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ABSTRACT
We consider a scenario where a searcher requires both high
precision and high recall from an interactive retrieval pro-
cess. Such scenarios are very common in real life, exemplified
by medical search, legal search, market research, and litera-
ture review. When access to the entire data set is available,
an active learning loop could be used to ask for additional
relevance feedback labels in order to refine a classifier. When
data is accessed via search services, however, only limited
subsets of the corpus can be considered—subsets defined by
queries. In that setting, relevance feedback [17] has been
used in a query enhancement loop that updates a query.

We describe and demonstrate the effectiveness of ReQ-
ReC (ReQuery-ReClassify), a double-loop retrieval system
that combines iterative expansion of a query set with itera-
tive refinements of a classifier. This permits a separation of
concerns: the query selector’s job is to enhance recall, while
the classifier’s job is to maximize precision on the items that
have been retrieved by any of the queries so far. The overall
process alternates between the query enhancement loop (to
increase recall) and the classifier refinement loop (to increase
precision). The separation allows the query enhancement
process to explore larger parts of the query space. Our ex-
periments show that this distribution of work significantly
outperforms previous relevance feedback methods that rely
on a single ranking function to balance precision and recall.
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H.3.3 [Information Search and Retrieval]: Relevance
Feedback
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1. INTRODUCTION
We are witnessing an explosive growth of text data in

many fields, including millions of scientific papers, billions
of electronic health records, hundreds of billions of microblog
posts, and trillions of Web pages. Such a large scale has cre-
ated an unprecedented challenge for practitioners to collect
information relevant to their daily tasks. Instead of keeping
local collections of data related to these tasks, many users
rely on centralized search services to retrieve relevant infor-
mation. These services, such as Web search engines (e.g.,
Google), literature retrieval systems (e.g., PubMed), or mi-
croblog search services (e.g., Twitter search API, Topsy)
typically return a limited number of documents that are
the most relevant to a user-issued query. These existing re-
trieval systems are designed to maximize the precision of
top-ranked documents; they are good at finding “something
relevant,” but not necessarily everything that is relevant.

We focus on scenarios where a user requires a high recall of
relevant results in addition to high precision. Such scenarios
are not uncommon in real life, exemplified by social search,
medical search, legal search, market research, and literature
review. For example: a social analyst needs to identify all
the different posts in which a rumor spreads in order to re-
construct the diffusion process and measure the influence of
the rumor; a physician needs to review all the patients that
satisfy certain conditions to select cohorts for clinical trials;
an attorney needs to find every piece of evidence related to
her case from documents that are under legal hold; a scien-
tist does not want to miss any piece of prior work that is
related to his ongoing research. We denote all these tasks
generically as “high-recall” retrieval tasks.

Finding a needle in a haystack is hard; finding all the nee-
dles in a haystack is much harder. Existing retrieval systems
do not naturally meet this type of information need. To con-
duct a comprehensive literature review using a search engine,
we have to submit many alternative queries and examine all
the results returned by each query. Such a process requires
tremendous effort of the user to both construct variations of
queries and examine the documents returned.

This high-precision and high-recall task becomes substan-
tially harder as the collection grows large, making it impossi-
ble for the user to examine and label all the documents in the
collection, and impractical even to label all the documents
retrieved by many alternative queries. In some contexts such
as e-discovery, a computer-assisted review process has been
used that utilizes machine learning techniques to help the
user examine the documents. Such a process typically casts
high-recall retrieval as a binary classification task. At the



beginning, the user is required to label a small sample of doc-
uments. A classifier trained using these labeled documents
then takes over and predicts labels for other documents in
the collection. An active learning loop can be used to ask
for additional relevance labels in order to refine the classifier.
These methods, however, require that the user has access to
the full collection of documents and that it is feasible to
execute her classifier on all the documents.

In other scenarios, the users either do not own the collec-
tion or it is too large, so they can only access documents
in the collection through an external search service. This
makes it unrealistic to either examine or classify the entire
collection of documents. Instead, only limited subsets of
the document corpus can be considered, subsets defined by
queries.

Existing retrieval systems are not tuned for high-recall re-
trieval on the condition of limited access to the data via
search services. In most cases, a system only aims to max-
imize the precision in the documents that are retrieved by
the current query. Relevance feedback has been used in a
query enhancement loop that updates a query. Many search
engines provide services to collect explicit and/or implicit
feedback from the users or to suggest alternative queries
to the users. These practices typically generate a new query
that replaces the old one, which is expected to improve both
precision and recall. Once a new query is issued, the results
retrieved by the old queries are forgotten, unless they are
manually harvested by the user.

We study a novel framework of retrieval techniques that is
particularly useful for high-recall retrieval. The new frame-
work features a ReQ-ReC (ReQuery-ReClassify) process, a
double-loop retrieval system that combines iterative expan-
sion of a query set with iterative refinements of a classifier.
This permits a separation of concerns, where the query gen-
erator’s job is to enhance recall while the classifier’s job is
to maximize precision on the items that have been retrieved
by any of the queries so far. The overall process alternates
between the query expansion loop (to increase recall) and
the classifier refinement loop (to increase precision). The
separation of the two roles allows the query enhancement
process to be more aggressive in exploring new parts of the
document space: it can explore a non-overlapping portion
of the corpus without worrying about losing the veins of
good documents it had found with previous queries; it can
also use queries that have lower precision because the clas-
sifier will weed out the misses in a later stage. Our ex-
periments show that this distribution of work significantly
outperforms previous relevance feedback methods that rely
on a single ranking function to balance precision and recall.
The new framework also introduces many opportunties to
investigate more effective classifiers, query generators, and
human-computer interactive algorithms for labeling subsets,
and especially to investigate what combinations work best
together.

Unlike Web search engines that target users who have
real-time, ad hoc information needs, the ReQ-ReC process
targets users who care about the completeness of results
and who are willing to spend effort to interact with the
system iteratively and judge many (but not all) retrieved
documents. The process has considerable potential in appli-
cations like social media analysis, scientific literature review,
e-discovery, patent search, medical record search, and mar-
ket investigation, where such users can be commonly found.

The rest of the paper is organized as follows. We discuss
related work in Section 2. Section 3 gives an overview of the
ReQ-ReC double-loop framework and its key components.
Section 4 describes several instantiations of the framework.
Section 5 provides a systematic evaluation of the proposed
methods. Finally, we conclude the paper in Section 6.

2. RELATED WORK
The ReQuery-ReClassify framework integrates and extends

two well-established “human-in-the-loop” mechanisms: rele-
vance feedback in information retrieval, and active learning
in text classification.

Relevance feedback was shown long ago to be effective
for improving retrieval performance [17]. In a feedback pro-
cedure, the retrieval system presents the top-ranked docu-
ments to the user and collects back either explicit judgments
of these documents or implicit feedback implied by certain
actions of the user [9, 19]. The system then learns from the
collected feedback and updates the query. The new query re-
flects a refined understanding of the user’s information need
[15, 28], which improves both precision and recall in the
next round of retrieval. Even without real user judgments,
retrieval performance may still benefit from simply treating
the top-ranked documents as relevant, which is known as a
process of pseudo relevance-feedback [1].

In a search session, relevance feedback can be executed for
multiple rounds. Harman [8] studied multiple iterations of
relevance feedback, and found that retrieval performance is
greatly improved by the first two to three iterations, after
which the improvements became marginal. Multiple itera-
tions of relevance feedback have received more attention in
content-based image retrieval [3, 16, 30].

In complicated search tasks, the user is often involved
in a search session consisting of a series of queries, click-
throughs, and navigation actions. Session-based retrieval
aims at learning from these signals in order to better un-
derstand the user’s information need, thus improving the
relevance of results when the user issues the next query [19,
14]. Instead of improving the performance of the next query,
ReQ-ReC aims to maximize the recall of the results collec-
tively retrieved by all the queries in the search session.

Like traditional iterative relevance feedback, the ReQ-
ReC process also adopts multiple iterations of user interac-
tion. Indeed, as shown in Section 3, iterative relevance feed-
back is a special case instantiation of the ReQ-ReC frame-
work. Instead of replacing the old query with a new query,
however, ReQ-ReC can accumulate documents retrieved by
any of the queries issued so far. By doing this, rather than
optimizing both precision and recall through the choice of a
single query, we place the burden of maximizing precision on
a classifier, and new queries can be dedicated to improving
only recall.

When it is feasible to process the entire collection of doc-
uments, the problem of high-recall retrieval can be cast as
a binary classification problem where the positive class cap-
tures documents that are relevant to the information need
and the negative class captures the rest. The practice of rel-
evance feedback essentially becomes an active learning pro-
cess, in which the system iteratively accumulates training ex-
amples by selecting documents and asking the user for labels
[18]. This strategy is commonly used in computer-assisted
reviews for e-discovery, often referred to as the process of
‘predictive coding’ [13]. Different active learning algorithms



use specific strategies for selecting the documents to label,
many of which attempt to maximize the learning rate of a
‘base’ classifier with limited supervision [18]. For text clas-
sification, a popular choice of such a ‘base’ classifier is the
support vector machine (SVM) [2]. Using SVM, a variety
of document selection strategies have been explored. Tong
and Koller [23] proposed to select documents closest to the
decision hyperplane in order to rapidly shrink the version
space and reduce model uncertainty. In contrast, Drucker
et al. [4] selected documents with highest decision function
values to avoid probing the user with too many non-relevant
documents. Xu et al. [27] mixed these two strategies and
achieved better retrieval performance.

Like active learning, the ReQ-ReC process also trains a bi-
nary classifier. The major difference is that ReQ-ReC does
not require knowledge about the entire document collection
and thus does not classify all documents. Instead, it starts
from a limited subset defined by the original query and ac-
tively expands the space. This is a huge gain, as text classi-
fication and active learning are usually computationally pro-
hibitive for modern IR collections containing a large num-
ber of documents. Indeed, previous studies that apply active
learning to retrieval can only evaluate their approaches using
moderate-scale collections (such as the 11,000-documents
Reuters collections used in [4] and [27]), or only focus on
the documents retrieved by one query (top 100 documents
in [26] and top 200 in [22]). Given its big advantage in ef-
ficiency, the ReQ-ReC process could potentially provide a
new treatment for active learning, especially when the data
collection is large and the positive class is very rare.

The idea of active learning has also been applied to rele-
vance feedback for retrieval. Shen and Zhai [20] studied ac-
tive feedback, where the system actively selects documents
and probes the user for feedback instead of passively pre-
senting the top ranked documents. It is shown that se-
lecting diverse top-ranked documents for labeling is desir-
able, since it avoids asking for labels on similar documents
and thus accelerates learning. Xu et al. [26] improved this
heuristic by jointly considering relevance, diversity, and den-
sity in selected documents. Both techniques exploit density
information among top-ranked documents, and select rep-
resentative ones for feedback. Recently, Tian and Lease
[22] combined uncertainty sampling (Simple Margin) and
density-based sampling (Local Structure) in iterative rele-
vance feedback to minimize user effort in seeking several to
many relevant documents. The difference between our work
and theirs is articulated by the difference between the ReQ-
ReC process and relevance feedback described above: the
addition of a classifier and use of results from all queries
allows more aggressive exploration of alternative queries.

3. THE REQ-REC FRAMEWORK
In this section, we introduce the general ReQuery-ReClassify

(ReQ-ReC) framework, including its key components. Spe-
cific instantiations of the framework will be discussed in the
next section. The basic idea of the framework is to distribute
the burden of maximizing both the precision and recall to a
set of queries and a classifier, where the queries are responsi-
ble for increasing the recall of relevant documents retrieved
and the classifier is responsible for maximizing the precision
of documents retrieved collectively by all of the queries in
the set. The framework features a double-loop mechanism:
the inner-loop classifies the retrieved documents, actively

collects user feedback, and improves the classifier (ReClas-
sify); the outer-loop generates new queries (ReQuery), issues
API calls, and iteratively adds newly retrieved documents
into the workset. In the rest of the paper, we refer to the
framework as “ReQ-ReC” or “double-loop” interchangeably.

3.1 The Double Loop Process

Documents	
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Figure 1: ReQ-ReC framework

The ReQ-ReC framework can be viewed as a double-loop
review process, as illustrated in Figure 1. The process main-
tains a set of queries, a pool of retrieved documents, and a
binary classifier. With an initial query composed by the
user, the system retrieves an initial set of documents using
a search service. An inner-loop starts from there, in which
the system iteratively presents a small number of documents
(e.g., 10) selected from the current pool of retrieved docu-
ments to the user and asks her to label them as either rele-
vant or not. The classifier is consequently updated based on
the accumulated judgments of the user, which is then used
to reclassify the pool of documents. After a few iterations of
the inner-loop, the the classifier’s predictions stabilize. At
this point, the inner-loop will suspend. The system then
proposes to add a new query to the query set, aiming to
retrieve more relevant documents from the collection. Upon
the approval—and possible edits—of the user, the system
will retrieve a new set of documents using the new query,
and merge them into the pool of retrieved documents. The
requery process makes up one iteration of the outer-loop
of the framework. After new documents are retrieved and
added into the pool, the system starts a new inner-loop and
continues to update the classifier left from the last iteration.
The whole review process will end when no more relevant
documents can be retrieved by a new query or when the user
is satisfied.

Another way to look at the framework is to imagine a
search process in the information space (e.g. a vector space
of documents and queries), as illustrated in Figure 2. The
system interacts with the user as it navigates through the
information space, aiming to delineate a manifold that con-
tains as many relevant documents and as few non-relevant
documents as possible. Each query can only reveal a small
region of the information space that surrounds it. The “first
guess” on such a manifold is, of course, the region surround-
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Figure 2: A double-loop process of search in the in-
formation space. (a) Each query only retrieves its
surrounding region under inspection. (b) The inner-
loop updates a classifier that refines the boundary
between relevant and non-relevant documents. (c)
The outer-loop expands the subspace which includes
more relevant documents.

ing the initial query. A classifier clarifies the boundary of the
manifold (to maximize precision), which is iteratively refined
with newly labeled data points selected from the revealed re-
gions. To explore other regions in the space so as to expand
the relevant manifold (to maximize recall), the system will
estimate a promising direction and will make a new query
to move in that direction into the uncharted space. This
new region and all previously unveiled regions are combined
as the current search space, in which the system continues
to refine the boundary of the relevant manifold. The search
process will end if the relevant manifold stops expanding, or
if the user decides to terminate early.

From this perspective, each query contributes a new re-
gion to the search space without giving up any already dis-
covered regions. Such a pure “expansion” of the search space
will include many non-relevant documents, but the classifier
is able to filter the non-relevant documents at the end and
recover the true boundary of the relevant manifold. By con-
trast, in a relevance feedback procedure, every new query
will “redefine”the search space as the region surrounding the
new query. Given a good query, this region indeed contains
fewer non-relevant documents than our “expanded” search
space (i.e., achieves a higher precision), but it is also likely
to contain fewer new relevant documents. In relevance feed-
back, the challenge is to find a new query that both retrieves
the relevant documents from the old query and also retrieves
new ones. In ReQ-ReC, the challenge is simply to find a
query that retrieves new relevant documents.

3.2 Anatomy of the ReQ-ReC Framework
Given the high-level intuitions of the ReQ-ReC frame-

work, we now discuss the key components in the double-
loop. To facilitate the discussion, we introduce the notations
in Table 1 and summarize the framework in Algorithm 1.

Table 1: Notations of the double-loop process
D index of the document collection
qi the i-th query submitted
Dq the union of all unjudged documents

retrieved by the set of queries {qi}
Ds documents selected for user judgments
Dl set of documents labeled already

retrieve(D, qi) a retrieval function that returns a subset
of documents from index D by query qi

ΘA model for document selection
ΘR model for relevant/non-rel classification

trainA(Dq ,Dl) function to train/update ΘA using
labeled and unlabeled documents

trainR(Dq ,Dl) function to train/update ΘR using
labeled and unlabeled documents

selectK(Dq ,ΘA) function to select K documents using
the document selection model

label(Ds) function to obtain relevance labels of Ds

predict(Dq ,ΘR) function to predict the relevance labels
and rank unlabeled documents

query({qi}, ·) function to generate a new query

3.2.1 Search
The ReQ-ReC framework assumes neither ownership nor

full access to the document collection, but instead relies on
a standard search service to retrieve documents from the
index. The retrieval service’s ranking function can use any
reasonable retrieval model that takes the input of a query qi
and outputs a certain number of ranked documents from the
index (e.g., using a vector space model, a language modeling
approach, or a boolean retrieval model). In most cases, the
user has no knowledge about the algorithm that is employed
by the external search service. In that case, the retrieval
function is treated as a black box in the framework.

After each search process the retrieved documents will be
merged into the pool of unlabeled documents Dq, which ex-
pands the workset for document selection and classification.

Algorithm 1 The double-loop process

Input: Initial query q0, index of document collection D
Output: A set of labeled documents Dl and a set of un-

judged documents in Dq with system predicted labels.

1: Dq ← ∅
2: Dl ← ∅
3: repeat // outer loop
4: Dq ← retrieve(D, qi) ∪ Dq

5: repeat // inner loop
6: if Dl == ∅ then
7: Ds ← selectK(Dq)
8: else
9: ΘA ← trainA(Dq,Dl)

10: Ds ← selectK(ΘA,Dq)
11: end if
12: Dl ← Dl ∪ label(Ds)
13: Dq ← Dq −Ds

14: ΘR ← trainR(Dq,Dl)
15: predict(ΘR,Dq)
16: until meet stopping criteria for inner loop
17: qi+1 ← query({qi},Dq,Dl,ΘA,ΘR)
18: until meet stop criteria for outer loop



3.2.2 Document Selection
In every iteration of the inner-loop, during steps 6-10 of

the algorithm the system selects K (e.g., 10) documents Ds

from the pool of retrieved documents that are yet unlabeled,
Dq, and asks the user for judgments. At the beginning of the
double-loop process, where there are no judged documents,
this process can simply return the top documents ranked
by the retrieval function, select a more diverse set of docu-
ments through an unsupervised approach, or even randomly
sample from Dq. Once labeled documents have been accu-
mulated, the process is able to select documents based on an
active learning strategy. Such a process aims to maximize
the learning rate of the classifier and thus reduce the user’s
effort on labeling documents.

3.2.3 Classification
Given an accumulated set of labeled documents, the clas-

sification component learns or updates a binary classifier
(i.e., ΘR) at step 14 and reclassifies documents from Dq at
step 15. Any reasonable classifier can be applied here.

In many high-recall retrieval tasks such as medical record
search, it is important to find all patients that “match” cer-
tain conditions, but it is not necessary to rank the records
identified as relevant [7]. In those cases, the labels of doc-
uments in Dq can be directly predicted by the classifier. In
cases where ranking is desired, documents in Dq and Dl can
be ranked/reranked using either the confidence values or the
posterior probabilities output by the classifier, or by using
an alternative machine learning method such as a regression
or learning-to-rank model.

3.2.4 Query Expansion
When the classifier appears to be achieving a stable pre-

cision on the current workset of documents Dq, the system
proceeds to expand Dq in order to increase the recall. This
is done through constructing a new query (step 17) and re-
trieving another set of documents through the search ser-
vice. Any reasonable query expansion method can be ap-
plied here, including the classical relevance feedback meth-
ods such as Rocchio’s [15] or model-based feedback [28].
Other query reformulation methods can also be applied, such
as synonym expansion [24] and semantic term matching [5].

3.2.5 Stop Criteria
Stop criteria of the inner-loop: new labels stop being

requested when either of the following conditions is met:

• The performance of the classifier converges. The sys-
tem correctly predicts the user’s labels of a new batch
of documents Ds and, after adding those labels, there
is no evident change in the classifier’s predictions.

• The user runs out of energy or patience.

Stop criteria of the outer-loop: new queries stop being
submitted when either of the following conditions is met:

• New queries no longer pick up new relevant documents.
This can be assessed heuristically by running the ex-
isting classifier on a new result set, or can be verified
by running the inner loop again to check whether any
new positive documents are identified.

• The user runs out of energy or patience.

4. INSTANTIATIONS OF REC-REQ
The key components of the general ReQ-ReC framework,

document selection, classification, and query expansion can
be instantiated in many ways. To illustrate the power of the
framework, we describe five instantiations, beginning with
iterative relevance feedback as a degenerate form and pro-
gressively substituting elements that take greater advantage
of the broader framework. Section 5 will provide perfor-
mance comparisons of these instantiations.

4.1 Iterative Relevance Feedback
Interestingly, an iterative relevance feedback process can

be interpreted as a special case of the ReQ-ReC framework,
if both the classification component and the document se-
lection component simply adopt a ranking function that is
based on the current query, qi. More specifically, define ΘR

to classify a document as relevant if it is in retrieve(D, qi),
and define ΘA to always select the next highest ranked un-
labeled item from retrieve(D, qi). There is no difference in
whether the results retrieved by the previous queries are kept
in the document pool Dq or not, if the results are eventually
ranked based on the last query, qi.

Note that many query updating methods (in the context
of relevance feedback) can be applied to generate the new
query at each iteration. To establish a baseline for per-
formance comparison, we choose Rocchio’s method [15], by
which the next query is selected according to Equation 1:

~qi = α~q0 + β
1

|Dr|
∑

~dj∈Dr

~dj − γ
1

|Dnr|
∑

~dk∈Dnr

~dk, (1)

where ~q0 is the original query vector, Dr and Dnr are the set
of known relevant and nonrelevant documents, and α, β, and
γ are parameters. The basic idea of Rocchio’s method is to
learn a new query vector from documents labeled as positive
or negative, and then interpolate it with the original query
vector. When the parameters are well tuned, this achieves
performance comparable to alternatives such as model-based
feedback [28] and negative feedback [25].

4.2 Passive
The next two instantiations modify the relevance feed-

back process by introducing a separate classifier, ΘR, rather
than using the retrieval function as a degenerate classifier.
This classifier is involved to maximize the precision of labels
for Dq. Here, keeping the documents retrieved by previous
queries does make a difference, because ΘR will operate at
the end to rank all of the results from all of the queries.

Any machine learning-based classifier, as well as any rea-
sonable selection of features, can be used to identify relevant
documents in Dq. We adopt the support vector machine
(SVM) [2] with unigram features and linear kernel. In cases
where a ranked list of documents is desired, documents in
Dq are ranked by the score of the decision function wTx+ b
output by linear SVM.

We call this second instantiation of ReQ-ReC Passive. It
is passive in the sense that the classifier is not used to control
the interactive process with the user; we still choose the top-
ranked documents for labeling and use Rocchio’s method of
query expansion, as in our iterative RF instantiation. By
comparing the performance of passive and the Iterative RF
baseline, we can determine the effect of the classifier acting
solely as a post-hoc reranking function.



4.3 Unanchored Passive
Note that in Rocchio updating, the parameter that inter-

polates the new query vector with the original query is quite
sensitive. This is because when one relies on the query to
maximize both precision and recall, the expansion has to be
conservative so that the new query does not drift too far
from the original query. When the burden of maximizing
precision is transferred from the query to the classifier, we
anticipate that this interpolation should become less critical.
To test this, we introduce another simple instantiation by re-
moving the original query vector (i.e., the ~q0 component in
Equation 1) from Rocchio, by setting α = 0. Note that this
is a rather extreme case for test purposes. In reality, keep-
ing closer to the original query may still be important even
for the purpose of increasing recall. We call this instantia-
tion Unanchored Passive, because the updated queries are
no longer anchored to the initial query.

4.4 Active
Next, we consider an instantiation of RecQ-ReC that makes

use of the classifier to select documents for labeling in the
inner loop. As before, we train the classifier using SVM.
We select documents for labeling using uncertainty sam-
pling [23], a simple active learning algorithm that selects
examples closest to the decision hyperplane learned by the
classifier. In each inner-loop iteration, we present to the user
ten documents that are the most uncertain by the current
classifier. Specifically, five are chosen from each side of the
hyperplane. We call this instantiation Active because the
classifier is active in choosing which documents to label.

Note that after the very first search process, the system
has no labeled documents in the pool. A classifier cannot
be trained and thus the uncertainty sampling cannot be ap-
plied. At this cold start, we simply select the top 10 doc-
uments returned by the search service as the first batch of
documents to request user judgments.

As uncertainty-based active learning gradually refines the
decision boundary of the classifier, every new query to the
search service may affect its performance. This is because
a new query expands the pool of documents Dq with newly
retrieved documents, which might dramatically change the
distribution and the manifold of data in the search space.
At this point, instead of gradually refining the old decision
boundary, the classifier may need a bigger push to quickly
adapt to the new distribution of data and approach the new
decision boundary. In other words, it is important for the
classifier to quickly explore the newly retrieved documents.
Therefore, in the first inner-loop iteration after each new
query brings back new documents, we select top ranked doc-
uments for labeling instead of the most uncertain ones. Un-
certain ones are picked in the following inner-loop iterations.

4.5 Diverse Active
The final instantiation we consider modifies the query ex-

pansion algorithm used in the Active instantiation. Pre-
viously, we considered an unanchored version of Rocchio’s
method of selecting the next query. Here, we consider a
different modification of Rocchio’s method.

To maximize recall, we naturally want a new query to re-
trieve as many relevant documents as possible. Even more
importantly, these relevant documents should overlap as lit-
tle as possible with the documents retrieved by previous
queries. In other words, a new query should retrieve as

many new relevant documents as possible.
Our idea is inspired by the theory of “weak ties” in soci-

ology [6]. While strong ties trigger social communication,
weak ties can bring in novel information. If we think of
the top-ranked documents in a retrieved list as “strong ties”
to the query, we can think of the lower-ranked documents
as “weak ties.” We thus exploit documents that are judged
as relevant, but ranked lower in the list returned by the
search service. These documents are likely to act as bridges
to expand the search space into other clusters of relevant
documents.

Are there many such documents? In a relevance feedback
process, there might be few, as the user always labels the
top-ranked documents. In a ReQ-ReC process that actively
selects documents, however, documents ranked lower by the
retrieval function are more likely to be viewed and judged
by the user.

In Equation 1, instead of using all relevant documents
Dr, we use its subset Drl, which includes the documents
that are judged as relevant but ranked low by the original
retrieval function. We employ a simple criterion to deter-
mine which documents should be included in Drl. For each
document d, we maintain its rank returned by the retrieval
function, denoted as rd. If the document has been retrieved
by multiple queries in the past, its highest rank in those re-
trieved lists is kept. Let rl be the lowest rank rd of all the
documents in Dr. We include documents that are ranked
lower than rl/2 in Drl. This leads to inclusion in the next
query of terms from relevant documents that were not highly
weighted in previous queries. Since this method aims to di-
versify new queries, while still using the classifier to actively
choose documents for labeling, we refer to this method as
Diverse Active.

5. EXPERIMENTS
In this section, we present empirical experiments to eval-

uate the effectiveness of the ReQ-ReC framework and its
instantiations. We start with a description of the data sets,
metrics, and methods included in the comparisons.

5.1 Data Sets
There are several criteria for selecting the right data sets

for evaluating ReQ-ReC. Ideally, the data sets should be
large enough and standard search APIs should exist. A rep-
resentative set of queries should also exist, and each query
should have a reasonable number of relevant documents in
the data set. To avoid the high variance of real-time user
judgments and to facilitate comprehensive and fair compar-
isons, we use existing judgments for each query to ‘automate’
the actual user feedback in the process. The same approach
is used in most existing work on relevance feedback (e.g., [8,
20, 25]). We therefore require that many relevant judgments
exist for each query.

We first select four large scale TREC data sets, the data
sets used in TREC-2012 Microblog Track (MB12) [21], TREC-
2013 Microblog Track (MB13)1, the TREC-2005 HARD Track
(HARD), and the TREC-2009 Web Track (ClueWeb092,
category A)3. These data sets normally provide 50–60 queries
and 500–1,000 relevant judgments for a query.

1https://github.com/lintool/twitter-tools/wiki/
2http://lemurproject.org/clueweb09/
3http://trec.nist.gov/data/web09.html

https://github.com/lintool/twitter-tools/wiki/
http://lemurproject.org/clueweb09/
http://trec.nist.gov/data/web09.html


Note that there is a natural deficiency of using TREC
judgments for the evaluation of a high-recall task, simply
because not all documents in a TREC data set have been
judged. Instead, judgments are provided for only a pool of
documents that consist of the top-ranked documents sub-
mitted by each participating team. In many cases, only a
sample of the pool is judged. Therefore, it is likely that many
relevant documents for a query are actually not labeled in
the TREC provided judgments. This creates a problem for
a ‘simulated’ feedback process—when the system requests
the label of a document, the label may not exist in the
TREC judgments. It is risky to label that document either
as relevant or as irrelevant, especially because mislabeling
a relevant documents as irrelevant may seriously confuse a
classifier. In such situations, we ignore that document and
fetch the next document available. The same treatment has
been used in the literature [20]. When measuring the per-
formance of a retrieved list, however, we follow the norm in
the literature and treat a document not judged by TREC as
negative.

Table 2: Basic information of data sets

#docs avg dl #topics(IDs) #qrels
20NG 18,828 225 20 categories 18,828
HARD 1,033,461 353 50 (303-689) 37,798
MB12 15,012,766 19 59 (51-110) 69,045
MB13 ≈243,000,000 14 60 (111-170) 71,279

ClueWeb09 503,903,810 1570 50 (1-50) 23,601

* HARD has non-consecutive topic IDs. Topic 76 of MB12 has
no judgment hence is removed.

To better understand the behavior of ReQ-ReC, it is desir-
able to include a data set that is fully judged, even though a
large data set like that is rare. Therefore, we include the 20-
newsgroup data set (20NG) [11] for this purpose. As every
document belongs to one of the 20 topics, we use the titles
of 20 topics as the queries, following the practice in [4]. For
words that are abbreviated in the topic titles, we manually
expand them into the normal words. For example, “rec” is
converted to “recreation,” and “autos” to “automobiles.” Al-
though it is feasible to apply a classifier to the entire 20NG
data set, we only access the data using rate-limited retrieval
functions. The statistics of all five data sets in our experi-
ments are presented in Table 2.

Both the 2013 Microblog Track4 and the ClueWeb095

provide official search APIs, which are implemented using
the Dirichlet prior retrieval function (Dirichlet) [29]. For
other data sets, we maintain a similar search service using
Lucene,6 which also implements the Dirichlet prior function.
Documents are tokenized with Lucene’s StandardAnalyzer
and stemmed by the Krovetz stemmer [10]. No stopwords
are removed.

5.2 Metrics
Many popular metrics for retrieval performance, such as

precision@K and NDCG, are not suitable for high-recall
tasks. We use two standard retrieval metrics that depend
more on recall, namely the mean average precision (MAP)

4https://github.com/lintool/twitter-tools/wiki/
TREC-2013-API-Specifications
5http://boston.lti.cs.cmu.edu/Services
6http://lucene.apache.org/

[12] and the R-precision (R-Prec) [12]. R-precision mea-
sures the precision at the R-th position for a query with R
relevant judgments. The R-th position is where precision
equals recall. To increase R-precision, a system has to si-
multaneously increase precision and recall. For each query,
we use the top 1,000 relevant documents (either labeled or
predicted) to compute the measures.

When measuring performance, we include documents that
the user labeled during the process. This is because a high-
recall retrieval task is successful when more relevant docu-
ments can be found, whether they are actually judged by
the user or predicted by the system. If an interactive pro-
cess does a good job of presenting more relevant documents
to the user, it should not be punished by having those docu-
ments excluded from the evaluation. In all methods included
in comparative evaluation, we put the documents judged as
relevant at the top of the ranked list, followed by those pre-
dicted to be relevant using ΘR.

5.3 Methods
We summarize all baseline methods and ReQ-ReC instan-

tiations included in our evaluation in Table 3. The most
important baseline we are comparing with is the iterative
relevance feedback as described in Section 4.1, in which a
new query is expected to maximize both precision and re-
call. We then include four instantiations of the ReQ-ReC
framework, as described in Section 4.

In Passive and Unanchored Passive, we employed a neg-
ative form of pseudo-relevance feedback: the lowest ranked
1,000 documents retrieved by the final query are treated as
negative examples to train the classifier. The positive ex-
amples for training came from the actual judgments.

5.4 Parameters
For the MP13 and ClueWeb09 datasets, we used the of-

ficial search APIs, which returned, respectively, 10,000 and
1,000 documents per query. For the three data sets without
official search APIs, the parameter of the Dirichlet prior µ
for the base retrieval function was tuned to maximize the
mean average precision and each query returned the top
2,000 matching documents.

To obtain the strongest baseline, we set the parameters of
Rocchio to those that maximize the mean average precision
of a relevance feedback process using 10 judgments. We fix
α to be 1 and conduct a grid search on the other two. For
ClueWeb09, we set the parameters according to the recom-
mendation in [12] as the rate limits of the API prevent us
from tuning the parameters. We do not further tune the pa-
rameters in the ReQ-ReC methods even though the optimal
parameters for the baseline may be suboptimal for ReQ-
ReC. The values of all the parameters used are shown in
Table 4. In all our experiments, we also use the default pa-
rameter of SVM (c = 1). We stop the inner-loops when SVM
confidence value produces stable ranking of Dq, i.e., Spear-
man’s rank correlation coefficient of previous and current
rankings of Dq is above 0.8 for two consecutive inner-loops.

5.5 Overall Performance
Table 5 summarizes the performance of all included meth-

ods, with one additional criterion to stop the process when
the “user” has judged 300 documents for a topic. Statistical
significance of the results are provided by comparing to the
baseline, iterative relevance feedback, and by comparing to
another ReQ-ReC method. In general, methods developed

https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications
https://github.com/lintool/twitter-tools/wiki/TREC-2013-API-Specifications
http://boston.lti.cs.cmu.edu/Services
http://lucene.apache.org/


Table 3: Baselines and methods included in comparison.
Method Doc. Selection Classification Query Expansion # outer loops # inner loops

Relevance Feedback (RF) top - Rocchio 1 1
Iterative RF top - Rocchio M 1

Passive top SVM at end Rocchio M 1
Unanchored Passive (Unanchored) top SVM at end Rocchio - ~q0 M 1

Active uncertainty SVM Rocchio M M
Diverse Active (Diverse) uncertainty SVM divRoc M M

* M: multiple iterations; top: select 10 top-ranked documents; uncertainty: uncertainty-based active document selection;
divRoc: diverse Rocchio; Rocchio - ~q0: Rocchio without interpolation of the original query.

Table 4: Parameter settings: µ in Dirichlet prior; β
and γ in Rocchio (α fixed as 1); Results per query:
number of documents returned by a search API call.

MB12 MB13 ClueWeb09 HARD 20NG
µ 2100 - - 1100 3200
β 0.95 0.85 0.75 0.6 0.5
γ 0.4 0.15 0.15 0.05 0.4

Results/query 2,000 10,000 1,000 2,000 2,000

under the ReQ-ReC framework significantly outperform it-
erative relevance feedback. Diverse Active, which uses an
active document selection strategy and a diverse query ex-
pansion, achieves the best performance. For most data sets,
the improvement over iterative relevance feedback is as large
as 20% – 30% of MAP and R-Precision. This is promising
given the difficulty of improvements based on those two met-
rics. On the largest data set, ClueWeb09, the best ReQ-ReC
algorithm achieves more than 120% improvement over iter-
ative relevance feedback.

We make the following remarks:

• (Compare Relevance Feedback with Iterative RF ) Mul-
tiple iterations of relevance feedback indeed outper-
forms a single iteration of feedback, even if the same
number of judgments (i.e., 300) are used in this single
iteration. The only exception is the ClueWeb09 data,
for which the collection is too large and the relevance
judgments are very sparse. In this case, an iterative
relevance feedback method may stop earlier if none of
the top 10 results brought back by a new query are rel-
evant. In that situation, presenting more documents
to the user at once may be less risky.

• (Compare Iterative RF with Passive and Unanchored-
Passive) Distributing the burden of maximizing preci-
sion to a classifier is effective, even if the classifier is
only involved at the end of the process. Iterative rel-
evance feedback relies on the new query to maximize
both precision and recall. By simply keeping the re-
sults retrieved by all previous queries and classifying
them at the end (by an SVM trained on accumulated
judgments), the retrieval performance increases signifi-
cantly on all the data sets (Passive). Since the involve-
ment of the classifier releases the burden of the queries
to maximize precision, we anticipate that the queries
no longer have to be tied closely to the original one.
Indeed, even if we strip the effect of the original query
from every expanded query (Unanchored-Passive), the

ReQ-ReC process still yields results comparable to—
and sometimes even better than—anchored query ex-
pansion (Passive). The performance is further im-
proved when the classifier is involved in all the iter-
ations instead of being applied at the end (Active).

• (Active) A straightforward active document selection
approach (which picks the documents that the clas-
sifier is the least certain about) outperforms picking
documents from the top of the ranked list. This is
consistent with the observations in literature [22]. By
actively selecting documents to present to the user, her
effort of labeling documents is significantly reduced.

• (Diverse Active) The diverse query expansion method
inspired by the weak-tie theory is clearly the winner on
all five data sets. By moving the burden of precision
to a classifier, the objective of a new query is purely
to bring new relevant documents into the pool of re-
trieved documents. This gives freedom to the queries
to expand the search space aggressively, and provides
a great opportunity to investigate new algorithms that
are particularly suitable for this goal.

5.6 Learning Behavior Analysis
The previous section summarizes the performance of ReQ-

ReC methods when the stop criteria are met. To better un-
derstand the behavior of ReQ-ReC, we provide the follow-
ing analysis and plot the intermediate performance of three
methods (Iterative RF, Active, and Diverse Active) through-
out the user-interaction process. Note that each topic may
accumulate judgments at a different pace and meet stop cri-
teria earlier or later. We interpolate a per-topic curve by
a piecewise linear function, and extrapolate it by extend-
ing the end-point constantly to the right. These per-topic
curves are then averaged to generate the aggregated curve.

Figure 3 plots the performance of each method against the
number of documents the “user” has judged so far through-
out the ReQ-ReC process, measured using R-precision. All
three curves start at the same point where there is no user
judgment. At that point the ranking is essentially based on
the original retrieval function (i.e., Dirichlet prior). When
user judgments are beginning to be collected, there is a sig-
nificant gain by iterative relevance feedback. Performance
increases rapidly at the first 2 runs (20 judgments), and the
growth becomes much slower after that. This is consistent
with the findings in literature.

Methods developed under the ReQ-ReC framework (Ac-
tive and Diverse Active) do not really take off until we obtain
a reasonable number of judgments (50 on the HARD data
set and 90 on the microblog data set). This is ascribed to



Table 5: Retrieval performance of competing methods. At most 300 judgments per topic. ReQ-ReC methods
significantly outperform iterative relevance feedback.

MB13 MB12 HARD 20NG ClueWeb09
R-prec MAP R-prec MAP R-prec MAP R-prec MAP R-prec MAP

Dirichlet 0.268 0.203 0.233 0.183 0.247 0.174 0.327 0.107 0.101 0.058
RF 0.417 0.415 0.466 0.479 0.440 0.447 0.451 0.356 0.256 0.229
Iterative RF 0.532 0.552 0.633 0.649 0.592 0.597 0.474 0.421 0.237 0.216
Passive 0.568∗∗ 0.585∗∗ 0.646∗∗ 0.661∗∗ 0.615∗∗ 0.637∗∗ 0.548∗∗ 0.490∗∗ 0.275∗∗ 0.247∗∗

Unanchored 0.603∗∗O 0.618∗∗O 0.667∗∗O 0.673∗∗O 0.609 0.624∗∗ 0.527∗ 0.464∗ 0.268∗∗ 0.236∗∗

Active 0.653∗∗O 0.661∗∗O 0.727∗∗O 0.740∗∗O 0.729∗∗O 0.737∗∗O 0.595∗∗O 0.562∗∗O 0.493∗∗O 0.493∗∗O

Diverse 0.675∗∗M 0.692∗∗M 0.760∗∗M 0.771∗∗M 0.789∗∗M 0.799∗∗M 0.620∗∗O 0.580∗∗O 0.533∗∗M 0.533∗∗M

(+27%) (+25%) (+20%) (+19%) (+33%) (+34%) (+31%) (+38%) (+125%) (+147%)

** and * indicate the improvement over Iterative Relevance Feedback is statistically significant according to Wilcoxon signed rank test
at the significance level of 0.01 and 0.05; O: the improvement over Passive is significant at the level of 0.05; M: the improvement over

Active is significant at the level of 0.05; (+x%) indicates the percentage of improvement over the baseline Iterative RF.
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Figure 3: R-Prec vs. labeling effort

the “cold start” problem of supervised classification. When
few labeled documents are available, the performance of a
classifier does not outperform a simple ranking function.

As stated before, a ReQ-ReC process targets users who
truly seek a high recall of relevant documents and are there-
fore willing to spend more effort on interacting with the
system and labeling more results. Indeed, after the first
few iterations, the two methods developed under ReQ-ReC
framework improve dramatically and become significantly
better than iterative relevance feedback. For the users who
are reluctant to label more than 50 documents, conventional
relevance feedback may still be a better choice.

The cold start implies that there is considerable room for
improving the performance of the ReQ-ReC. For example,
a semi-supervised classifier may be used early on to achieve
better precision with few training examples.

We also notice that the benefit of Diverse Active over Ac-
tive kicks in later in the process, when there are around 150
judgments collected. At that point, getting new relevant
documents becomes more challenging, as many documents
retrieved by the new query may have already been retrieved
by a previous query. At this stage, introducing some diver-
sity to the query expansion brings in considerable benefit.
Similar observations are made on the other three data sets.

Another interesting analysis is how well a method works
with documents that have not been selected for labeling so
far. We are particularly interested in this behavior because
we have decided to include all judged documents when mea-
suring the performance of the system (see Section 4).

We plot the residual MAP in Figure 4, which is the mean
average precision computed purely based on documents that
have not been presented to the user so far in the process.
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Figure 4: Residual Analysis

In general, the two ReQ-ReC methods (Active and Diverse
Active) do a much better job in finding the relevant docu-
ments and ranking them high, even if they are not judged by
the user. On the microblog data set, we see that the resid-
ual MAP decreases when more documents are presented to
and labeled by the user. This may be simply because there
are fewer relevant documents remaining in the collection.
However, it is also likely due to the fact that the TREC
judgments are not complete. There might be many rele-
vant documents that were not judged by TREC at all. If a
method successfully finds those documents, its performance
may be significantly undervalued simply because we have to
treat these documents as negative in computing the metrics.

We are therefore interested in how ReQ-ReC behaves if
the data set is fully judged. Looking at the curves on the
20NG, we observe a contrary pattern, where the two ReQ-
ReC methods actually enjoy a continuous growth of residual
MAP, while the same metric for iterative feedback is still
dropping. This is a promising finding that indicates the
performance of ReQ-ReC may be underestimated on data
sets with incomplete judgments (i.e., TREC data sets).

6. CONCLUSION
We present ReQ-ReC (ReQuery-ReClassify), a double-

loop retrieval framework that is suitable for high-recall re-
trieval tasks without sacrificing precision. The interactive
process combines iterative expansion of a query set with it-
erative refinements of a classifier. The work of maximizing
precision and recall is distributed so that the queries increase
recall and the classifier handles precision.

The ReQ-ReC framework is general, which includes classi-



cal feedback methods as special cases, and also leads to many
instantiations that use different combinations of document
selection, classification, and query expansion methods. The
framework is very effective. Some instantiations achieved a
20% – 30% improvement of mean average precision and R-
precision on most data sets, with the largest improvement
up to 150% over classical iterative relevance feedback.

In order to clearly illustrate the power of the framework,
we have intended to keep all the instantiations simple. It is a
promising future direction to optimize the choices and com-
binations of the key components of the ReQ-ReC framework.
Findings from our experiments also indicate possibilities for
investigating new classification and query expansion algo-
rithms that are particularly suited to this framework.
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