to G(θ0, l0, θ̇

−, ż−).
Therefore, by Proposition 6, χ(t) is a symmetric periodic
solution of the SLIP model.

IV. SYMMETRIC ZERO DYNAMICS AND SYMMETRIC
HYBRID ZERO DYNAMICS

Even though an SHS can have an infinite number of sym-
metric periodic solutions, generally, for these solutions to
be stable we need to use control. However, the control
laws, if not chosen carefully, can easily destroy the natural
symmetry of the system. In this section, we show that with
an appropriate choice of control laws, the resulting zero
dynamics or hybrid zero dynamics is still symmetric and
hence will have the properties of the SVFs or SHSs, while
having lower dimensions compared to the original system.

Proposition 9. Consider the following n-dimensional control
system on X × U

ẋ = X(x, u),



such that X(x, u) = f(x) + g(x)u, and u ∈ U ⊂ Rm is a
control input with m < n. Suppose that Z is an (n −m)-
dimensional zero dynamics submanifold of X enforced by
u(x) (thus X(z, u(z)) is tangent to Z for all z ∈ Z)1. If there
exists a map G : X → X and an isomorphism H : U → U
such that

1) X(x, 0) is symmetric under G,

2) (g ◦ G(x))H(u) = −dG · g(x)u for all x ∈ X and
u ∈ U ,

3) Z is invariant under G,

then letting XZ and GZ denote restrictions of X(x, u(x))
and G to Z , we have

XZ ◦GZ(z) = −dGZ ·XZ(z). (9)

Moreover, if x∗ ∈ Z is a fixed point of G, then the solution
x(t) : I → X for which x(0) = x∗ lies on Z , and G(x(t)) =
x(−t) for all t ∈ I. Finally, if u(x) is the control law on
the zero dynamics, and v(x) = g(x)u(x), then v ◦ G(z) =
−dG(z) · v(z) on Z .

As we shall see later, this proposition is very helpful in
choosing virtual constraints for periodic walking of legged
robots.

Example 10. Consider the following control system defined
on R2,

ẋ1 = x2 sin(x2) + x2x
2
1,

ẋ2 = x21 sin(x1) + 2x1x2 + u(x1, x2).

This system can be written as ẋ = X(x, u) such that X(x, 0)
is the vector field in Example 3 which was shown to be
symmetric under the map G : (x1, x2) 7→ (−x1, x2). We can
write the above system in the form ẋ = f(x) + g(x)u, with
f(x) = X(x, 0) and g(x) = [0; 1]. It can be checked that
g ◦ G = dG · g. We define the zero dynamics submanifold
to be Z = {(x1, x2)|x2 = h(x1)} such that h is an even
function of x1. This choice of h renders Z invariant under
G. The zero dynamics then will be

ẋ1 = h(x1) sin(h(x1)) + h(x1)x21,

which satisfies (9). Moreover, on Z

u(x1) =
∂h(x1)

∂x1
(h(x1) sin(h(x1)) + h(x1)x21)

−x21 sin(x1)− 2x1h(x1),

which satisfies v ◦G(z) = −dG(z) ·v(z), where v = [0; 1]u,
or equivalently, u(−z) = −u(z) for z ∈ Z . Since x∗ =
(0, h(0)) is the fixed point of G on Z , by Proposition 9,
for solutions x(t) = (x1(t), x2(t)) with x(0) = x∗ we have
x(t) ∈ Z , and G(x(t)) = x(−t); that is, x2(t) = h(x1(t)),
and x1(−t) = −x1(t).

Example 11. (2D DIP Zero Dynamics) Consider the 2D
DIP in Example 5. If u is an actuator that controls the angle

1For a detailed discussion of zero dynamics see [9].

between the two links, the equations of motion are

(m1 +m2)l21θ̈1 +m2l1l2θ̈2 − (m1 +m2)l1 sin(θ1) = −u,
m2l

2
2θ̈2 +m2l1l2θ̈1 −m2l2 sin(θ2) = u.

Recall that in Example 5 we showed that the 2D DIP La-
grangian is invariant under the map F (θ1, θ2) = (−θ1,−θ2).
Define the zero dynamics manifold to be

Z = {(θ1, θ2, θ̇1, θ̇2)|θ2 = h(θ1), θ̇2 =
∂h

∂θ1
θ̇1},

where h is an odd function of θ1. Note that Z is invari-
ant under G = (F,−dF ) which maps (θ1, θ2, θ̇1, θ̇2) to
(−θ1,−θ2, θ̇1, θ̇2). The restriction of G to Z is GZ(θ1, θ̇1) =
(−θ1, θ̇1) whose fixed points are of the form (0, θ̇∗1). There-
fore, by Proposition 9, there are infinitely many solutions
θ1(t) that lie on Z and are invariant under G, that is,
θ1(−t) = −θ1(t). Moreover, the torque u(θ1, θ̇1) on Z is
an odd function of θ1, that is, u(−θ1, θ̇1) = −u(θ1, θ̇1).

Next we look at the zero dynamics of a hybrid system with
control input.

Proposition 12. Consider the following n-dimensional hy-
brid system

Σ =

{
ẋ = X(x, u) x /∈ S,
x+ = ∆(x−) x ∈ S, (10)

such that X(x, u) = f(x) + g(x)u is defined on X × U ,
and u is an m-dimensional control input in U ⊂ Rm,
and m < n. Assume that Z is a hybrid zero dynamics
(HZD2) submanifold of Σ enforced by u(x), that is, Z is
a zero dynamics submanifold of X , and ∆(Z ∩ S) ⊂ Z .
Suppose that there exists a smooth map G : X → X and an
isomorphism H : U → U such that

1) X(x, 0) is a symmetric vector field under G,

2) (g ◦ G(x))H(u) = −dG · g(x)u for all x ∈ X and
u ∈ U ,

3) Z is invariant under G.

If XZ denotes the vector field X(x, u(x)) restricted to Z ,
and GZ denotes the map G restricted to Z , then XZ is
symmetric under GZ , that is,

XZ ◦GZ(z) = −dGZ ·XZ(z), (11)

In addition, v(x) = g(x)u(x) satisfies v ◦G(z) = −dG(z) ·
v(z) on Z . Moreover, if x∗ ∈ Z is a fixed point of G, then
the solution x(t) : I → X with x(0) = x∗ lies on Z , and
G(x(t)) = x(−t). Finally, if the set A := {t > 0|x(t) ∈ S}
is non-empty with a minimum ti, and for x0 = x(ti) we have

∆(x0) = G(x0),

then x(t) is a periodic solution of Σ lying on Z with period
T = 2ti.

Example 13. (3-DOF Biped HZD) Consider the 2D biped
in Fig. 5, which is a simple 2D model of the bipedal robot

2For a detailed discussion of HZD see [16].



MARLO [?]. Assuming that the legs are massless, this biped
has 3 degrees of freedom (DOF). Suppose that the torso has
a mass of m and a moment of inertia I about the center of
mass (COM), and let l be the distance from the hip joint
to the COM. Let (x, z) denote the hip position and let θp
denote the pitch angle of the torso. The actuators include a
motor at the hip which applies a torque uθ to control the
angle between the thigh and torso and an actuator which
controls the knee angle. Without loss of generality (for non-
zero knee angles), we can replace the torque at knee by a
force fl along the line connecting the support point to the
hip; fl controls the length of the leg.
The kinetic energy and potential energies of the biped are

K =
1

2
(I +ml2)θ̇2p +

1

2
m(ẋ2 + ż2 + 2lẋθ̇p cos(θp)−

2lżθ̇p sin(θp)),

V = mg(z + l cos(θp)).

To simplify the equations of motion, without loss of general-
ity, we replace x/l by x, z/l by z, fl/ml by fl, and uθ/ml2

by uθ. With these assignments, the equations of motion are:

ẍ+ θ̈p cos(θp)− θ̇p sin(θp) = F1,

z̈ − θ̈p sin(θp)− θ̇2p cos(θp) + g
l = F2,

( I
ml2 + 1)θ̈p + cos(θp)ẍ− sin(θp)z̈−
ẋθ̇p sin(θp)− żθ̇p cos(θp)− g

l sin(θp) = −uθ,

(12)

where

F1 =
flx√
x2 + z2

+
uθz

x2 + z2
, F2 =

flz√
x2 + z2

− uθx

x2 + z2
.

Suppose that the biped is taking constant swing leg end to
hip strides, that is, if q = (x, z, θp) and q̇ = (ẋ, ż, θ̇p), then
the switching surface is S = {(q, q̇)|x = x0}, and x+ = x0
for some x0 > 0. With this assumption, the impact map is
∆ = (∆q,∆q̇), where

∆q(x
−, z−, θ−p ) = (−x0, z−, θ−p ), ∆q̇(q

−, q̇−) = q̇+,

and q̇+ can be found by using conservation of angular
momentum about the swing leg end and knee joint before and
after impact [10]. Our goal is to choose the virtual constraints
that define the zero dynamics such that the zero dynamics
is hybrid invariant and has periodic solutions. From the
equations of kinetic and potential energies, the Lagrangian
is invariant under the map

F (x, z, θp) = (−x, z,−θp). (13)

Therefore, by Proposition 4, the vector field X corresponding
to the equations of motion with uθ = 0 and fl = 0 in (12)
is symmetric under G = (F,−dF ).
Define the submanifold Z as follows:

Z = {(q, q̇)|z = h1(x), θp = h2(x), ż =
∂h1
∂x

ẋ, θ̇p =
∂h2
∂x

ẋ}.

If h1(x) = z0 and h2(x) = 0, then Z is invariant under
G = (F,−dF ). In this case, the fixed points of G lying on

Fig. 5. A model of the bipedal robot MARLO [?] in 2D.
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Fig. 6. Multiple symmetric periodic solutions of the 3-DOF biped on the
HZD defined by h1(x) = z0−a cos((π/x0)x) and h2(x) = 0. Note that
ẋ and z are both even functions of x.

Z are (q, q̇∗), where

q∗ = (0, z0, 0), q̇∗ = (ẋ∗, 0, 0), (14)

and the zero dynamics equation is simply that of the 2D LIP:

ẍ =
g/l

1 + z0
x,

with ẋ+ = ẋ− and x+ = −x0, which consequently has an
infinite number of symmetric periodic orbits [14] as predicted
by Proposition 12 as well.
Another set of holonomic constraints that can render Z
invariant under G is defined by h1(x) = z0−a cos((π/x0)x)
and h2(x) = 0, for which the HZD is

ẍ =
(g/l)x+ ax( πx0

)2 cos(( πx0
)x)ẋ2

1 + z0 − a cos(( πx0
)x)− ax π

x0
sin(( πx0

)x)
, (15)

with ẋ+ = ẋ− and x+ = −x0. The right hand side of (15)
is an odd function of x which is consistent with (11), where
GZ(x, ẋ) := (−x, ẋ) is the restriction of G = (F,−dF )
to Z with F defined in (13). By Proposition 12, since
(x+, ẋ+) = G(x0, x

−), this HZD has an infinite number
of symmetric periodic orbits which are invariant under G.
Fig. 6 shows one of such periodic orbits.
The two sets of virtual constraints defined above preserve the



symmetry of the system on its HZD. More general virtual
constraints which can preserve the symmetry of the system
will be discussed in the next section.

V. SYMMETRIC VIRTUAL CONSTRAINTS FOR PERIODIC
WALKING

In Proposition 12, we saw that in a G-symmetric SHS, if
Z is hybrid invariant and is invariant under G, then the
resulting HZD is G-symmetric SHS and can have an infinite
number of periodic orbits. In this section, we particularly
show how Z can be defined by virtual constraints to be
both hybrid invariant and invariant under G. Such virtual
constraints are called Symmetric Virtual Constraints (SVC).
With SVCs the HZD of the bipedal robot is an SHS, and has
an infinite number of symmetric periodic orbits. Thus, SVCs
allow periodic gait design without the need for searching for
periodic orbits.

A. The 3-DOF Biped

In Example 13, we defined the holonomic constraints that
rendered the HZD an SHS. However, the holonomic con-
straints defined in Example 13 were only examples of SVCs.
Below we present sufficient conditions in order for the virtual
constraints to be symmetric.
Define the submanifold Z as follows

Z = {(q, q̇)|z = h1(x), θp = h2(x), ż =
∂h1
∂x

ẋ, θ̇p =
∂h2
∂x

ẋ}.

If there exists x0 > 0 such that

1) h1 is an even function of x in the interval [−x0, x0],
and (∂h1/∂x)|x0 = 0,

2) h2 is an odd function of x in the interval [−x0, x0], and
h2(x0) = 0,

then Z is hybrid invariant (i.e., is a zero dynamics submani-
fold which is invariant under the impact map) and is invariant
under the symmetry map G = (F,−dF ), where F is defined
in (13). The fixed points of G lying on Z are (q, q̇∗), where

q∗ = (0, h1(0), 0), q̇∗ = (ẋ∗, 0,
∂h2
∂x
|x=0ẋ

∗). (16)

Consequently, by proposition 9, any solutions φ(t) =
(q(t), q̇(t)) for which φ(0) = (q∗, q̇∗), lies on Z
and φ(−t) = G(φ(t)), or equivalently, if q(t) =
(x(t), z(t), θp(t)), then

x(−t) = −x(t), z(−t) = z(t), θp(−t) = −θp(t). (17)

Since h1 is even and h2 is odd, Z is invariant under G.
To prove hybrid invariance of Z we need to show that
∆(S ∩ Z) ⊂ Z . First, we derive the impact map on the
zero dynamics. Since (∂h1/∂x)|x0

= 0 and h2(x0) = 0,
right before the impact the whole torso is moving parallel to
the ground. Writing the conservation of angular momentum
about the swing leg end and swing leg knee before and after
impact (see [10] for derivation of impact map for planar
bipedal robots using conservation of angular momentum)

yields

ẋ+ = ẋ−, ż+ = ż−, θ̇+p = θ̇−p . (18)

Moreover, from geometry and after swapping the legs,

x+ = −x0, θ+p = θ−p , z
+ = z−. (19)

To check ∆(S ∩ Z) ⊂ Z , we need to verify that

z+ = h1(x+), θ+p = h2(x+),

ż+ = ∂h1

∂x (x+)ẋ+, θ̇+p = ∂h2

∂x (x+)ẋ+.

However, all these equalities are satisfied by using the
conditions on h1 and h2 (note that ż− = 0, and θ−p = 0),
and equations (18) and (19). Therefore, the zero dynamics is
hybrid invariant. Based on Proposition 12, and the impact
map equations on the HZD, if the symmetric solutions
φ(t), as defined in (17), cross the switching surface, they
are periodic solutions. From (16), these symmetric periodic
solutions, which are infinitely many, can be indexed by ẋ∗.

B. The 5-DOF Biped

Consider the planar biped with point feet as depicted in Fig.
4. Assuming that the legs have mass, this biped has 5 DOFs
and 4 actuators (two in each leg to control the leg length
and the angle between the leg and torso), hence, 1 degree of
underactuation. To describe the biped’s configuration, we use
the generalized coordinates q = (x, z, θp, xfh, zfh), where
(x, z) is the position of the hip, θp is the torso pitch angle
as shown in Fig 4, and (xfh, zfh) is the position of the swing
leg foot relative to the hip; that is if (xf , zf ) is the coordinate
of the swing leg end in the inertial frame attached to the
support point (i.e., stance leg end point), then (xfh, zfh) =
(xf − x, zf − z).

Proposition 14. If the equations of motion of the 5-
DOF bipedal robot in Fig. 4 is written in the form ẋ =
X(x, u) = f(x) + g(x)u, and G = (F,−dF ), where
F (x, z, θp, xfh, zfh) = (−x, z,−θp,−xfh, zfh), then

1) X(x, 0) is symmetric under G,

2) (g ◦G(x))H(u) = −(dG · g(x))u,

for an isomorphism H : U → U .

As explained in the following proposition, based on the
symmetry map in Proposition 14, SVCs are chosen such
that the HZD of the 5-DOF biped is an SHS. It is noted
that naturally, it is assumed that the transition occurs when
the swing leg hits the ground, that is, the switching surface
is assumed to be S = {(q, q̇)|zf (q) = 0}.

Proposition 15. In the 5-DOF biped, define the zero dynam-
ics submanifold Z by the virtual constraints z = h1(x), θp =
h2(x), xfh = h3(x), zfh = h4(x) and their derivatives. If

h1(−x) = h(x), ∂h1

∂x |x=x0 = 0,
h2(−x),= −h2(x), h2(x0) = 0,

h3(−x) = −h3(x), h3(x0) = x0,
∂h3

∂x |x=x0
= −1,

h4(−x) = h(x), h4(x0) = −h1(x0), ∂h4

∂x |x=x0
= 0,

h4(x) + h1(x) > 0, if x ∈ (−x0, x0),



for some x0 > 0, then if the zero dynamics is well defined,
it is hybrid invariant (i.e., is an HZD), the impact map
restricted to S ∩ Z and its switching surface are

(x+, ẋ+) = (−x0, ẋ−), S ∩ Z = {(x, ẋ)|x = x0},

and the HZD is an SHS under the map GZ(x, ẋ) = (−x, ẋ),
where G is defined in Proposition 14. Consequently, the
continuous phase of equations on the HZD can be written
as ẍ = f(x, ẋ), where f(−x, ẋ) = −f(x, ẋ).

Proposition 15 will be extended to 3D bipeds in a related
paper.

Example 16. Based on Proposition 15 the following holo-
nomic constraints together with their derivative are SVCs for
the 5-DOF biped:

z = z0 − a1 cos(
πx

x0
),

θp = b1 sin(
πx

x0
),

xfh = x+
2x0
π

sin(
πx

x0
),

zfh + z = a2(x40 − 2x20x
2 + x4)

It should be noted that the conditions on virtual constraints in
Proposition 15 can all be satisfied by just using polynomials,
and in particular, by Bézier polynomials3.

Corollary 17. There exists x0 > 0 such that with the SVCs
satisfying the conditions in Proposition 15, the HZD of the
5-DOF biped has an infinite number of symmetric periodic
solutions of the form (φ(t), φ̇(t)) defined on intervals of the
form [−ti, ti] with ti > 0 such that φ(ti) = x0 and φ(−t) =
−φ(t).

VI. STABILIZATION OF SYMMETRIC PERIODIC ORBITS

In the previous section, we showed that with the SVCs the
HZD becomes an SHS, and consequently, the 5-DOF has an
infinite number of symmetric periodic orbits. However, as
shown in [13] for the LIP and in [14] for SHSs, these periodic
orbits are only neutrally stable, that is, the eigenvalue of the
Poincaré map of a symmetric periodic orbit of the 5-DOF
biped restricted to the HZD is 1. In [14] it is demonstrated
that introducing asymmetries to the SHS can modify the
symmetric periodic orbits to become asymptotically stable.
In the related paper, it will be shown that by slightly
modifying the SVCs the symmetric periodic orbits of the
system can be modified to become asymptotically stable limit
cycles. It will also be shown that using only foot placement,
the symmetric periodic orbits of the system (without any
modifications) can become stable limit cycles.

VII. CONCLUSION

In this paper, the notion of symmetric virtual constraints
(SVC) is introduced. It is shown that with SVCs the resulting

3For a discussion of Bézier polynomials and their application in virtual
constraints see [16].

HZD of a symmetric legged robot possesses an infinite
number of symmetric periodic orbits which can be easily
identified. The main advantage of the SVCs is that without
requiring any searches for periodic orbits, they allow gait
design and provide a family of periodic orbits rather than
one single periodic orbit. A few planar biped examples
are included. In a related paper, more detailed proofs, 3D
legged locomotion examples, and a discussion of the stability
mechanisms will be presented.
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