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ABSTRACT
Modern search engines aggregate results from different

verticals: webpages, news, images, video, shopping, knowl-
edge cards, local maps, etc. Unlike “ten blue links”, these
search results are heterogeneous in nature and not even ar-
ranged in a list on the page. This revolution directly chal-
lenges the conventional “ranked list” formulation in ad hoc
search. Therefore, finding proper presentation for a gallery
of heterogeneous results is critical for modern search engines.

We propose a novel framework that learns the optimal
page presentation to render heterogeneous results onto search
result page (SERP). Page presentation is broadly defined
as the strategy to present a set of items on SERP, much
more expressive than a ranked list. It can specify item posi-
tions, image sizes, text fonts, and any other styles as long as
variations are within business and design constraints. The
learned presentation is content-aware, i.e. tailored to spe-
cific queries and returned results. Simulation experiments
show that the framework automatically learns eye-catchy
presentations for relevant results. Experiments on real data
show that simple instantiations of the framework already
outperform leading algorithm in federated search result pre-
sentation. It means the framework can learn its own result
presentation strategy purely from data, without even know-
ing the “probability ranking principle”.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and

Retrieval; I.5.1 [Pattern Recognition]: Model
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1. INTRODUCTION
A decade ago, search engines returned “ten blue links”.

Result presentation was straightforward: ranking webpages
by estimated relevance. It naturally saves user effort as she
scans down the list, hopefully hitting the desired information
at top ranks. This “probability ranking principle” was long
envisioned in the 1970s [36], and later confirmed by eye-
tracking studies [20, 19] and search log analysis [24, 15].

Today’s search engines return far richer results than “ten
blue links”. Aside from webpages, results can also include
news, images, video, shopping, structured knowledge, and
local business maps. Each specific corpus is indexed by a
vertical search engine; they are federated to serve the user’s
information need. Unlike “ten blue links”, vertical search
results have different visual appearance, layouts and sizes.
They span across multiple columns on the page, not re-
stricted in the mainline list (Figure 1).

Federated search results have been transforming user in-
teraction patterns on search result pages (SERPs). Human
eyeballs are spontaneously attracted by graphical results,
causing a significant attention bias known as the vertical
bias [12, 26, 31]. More interestingly, blue links surrounding
a vertical result are also examined with increased probabil-
ity [12]. In the presence of vertical results, user satisfaction
towards an entire SERP cannot be reliably inferred from
preference judgments for pairs of results [6].

These observations indicate that users do not sequentially
scan results returned by federated search. Although the con-
ventional “ranked list” formulation can still be used for fed-
erated search result presentation [5, 4], it is essentially a
first-order approximation of the problem.

In this paper, we propose a novel framework that learns
the optimal presentation for heterogeneous search results on
SERP. Page presentation is broadly defined as the strategy
to present a set of heterogeneous items on SERP, much more
expressive than a ranked list. It can specify item positions,
image sizes, text fonts, or any other styles as long as changes
of these elements are allowed by business constraints 1 and
page design templates. The goodness of a presentation is
measured by user satisfaction metric: better presentation
will make the user happier. The framework first learns a
scoring function that maps search results and their presen-

1For example, sponsored results must be placed on the top.
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Figure 1: Modern search engine result page.

tation on SERP to user satisfaction metric. Then, given
search results of a new query, the framework computes a
presentation that maximizes user satisfaction.

The framework is quite general. First, practitioners can
flexibly define the scope of page presentation. It can encode
item positions (both horizontal and vertical) as well as ele-
ment styles, such as image sizes and text fonts. It naturally
encompasses ranked list as a special case. Second, differ-
ent application scenarios can adopt different user satisfac-
tion metric. It is not limited to click-based metric, but can
also take other interactive behaviors into account, such as
dwelling time and time-to-first-click. Lastly, the framework
can potentially be instantiated in other interactive search
scenarios, such as presenting search results on mobile and
tablet devices, displaying multimedia feeds in online social
networks, and arranging items on retailing websites.

We conduct experiments on both synthetic and real data
to demonstrate the potential power of the proposed frame-
work. Simulation experiments show that the framework can
adapt to different types of attention bias and learn to present
relevant results to catch user’s eyeballs. This means our ap-
proach directly targets the new challenge brought by feder-
ated search, where users may not scan the results sequen-
tially, and results are not in a ranked list. In real data
experiments, simple instantiations of the framework outper-
form the leading algorithm in federated search result rank-
ing. This is encouraging, because ranking algorithms use
the probability ranking principle in its result presentation,
while our framework does not even know the existence of it.
Nevertheless, it learns its own result presentation principle
purely from data and is able to deliver the state-of-the-art
performance.

Our main contribution is summarized as follows:

• We formulate a new problem, whole-page presentation
optimization, which extends the homogeneous docu-
ment ranking in ad hoc search;

• We propose a general framework that computes the
optimal presentation for federated search results.

• Experiments on synthetic and real data demonstrate
that the proposed framework is promising in solving
the new problem.

2. PROBLEM FORMULATION
The problem statement of page presentation optimization

is as follows: “given search results to be displayed on a page,
to find the optimal presentation that maximizes user sat-
isfaction”. We assume the following setting: search engine
returns a set of results upon receiving a query, and renders
the items on SERP according to some presentation strategy.
As the SERP is shown to the user, she interacts with it and
get certain degree of satisfaction. Now let us define some
important concepts in our setting:

Definition 1 (Page Content): Page content is the set
of search results to be displayed on a page. Each search
result is an item. Upon receiving user’s query, search engine
backend returns a set of k items. Each item is represented
as a vector xi

2. Note that different users and different
queries will produce different sets of items, so xi also encodes
information from actual users and queries. Page content
is represented as concatenation of k item vectors: x> =
(x>1 , · · · ,x>i , · · · ,x>k ). The domain of x is defined by all
possible page content returned by the backend, denoted as
X .

Definition 2 (Page Presentation): Page presentation
defines the way in which page content x is displayed, such
as position, vertical type, size, and color. It is encoded as
a vector p. The domain of p is defined by all possible page
presentations permitted by business and design constraints,
denoted as P.

Definition 3 (Search Result Page, SERP): When
page content x is put on page according to presentation
strategy p, a search result page (SERP) is generated. In
other words, content x and presentation p uniquely deter-
mine a SERP. It is represented as a tuple (x,p) ∈ X × P.

Definition 4 (User Response): User response includes
her actions on SERP, such as number of clicks, positions
of clicks, dwell time of clicks, and time to first click. This
information is encoded in a vector y. The domain of y is
defined by all possible user responses, denoted as Y.

Definition 5 (User Satisfaction): The user experi-
ences certain degree of satisfaction as she interacts with the
SERP. We assume that user satisfaction can be calibrated
as a real value s ∈ R: larger value of s means higher satis-
faction.

The user response is a strong indicator for satisfaction.
Intuitively, if a user opened the SERP, clicked on the top
result right away, then spent long time dwelling on that
result, she was highly likely to be happy with the result.
With definitions above, we formulate our problem:

Page Presentation Optimization is to find the pre-
sentation p ∈ P for a given page content x ∈ X , such that
when the SERP (x,p) is presented to the user, her satisfac-
tion score s is maximized.

2Throughout the paper we use bold lowercase letters for
column vectors.



If we assume that there exists a scoring function F :
X × P → R that maps SERP (x,p) to user satisfaction
score s, then page presentation optimization problem can
be formally written as

max
p∈P

F (x,p),

subject to constraints on presentation p.

The problem of page presentation optimization is both
new and challenging. It is new because page presentation
can be flexibly defined, which opens up possibility to learn
brand-new ways to display information. Retrieval and rec-
ommender systems typically use a ranked list for displaying
homogeneous content. As heterogeneous results are weaved
onto webpages, it is critical to present them in a proper man-
ner to maximize user’s utility. The problem is challenging
because it is rather unclear how to find the scoring function
that maps the entire SERP (content and presentation) to
user satisfaction. We propose our solution framework in the
next section.

3. PRESENTATION OPTIMIZATION
FRAMEWORK

We propose to solve page presentation optimization using
a supervised learning approach. This section sets up a gen-
eral framework for our approach, including data collection
methodology, design of scoring function F (·, ·), the learning
and optimization stages. In the next section, we describe
actual instantiations of the framework.

3.1 Data Collection Through Exploration
Supervised machine learning needs labelled training data.

The caveat in data collection here is that normal search traf-
fic cannot be used as the training data to learn the scoring
function F (x,p). This is because in normal search traffic,
search engine has a deterministic policy to present page con-
tent x, which is controlled by existing model/rules within
the system. In other words, page presentation p is uniquely
determined given page content x. However, we expect the
model F to tell us user satisfaction as we search through
different page presentations. Confounding between x and p
will bias the learned model, which will be a serious problem.

To eliminate confounding, we allocate “presentation ex-
ploration bucket” to do randomized experiments. For each
request in the bucket, we organize page content with ran-
dom page presentation. Here “random” means to uniformly
draw presentation strategies within business and design con-
straints, such that user experience is not hurt too much. Fur-
ther, the presentation exploration traffic is controlled within
a very small amount so as not to affect overall quality of the
search service. Data collected in this way allow unbiased
estimation of the scoring function.

In cases that showing random exploration results to the
users is not desired, it would also be possible to either hire
human annotators to label the page, or collect data from
multiple buckets with different fixed presentation strategy as
every Internet company is doing for testing their UI changes.
Since we have already developed a good data collection through
exploration framework in our production system, we choose
to take this approach for data collection.

3.2 Learning Stage
The core of page presentation optimization is to estimate

the scoring function s = F (x,p). We might consider two
approaches:

(I) Direct approach: Collect page-wise user satisfaction
ratings and directly model the dependency between
SERP and user satisfaction. The dependency path is
“(x,p)− s”.

(II) Factorized approach: First predict user response y
on SERP, then find a function that measure user sat-
isfaction from these responses. The dependency path
is “(x,p)− y − s”.

Approach (I) is straightforward. However it is very diffi-
cult, particularly at a large scale, to obtain explicit user rat-
ing s towards the entire SERP. To construct such data set,
we would have needed substantial amount of observations
and human annotation to overcome training data sparse-
ness.

Approach (II) takes two steps. The first step is to pre-
dict user responses on a given page; the second step is to
measure user satisfaction based on her page-wise response.
Introducing user response variable y permits a separation of
concerns. On the one hand, user response on a page is a di-
rect consequence of interacting with the page. On the other
hand, user satisfaction is typically estimated from user re-
sponses only, e.g. using total number of clicks, or long dwell
time. In Approach (II), the complex dependency in F (·, ·)
is decomposed into two relatively independent factors. Fur-
thermore, on a practical note, Approach (II) is more realistic
for current Web technology because user response on SERP
can be easily collected via Javascript, whereas explicitly ask-
ing the users to evaluate the whole page is very uncommon.
Therefore, we adopt the factorized approach .

In factorized approach, the first step is to learn a user
response model

y = f(x,p), ∀ x ∈ X ,p ∈ P.

This is a supervised learning task; the actual form of f(x,p)
can be chosen flexibly. We can simply build one model for
each component yi in y, or we can jointly predict all com-
ponents of y using structured output prediction [10]. In
any case, user’s responses on the page depends on both the
content (whether it is relevant, diverse, or attractive) and
the presentation (whether it is close to the top, around a
graphical block, or shown in big size).

The second step is a utility funciton which defines a user
satisfaction metric

s = g(y), ∀ y ∈ Y.

Finding the right user satisfaction metric based on page-wise
user responses is not the focus of this paper, and can itself
be a substantial research topic in interactive information
systems [21, 30, 38]. Indeed, practitioners often heuristi-
cally define the metric as aggregation of fine-grained user re-
sponses, such as click-through rates, long-dwell-time clicks,
time-to-first-click.

Finally, our scoring function for the entire SERP is

s = F (x,p) = (g ◦ f)(x,p) = g(f(x,p)).



3.3 Optimization Stage
We compute the optimal presentation p∗ given content x

by solving the following optimization problem:

max
p∈P

g(f(x,p)),

subject to constraints on presentation p.

Computational cost of this optimization problem depends
on actual form of the objective function F = g ◦ f and
the constraints on presentation p. In the next section we
show that for certain instantiations of f and g, p∗ can be
computed quite efficiently.

4. INSTANTIATIONS OF PRESENTATION
OPTIMIZATION FRAMEWORK

This section describes instantiations of the framework, in-
cluding feature representation, user satisfaction metric, two
user response models and their learning and optimization
stages. We conclude this section by showing that the frame-
work encompasses learning to rank.

4.1 Features
Both content and presentation on a SERP are represented

in a feature vector, which will be the input to user response
models.

Content Features
Content features contain information of the query and cor-

responding search results, similar to those used in learning
to rank. We adopt the same content features as used in [23]
to facilitate direct comparison in experiments (Section 6):

• Global result set features: features derived from all
returned results. They indicate the content availability
of each vertical.

• Query features: lexical features such as the query
unigrams, bigrams and co-occurrence statistics. We
also use outputs of query classifiers, and historical ses-
sion based query features, etc.

• Corpus level features: query-independent features
derived for each vertical and web document such as
historical click-through rates, user preferences, etc.

• Search result features: extracted from each search
result. A list of statistical summary features such as
relevance scores and ranking features of individual re-
sults. For some verticals, we also extract some domain
specific meta features, such as if the movie is on-screen
and if the movie poster is available in the movie verti-
cal, and the number of hits for the news articles from
the news vertical in the last few hours.

Presentation Features
Presentation features encode the way in which search re-

sults are displayed on SERP, which are novel features in our
framework. Concrete examples include:

• Binary indicators: whether to show an item on a
position. The scheme can encode positions in a wire-
frame, such as a list or multi-column panels. Let there
be k positions in the frame, and k items to be dis-
played. Let i be the index of items, j be the index

of positions, 1 ≤ i, j ≤ k. The presentation of item
i, pi, is a 1-of-k binary encoding vector. If document
i is placed at position j, then the j-th component of
pi is 1 and all others are 0. In this case we denote
the value of pi as pij = 1. The page presentation
p> = (p>1 , · · · ,p>k ) consists of k × k binary indica-
tor variables, essentially encoding the permutation of
k objects.

• Categorical features: discrete properties of page
items, e.g., multimedia type of an item (shown as text
or image), typeface of a textual item;

• Numerical features: continuous properties of page
items, e.g. brightness and contrast of a graphical item.

• Other features: e.g. certain interactions between
page content and presentation may affect user response,
such as “a textual item immediately above a graphical
item”.

We use two types of presentation features in real data ex-
periments. We encode positions of items with binary indi-
cators. For the local search results, we encode presentation
size as a categorical feature (“single” vs. “multiple” entries).

4.2 User Satisfaction Metric
We assume that user satisfaction metric g(y) is in the

form of weighted sum of components in y:

g(y) = c>y.

In experiments, we use the click-skip metric for k items [23]:

g(y) =

k∑
i=1

yi,

where yi = 1 if item i is clicked, and yi = −1 if item i
is skipped and some item below is clicked. A skip often
indicates wasted inspection, so we set it to be a unit of
negative utility. This metric strongly prefers adjacent clicks
at top positions.

4.3 User Response Models
We use two models for predicting page-wise user response.

The first model takes as features quadratic interaction be-
tween content and presentation. It permits an efficient opti-
mization stage. The second model uses gradient boosted de-
cision trees to capture more complex, nonlinear interaction
between content and presentation. We expect it to generate
improved performance.

Quadratic Feature Model
First, let us consider a simple instantiation of user re-

sponse model that has efficient solution in the optimization
stage. Since it uses quadratic interaction features between
x and p, we call it Quadratic Feature Model.

Assume there are k positions for k items. Page content x
is the concatenation of k item vectors; page presentation is
encoded using binary indicators, p ∈ {0, 1}k×k, as defined
in Section 4.1. The model also contains fully interaction
between x and p as features. Let vec(A) denote the row
vector containing all elements in matrix A, taken column
by column, left to right. The augmented feature vector φ
for Quadratic Feature Model is:

φ> = (x>,p>, vec(xp>)).



Let y ∈ Rk be the user response vector; each component
yi is a user response (e.g. click or skip) on item i. A linear
model fi is used to predict each yi in y:

yi = fi(φ) = w>i φ = u>i x + v>i p + x>Qip. (1)

ui, vi, and Qi are coefficients for content-only, presentation-
only, and content-presentation quadratic interaction features,
respectively. The coefficients wi = {ui,vi,Qi} can be esti-
mated using regularized linear regression. To avoid overfit-
ting, we regularize the L2 norm of ui and vi, and further
impose low-rank regularization on Qi to handle the sparsity
issue of quadratic features.

In total, we will have k such models, each predicting one
yi in y. To group the k models in notation, let us write
coefficients as U = (u1, · · · ,uk)>,V = (v1, · · · ,vk)>,Q =
diag(Q1, · · · ,Qk), and“copy”x and p k times to get the ma-
trix X = diag(x>, · · · ,x>) and the vector t> = (p>, · · · ,p>).
To clarify dimensionality, if x ∈ Rn, p ∈ Rm, then U ∈
Rk×n, V ∈ Rk×m, X ∈ Rk×nk, Q ∈ Rnk×mk, and t ∈ Rmk.
The user response model can be written as

y = f(x,p) = Ux + Vp + XQt.

Denote user satisfaction metric as g(y) = c>y. Then the
scoring function F = g ◦ f is

F (x,p) = g(f(x,p))

= c>Ux + c>Vp + c>XQt

= c>Ux + a>p (2)

where a = V>c +
∑k

i=1 ciQ
>
i x is a known vector.

To this end, the optimization stage is to find the p that
maximizes (2) subject to the constraints on p. Since page
content x is given, the first term in (2) is a constant and
can be dropped. The second term a>p is a linear term of p.
Since p ∈ {0, 1}k×k encodes a k-permutation, Each compo-
nent in a ∈ Rk×k represents the gain of user satisfaction if
item i is placed in position j, 1 ≤ i, j ≤ k. Therefore, the op-
timization problem reduces to maximum bipartite matching,
a special case of linear assignment problem. It can be effi-
ciently solved by Hungarian algorithm [25] with time com-
plexity O(|p|3) = O(k6). On a single-core computer with
2GHz CPU, the problem can be solved within 10 millisec-
onds for k = 50 items.

Gradient Boosted Decision Tree Model
In order to capture more complex, nonlinear interaction

between content x and presentation p, we replace the quadratic
feature model fi in previous section with a gradient boosted
decision trees model hGBDT

i . Gradient boosted decision trees
(GBDT) is a very effective method for learning nonlinear
functions [18].

Our feature vector is

φ> = (x>,p>),

and each user response yi in y is predicted by a GBDT
model:

yi = hGBDT
i (x,p).

The user satisfaction metric is g(y) = c>y =
∑k

i=1 ciyi.
In optimization stage, since each hi is now a nonparamet-

ric model, we cannot get the analytical form of F (x,p) =∑k
i=1 cih

GBDT
i (x,p) in terms of p. That is, the optimization

over p is intractable. Nevertheless, in realistic settings, the
search space of p is usually pruned down to tens of possible
values by business and design constraints. We implement
parallel enumeration to quickly find the optimal presenta-
tion that maximizes user satisfaction.

4.4 Special Case: Learning to Rank
When we restrict page presentation to be a ranked list,

and assume that users are more satisfied if more relevant
results are placed at top ranks, then presentation optimiza-
tion reduces to the traditional ranking problem. We point
out this connection to demonstrate the generality of the pro-
posed framework.

The instantiation is as follows. We use binary indicators
in Section 4.1 to represent the ranked list. Let user response
y decompose into k components, each representing the user’s
utility of seeing result i at rank ji. Let user response model
f(x,p) decompose into k real-valued component, each only
taking as input xi and its rank ji. So we have

f(x,p) = f(x1, · · · ,xk,p1, · · · ,pk)

= (f1(x1,p1), · · · , fk(xk,pk))>

= (f1(x1, p1j1 = 1), · · · , fk(xk, pkjk = 1))> . (3)

Typically, the ranking function h(xi) of result i is position-
independent. It can also be interpreted as the score of result
i seen on the top rank (ji = 1). That means

h(xi) = fi(xi, pi1 = 1).

Furthermore, traditional ranking problem assumes that the
utility of a result is discounted by a factor wj if it is ranked
at position j. wj > 0 is a decreasing function of j. E.g. in
discounted cumulative gain (DCG),

wj =
1

log2(1 + j)
.

The discounting assumption implies:

fi(xi, pij = 1) = wjfi(xi, pi1 = 1)

= wjh(xi). (4)

Combining (3) and (4), user response model is realized as

f(x,p) = (wj1h(x1), · · · , wjkh(xk))> ,

where h(·) is the ranking function. User satisfaction is mea-
sured by the quality of ranked list, which accumulate the
gain at each position:

g(y) =

k∑
i=1

yi =

k∑
i=1

wjih(xi).

Clearly, maximum user satisfaction g(y) is always achieved
by sorting the results by descending relevance scores. This
is the default presentation strategy of learning to rank.

5. SIMULATION STUDY
We demonstrate potential capability of presentation opti-

mization framework by simulation. We use synthetic dataset
so that we know the “ground truth” mechanism to maximize
user satisfaction, and we can easily check whether the al-
gorithm can indeed learn the optimal page presentation to
maximize user satisfaction. We have two goals in this study:



(1) We show that the framework enables general definition
of page presentation.

(2) We use both position bias and item-specific bias to
show that the framework can automatically adapt to
user interaction habits.

5.1 Overview
We first give a brief overview of simulation workflow. The

simulated “presentation exploration bucket” will generate a
page containing a set items with random presentation. Ev-
ery time a new page is generated, each item is assigned some
amount of reward (e.g. relevant information) drawn from
an underlying distribution. The simulated “user” will have
a certain type of attention bias: (1) position bias, in which
more attention is paid to certain region of the page than else-
where (Figure 2a); (2) vertical bias, or item-specific bias, in
which more attention is attracted by a specific type of item
and its surrounding area (Figure 2b).

(a) Position bias [2] (b) Vertical bias [1]

Figure 2: Different types of user attention bias.

An “interaction” happens when the “presentation explo-
ration bucket” generates a page and the “user” examines it
with attention bias. When the user examines an item, she
receives the corresponding reward. User satisfaction towards
the page is the sum of rewards. The page content, presen-
tation, as well as the examined items and positions (user
responses), become data that the framework learns from.
Finally, we test if the framework successfully learned user’s
attention bias. Given a new set of items, we expect to see
that the framework will place items with higher rewards to
positions with more concentrated attention to achieve max-
imum user satisfaction. Therefore, to visualize the model’s
current belief in user attention bias, we can plot the distri-
bution of item rewards on the page.

5.2 Data Generating Process
On the “search engine” side, a page (either 1-D list or 2-D

grid) contains k positions. The page content x = (x1, · · · , xk)>,
xi ∼ N (µi, σ) represents intrinsic rewards of k items. We
set k = 10 for 1-D list and k = 7 × 7 for 2-D grid. µi’s are
random numbers drawn from in [0, 1], σ = 0.1. The page
presentation p is drawn from length-k permutations uni-
formly at random. The whole page is represented as (x,p).

On the “user” side, attention bias is simulated as follows:
Position bias: whether to examine position j is a Bernoulli

random variable with parameter pj . A real-life example is
the top-down position bias, commonly observed when the
user interacts with a ranked list.

Item-specific bias: whether to examine item i is a Bernoulli
random variable with parameter pi. A real-life example is
the vertical bias, commonly observed when the user interacts
with a page that contains vertical search results (images,
videos, maps, etc).

Then, the “user” will “interact” with the page (x,p): k
binary values are drawn from k Bernoulli distributions, and
recorded as a user response vector y ∈ {0, 1}k. if item i is
examined, yi = 1, the user receives a reward xi. The user
satisfaction equals the sum of reward of examined items.
We generate 100,000 pages to train the Quadratic Feature
Model described in Section 4.3.

5.3 Discussion
To visualize the learned optimal presentation, we pick a

random x and compute the corresponding optimal presen-
tation p∗, then arrange the xi’s according to p∗. A page is
visualized as a heat map of xi’s rewards. Ideally, the items
with higher reward (“better content”) should be placed onto
the position with higher probability of user attention.
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Figure 3: Top position bias and presentation on 1-D
list.
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Figure 4: Top-left position bias and presentation on
2-D canvas.
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Figure 5: Two-end position bias and presentation on
2-D canvas.

Figure 3, 4, and 5 visualize the presentation results under
various position biases. We can see that the algorithm in-
deed learns to put “better content” to positions with more
user attention. Because the definition of page presentation
is general, it is able to handle both 1-D list and 2-D grid.
Furthermore, it can capture complicated distribution of po-
sition bias on a 2-D canvas: the top-left position bias in
Figure 4, and the top-bottom position bias in Figure 5.

Figure 6 visualizes the result under item-specific bias. This
is an interesting case where an item on the page is very eye-
catchy, and it also attracts user’s attention to its surround-
ing items (e.g., an image attracts user’s eyeballs on itself as
well as its caption and description text). Also, suppose that
for items farther away from that eye-catchy item, the user’s
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Figure 6: Item-specific bias. s: page-wise user satisfac-
tion. When a specific item (e.g. image) attracts user
attention to not only itself but also its surrounding re-
sults, then the page-wise reward is highest when the
vertical is placed at the center of the page.

attention drops further down. Then the optimal presenta-
tion strategy is to place the item on the center of the page,
so that the whole page delivers the most reward. In Figure
6, we see that user satisfaction value s is highest when the
item (the dark red region) is centered on the page.

6. REAL DATA EXPERIMENTS
We demonstrate the effectiveness of page presentation op-

timization framework by conducting experiments on the real-
world data set collected via a commercial search engine.

6.1 Data Collection
We use a very small fraction of search traffic as the presen-

tation exploration buckets. The data was collected through
the year 2013. Vertical search results whose presentation are
explored include news, shopping, and local listings. In the
exploration buckets, the order of Web results are kept un-
touched and verticals are randomly slotted into allowed posi-
tions with uniform probability. Randomly generated SERPs
are not influenced by any ranking algorithm in the system.
As pointed out in Section 3.1, this is required to eliminate
page content confounding when training models. The explo-
ration SERP is then presented to the user who interacts with
it in a normal fashion. Users response on the SERP, along
with page-wise content information like the query, document
features from backends, are logged.

6.2 Methods
We use two pointwise ranking models as baseline method.

They are trained using the content features as described in
Section 4.1. The first baseline method has been adopted
in production (Logit-Rank) [23]. It estimates a logistic
regression model for each vertical result (including web re-
sult):

yi = σ(w>i xi),

where yi is a binary target variable that indicates whether
the result is clicked (yi = +1) or skipped (yi = −1) as
described in Section 4.2, and σ(·) is the sigmoid link function
rescaled to [−1, 1].

The second baseline method uses gradient boosted de-
cision trees to learn a pointwise ranking function (Gbdt-
Rank). This is essentially replacing the logistic regressor in
Logit-Rank with a GBDT regressor:

yi = hGBDT
i (xi).

We evaluate the two instantiations of presentation opti-
mization framework described in Section 4.3: the Quadratic

Table 1: Match rate between random exploration
presentation p and predicted optimal presentation
p∗. “Until Web1 ” means that p and p∗ encode the
same presentation above the 1st webpage result.

Until Web1 Until Web2 Until Web3

Logit-Rank 68.68% 46.76% 30.85%
Quad-Pres 71.63% 50.68% 33.42%

Feature Model (Quad-Pres) and the GBDT Model (Gbdt-
Pres). They use page-wise information (x,p) to predict the
user response vector, i.e. the vector of clicks and skips.

In implementation, we use Vowpal Wabbit [27] to learn
logistic regression models, and XGBoost [13] to learn the
gradient boosted decision tree models. The hyperparameters
of the models are tuned on a small holdout data set.

6.3 Evaluation
We use half of the exploration SERP as training set (Jan-

uary – June), the rest as test set. It contains hundreds
of millions of pageviews and was collected from real search
traffic. Compared to standard supervised learning setup, it
is difficult to do an unbiased offline performance evaluation
because of the interactive nature of the task (see Section 4.3

in [23]). This is because the offline data (x(n),p(n),y(n)) is
collected using a particular logging policy, so we only observe
user response y(n) for a specific page presentation p(n). In
offline evaluation, when the algorithm is given page content
x(n), it may output a presentation p∗(n) 6= p(n), for which
we do not observe user response, hence cannot evaluate its
goodness. To address this problem, we use an offline policy
evaluation method proposed by Li et al. [28] for evaluating
online recommendation systems. It is simple to implement
and provides an unbiased performance estimate, thanks to
data collected through random exploration. Given a stream
of events (x(n),p(n),Pr(p(n)),y(n)) collected through ran-

dom exploration, where Pr(p(n)) is the probability for the

SERP (x(n),p(n)) to be generated from uniform random ex-
ploration, the average user satisfaction for N offline events
can be computed as

s̄ =
1

N

N∑
n=1

g(y(n))1{p∗(n)==p(n)}

Pr(p(n))
,

where 1{·} is the indicator function, and g(y(n)) is user sat-
isfaction towards SERP n. This means the algorithm is
evaluated on those exploration SERPs whose presentation
matches what is chosen by the algorithm; otherwise the
SERP is discarded in offline evaluation.

As the match goes deeper down the page, the match rate
decreases (Table 1). If we require exact match between pre-

dicted p∗(n) and actual p(n), a large fraction of test set will
be discarded and the performance estimates tend to have
large variance hence unreliable. Our evaluation only focuses
on vertical results shown above the first, second, and third
webpage result. Note that the first webpage result is not
always on top rank; the top rank is frequently occupied by
the vertical results.

6.4 Results
Table 2 shows the average page-wise user satisfaction. It

is encouraging to see that whole-page optimization meth-



ods outperform ranking methods, because ranking methods
utilize probability ranking principle to rank results by rele-
vance, which assumes a top-down position bias. Quad-Pres
and Gbdt-Pres do not make this assumption, but learns its
own result presentation principle purely from data. The rea-
son that GBDT models work better than logistic regression
models, mainly because logistic regression assumes linear
decision boundary, while GBDT is capable of modeling non-
linear decision boundary.

Table 2: Average user satisfaction (×10−3).
Until Web1 Until Web2 Until Web3

Logit-Rank -0.25 1.79 1.89
Gbdt-Rank 2.18 3.68 2.22
Quad-Pres 0.62 6.39 5.37
Gbdt-Pres 2.68 6.72 8.24

Note that in our definition of user satisfaction metric g(y),
a skip causes negative utility (yi = −1). The fact that
Quad-Pres and Gbdt-Pres generally work better than
the baseline methods is because they take into considera-
tion the retrieved items, the page presentation, and their
interaction on the entire SERP, not just a single result. The
presentation-blind models Logit-Rank and Gbdt-Rank
always want to put on top the results that will most proba-
bly gets clicked. However, for certain queries people might
intentionally skip the graphical results (e.g., when shopping
ads are shown when the search intent is in fact informa-
tional). In such cases, a click tends to happen below the top
rank. In contrast, presentation optimization methods will
consider both the result and its position on the page. That
leads to more sensible arrangement of results. We see that
Gbdt-Pres attracts more clicks and has less skips when we
evaluate deeper down the SERP.

Table 3, 4, and 5 shows the click-through rate (CTR)
above Web1, Web2, and Web3, respectively. “S. Local”means
a single entry of local business result (such as restaurants);
“M. Local” means multiple entries of local business results.
They are the same vertical/genre results presented in dif-
ferent sizes. In terms of CTR, ranking methods have very
strong performance because they are directly optimized for
high CTR. However, whole-page optimization methods still
achieve competitive or sometimes better CTR by taking into
account page-wise information.

It is interesting to see that for News vertical, there is not
much help to know about other results on the SERP, neither
their presentation. In contrast, knowing page-wise results
helps improve the CTR of top-ranked local listings by a large
margin. A possible explanation is that news, more like gen-
eral webpages, contain rich text information and their con-
tent relevance can be readily modeled by standard ranking
functions. On the other hand, local listings are in drastically
different nature compared to webpages and news, therefore
knowing the complementary information from other web-
page results helps predicting the click/skip patterns. We
can also observe small improvements in CTR of the shop-
ping results. Since the shopping results shown on the top
are most likely to be skipped, the algorithm learns to be-
come extremely conservative in showing shopping verticals
on top. This leads to a much smaller coverage of shopping
results in the entire traffic.

As the match goes deeper down the page, the local ranking
algorithms show decreased performance in terms of CTR.
This is because the local ranking methods tend to greedily
put the high CTR items on top of the page, but ignores the
content on the entire page. In contrast, the page presenta-
tion algorithms, especially Gbdt-Pres, still get good CTR
on News and Multi-local verticals, which takes larger cov-
erage. This is attributed to the fact that they model user
response over the entire page.

Table 3: CTR, match until Web1

News Shopping S. Local M. Local
Coverage 0.46% 0.02% 0.02% 0.71%
Logit-Rank 21.05% 40.79% 11.58% 30.02%
Gbdt-Rank 23.28% 53.32% 38.26% 52.27%
Quad-Pres 21.97% 49.85% 47.16% 39.93%
Gbdt-Pres 22.34% 46.15% 48.12% 49.18%

Table 4: CTR, match until Web2

News Shopping S. Local M. Local
Coverage 2.0% 0.11% 0.03% 2.3%
Logit-Rank 16.44% 23.71% 18.51% 8.92%
Gbdt-Rank 16.31% 30.39% 36.73% 23.11%
Quad-Pres 14.78% 13.57% 23.39% 27.53%
Gbdt-Pres 16.21% 40.83% 33.18% 35.23%

Table 5: CTR, match until Web3

News Shopping S. Local M. Local
Coverage 3.8% 0.18% 0.11% 3.4%
Logit-Rank 14.52% 21.48% 13.80% 9.65%
Gbdt-Rank 12.51% 42.96% 24.93% 22.42%
Quad-Pres 11.45% 12.88% 15.47% 24.38%
Gbdt-Pres 14.11% 36.00% 24.72% 30.66%

7. RELATED WORK
As a general framework for search result presentation, this

work draws on various aspects in IR research. It is inspired
by the task of federated search result presentation. It ex-
tends traditional “ranked list” formulation to more a general
notion of “presentation”. Finally, it delivers optimal presen-
tation by learning from interactive search logs.

7.1 Document Ranking in Retrieval
Document ranking has long been the core problem of ad

hoc retrieval. Given a query, the retrieval system returns
a list of documents ranked by decreasing probability of rel-
evance. The presentation is optimal with respect to the
user’s effort when she sequentially and independently exam-
ines results from top to bottom [36]. Design and evaluation
of document ranking functions are at the central stage of
IR research, dating from vector space models [37] and lan-
guage modeling ranking functions [40] to more recent ma-
chine learning ranking [29] and top document reranking [11,
22, 35].

Our framework extends homogeneous document ranking
to heterogeneous content presentation. Document ranking
is a special case when presentation is a ranked list. From
an algorithmic perspective, we use all documents on SERP



to determine the optimal presentation, which is in the same
spirit of reranking/global ranking [35, 22]. The difference
is that our framework allows much more general notion of
presentation than a list. In fact, global ranking algorithms,
and more broadly, structured prediction algorithms in ma-
chine learning literature [10], can be readily plugged into our
framework as the user response model.

7.2 Federated Search
Federated search (or aggregated search) refers to searching

through a collection of specialized search engines, verticals,
and aggregating the results on SERP. Usually, contents from
different verticals are heterogeneous and visually rich. Fed-
erated search has two sub-tasks: vertical selection and result
presentation [32, 3]. Given a query, the task of vertical se-
lection is to accurately determine which candidate verticals
provide potentially relevant results [7, 8]. After getting re-
sults from candidate verticals, the task of result presentation
is to merge vertical results with general webpage results on
the same page [5].

This paper is concerned with result presentation. Previ-
ous approaches formulate it as a ranking problem [5, 34, 23].
Specifically, [5, 23] employ pointwise ranking functions to
rank results and blocks, while [5, 34] also construct pairwise
preference judgments to train a ranking function. [14] con-
siders 2-D grid presentation for image and shopping results.
Our framework allows more flexible definition of presenta-
tion than ranked list and 2-D grid, e.g. arbitrary frames,
image sizes, and text fonts.

Federated search results significantly change the landscape
of SERP, which in turn calls for changes in evaluation method-
ology. Bailey et al. [9] propose the notion of whole-page
relevance. They argue that the Cranfield-style evaluation is
inadequate to quantify user’s holistic experience on modern
SERP, such as overall presentation and coherence. It pro-
poses to evaluate whole-page relevance by assigning grades
to various SERP elements. Our framework incorporates this
idea by defining an appropriate user satisfaction metric that
guides the search of optimal presentation.

Our work is related to the whole-page optimization for
sponsored search [16] or online ads bidding [33], where the
focus is to optimize revenue of the search service provider.
Our framework is more general and can be applied in these
problems by changing the optimization objective.

7.3 Search Behavior Modeling
To deliver good search experience, understanding user be-

havior on SERP is critical. Eye-tracking experiments [20,
19] and click log analyses [24, 15] observe that users follow
sequential order in browsing blue-link-only SERPs. Lower-
ranked results are examined with lower probability. On the
one hand, these results confirm the probability ranking prin-
ciple, encouraging search engines to put more relevant re-
sults on top. On the other hand, the position bias has to
be handled with care when using click-through data as rel-
evance judgments to train ranking functions [24].

As heterogeneous results appear on modern SERP, users
do not necessarily follow sequential order in browsing search
results. Studies observe more interesting user interaction
patterns, notably vertical bias [12, 26, 31] and presenta-
tion bias [39]. These patterns not only make it question-
able to stick to the probability ranking principle, but also
complicates the inference of relevance judgments from click-

through data. As a result, global ranking that takes into
account relations between documents is developed [32], and
click modeling of federated search becomes even more elab-
orate [12, 17].

Instead of building click models, our framework uses ran-
domized experiments to understand user’s presentation pref-
erence. Using presentation exploration buckets, we collect
user responses on almost identical contents rendered with
different presentations. Interaction logs collected in this way
are almost free from presentational bias and can be used to
estimate user response to a specific presentation given the
search content3. This enables automatic generation of pre-
sentations for different contents, which is more scalable than
hand-crafted presentation rules.

8. CONCLUSION
This paper proposes a new problem in web search: whole-

page presentation optimization. Modern retrieval systems
return a collection of heterogeneous results, calling for more
flexible presentation strategies than the conventional ranked
list. This paper formulates the problem as a mathemati-
cal optimization problem, and proposes a framework that
solves the problem in a data-driven fashion. This general
framework is instantiated to enable more flexible and expres-
sive definition of page presentation than ranked list. Simple
instantiations of the framework are shown to outperform
ranking-based methods in satisfying federated search users.

This study opens up many interesting avenues for the fu-
ture work. We can instantiate the general presentation op-
timization framework properly on other heterogeneous con-
tent presentation scenarios, such as mobile and tablet search,
where user’s attention bias may be different from that on
large screens. User response models can be instantiated in
more sophisticated ways, e.g., modeling cursor position as
conditional random fields over the SERP canvas. Finally,
defining a proper quantitative metric for user satisfaction
based on SERP-level, fine-grained user behaviors can be ex-
plored in human computer interaction research.
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