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Abstract: Optimization of modern engines is becoming involved because of both the stringent
emission norms and the newly found ability to control various parameters in every zone of
the map of engines using electronic fuel injection systems, in both steady state and transient
conditions. This paper describes a genetic algorithm and its application to engine optimization
when a fitness criterion can be described quantitatively. A specific case study on the selection
of a simple speed-dependent injection timer for a diesel engine is described. A population of
timers is randomly created where the survival depends on the fitness criterion. From the fit
and asexual parents that are randomly selected, offspring are produced to replace the least-fit
portion of the population belonging to the previous generation. A small percentage of the
population is allowed to mutate. The fitness of the population improves every generation and,
in the advanced generation, the fittest timer seems to be the most optimum.

Keywords: genetic algorithm, diesel engines, optimization, injection timing, injection timer,
electronic fuel injection system, population, generation, mutation, elitist reproduction
strategy, design of experiments

1 INTRODUCTION manually by using the experimental test data. To
finalize a particular timer path, this process is
repeated many times. The selected timer mayThe diesel injection timing plays an important role
not be the optimum as the number of tests isin deciding the combustion characteristics, power,
limited. With more and more modern diesel enginesand fuel consumption of the engine. For a given
developed using common-rail or other electronic fuelstatic injection timing, the delay due to the time
injection systems, optimization of injection timingtaken by the pressure waves to reach the injector
and injection pressure at every operating point isfrom the high-pressure fuel injection pump would
carried out to maintain the integrated emissionsretard the fuel injection at higher speeds, relative to
at a optimum level and to minimize the specificthe piston position. The retarded injection timing
fuel consumption (SFC). While this offers a greatleads to increased smoke formation, decreased power,
opportunity to develop environmentally friendly andand decreased engine efficiency. If the injection of
fuel-economic engines, the optimization work hasfuel is more advanced, it results in higher cylinder
increased manifold. With fast computers that couldtemperature and pressure, and thus in more nitrogen
directly interact with the fuel injection systems,oxides (NO

x
).

online optimization of the engine is carried out usingAn injection timer is used in diesel engines to
the design-of-experiments (DOE) method [1]. Foradvance the injection timing as the speed increases
complex problems, the approach is difficult. Onand hence to compensate for the delay. The injection
the other hand, the genetic algorithm (GA) methodtimer is characterized by the timer path curve,
presents an interesting alternative to optimize anwhich describes how the injection time is advanced
engine. GAs have not been explored for this purposewith the speed. The path is usually optimized
so far in the published literature.

In this paper, the development of an optimization
* Corresponding author: Engine Research and Development, scheme for the timer path using a GA is presented.
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timings, and the output is the optimized timer path The individuals of the very first population are
created in the domain of x lying between the min-that corresponds to the minimum SFC, maximum

power, and emissions limited to a given range. The imum and maximum values. The sampling space
is characterized by the size N

p
of the populationtimer travel path is coded as a binary string. A

modified GA is used to find the optimum timer path and the number N
o

of offspring produced at each
generation. The following genetic operators arefrom a random solution space.
applied to each successive population to improve
results.

2 GENETIC ALGORITHM

2.1 Crossover operation
Many optimization problems are very complex and

In the two-point crossover approach, two genderlesshard to solve by conventional optimization tech-
mating parents are selected at random by involvingniques. Since the 1960s, there has been increasing
the random number generator, to identify the sitesinterest in imitating living beings to solve hard optimi-
on the strings. The strings of 0s and 1s enclosedzation problems. Simulating the natural evolutionary
between the chosen sites are swapped between theprocess results in stochastic optimization techniques
mating strings. The number of crossover operationscalled evolutionary algorithms, which can often
performed depends on crossover rate p

c
.outperform conventional optimization methods

when applied to difficult real-world problems [2–5].
There are currently three main avenues of this 2.2 Mutation operation
research, namely GAs, evolutionary programming,

A few members from the population pool are takenand evolution strategies. Of these, the GA is perhaps
depending on the mutation rate p

m
. By switching 0the most widely known type of evolutionary algorithm

and 1 at randomly selected substrings on the chosentoday. Details of GAs can be found in the book by
string, mutation is simulated. The chromosomeGoldberg [6] and the paper by Hajela [7].
generated by the crossover or mutation operation isThe GA is motivated by the hypothesized natural
called offspring.process of evolution in biological populations, where

genetic information stored in strings of chromosomes
evolves over generations to adapt favourably to a static 2.3 Selection of the next generation
or changing environment. The algorithm is based

The procedure creates a new population from theon the elitist reproduction strategy, where members
present sample space. The space may consist ofof a population deemed the fittest are selected
all parents and offspring or some other combinationfor reproduction and are given the opportunity to
of parents and offspring [9–13]. The mechanismstrengthen the chromosome structure of progeny
for sampling can be stochastic, deterministic, orgeneration. This approach is facilitated by defining
mixed. In stochastic sampling, the number ofa fitness function or a measure indicating the
copies of a chromosome in the next generation isgoodness of a member of the population in the given
based on its survival probability of fitness [14].generation during the evolution process.
Holland’s [9] proportionate selection or roulette wheelTo represent the designs of mechanical equipments,
selection is one example of this type of sampling.the design variable is converted to strings of binary
Deterministic sampling selects the best N

p
chromo-numbers appearing like chromosomes. Thus, the

somes from the sampling space. Truncation selectionstring is the equivalent of the design variable and
and block selection belong to this type of selectionthereby mapped into a fixed-length string of 0s
technique [15]. In another technique, N

o
least-fitand 1s. A number of such strings, i.e. individuals,

and old chromosomes are replaced by N
o

offspringconstitute a population of designs with each design
[16, 17]. Mixed sampling contains both randomhaving a corresponding fitness value. The fitness of
and deterministic features. Tournament selection andchromosomes is evaluated during each generation [8].
remainder stochastic sampling [18, 19] are examplesThis fitness value could be the objective function F(x)
of mixed sampling.for a function maximization problem. Thus, the GA

The process of crossover and mutation followed bycan be used to solve optimization problems of the
reproduction in one generation produces the nextform
generation of the GA. After several generations,

maximize F(x) subject to xmin∏x∏xmax the GA is stopped and the individual string with the
highest fitness value is taken as the optimum. Sincewhere x is the design variable for GA
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the GA is a probabilistic search method, it is very n data, and the emission test data at different fuel
injection timings v.good at finding the global maximum. Furthermore,

GAs need only function values and not gradient A typical injection-timing curve for a mechanical
timer is shown in Fig. 1 representing a probable indi-information, which makes them easy to use for real

systems where accurate gradient information is vidual. Here, the injection timing at an engine speed
of 1200 r/min is 12° before top dead centre (BTDC).difficult to obtain, and local minima may occur.

However, they are computationally expensive. This remains constant until the speed becomes equal
to 1600 r/min. From 1600 to 2300 r/min, the injection
timing increases linearly with increasing engine
speed, after which the injection timing attains a value3 CASE STUDY ON THE SELECTION OF THE

BEST MECHANICAL TIMER of 17° BTDC.

3.2 RepresentationA case study of selecting the best timer for the four-
cylinder truck engine, the details of which are given

The above timer has to be represented as a binary
in Table 1, is described here. The problem is to select

string individual. The characterizing graph can be
the optimum timer characteristic in such a way that

defined by using four points x
1
, x

2
, x

3
, and x

4
, which

the fuel consumption is low with a constraint on NO
x are called decision variables. These points are shown

to satisfy production tolerances and the legislated
on the timer figure. As the first step, the decision

norm.
variables are encoded as a binary string. The length
of the string depends on the required precision and

3.1 Formulation of the problem
the domain of the decision variable (Table 2).

The precision of variable x
1

is two places after theThe timer path is the injection timing against the
engine speed n, as shown in Fig. 1. The objective of decimal point. This requirement implies that the

range of domain of variable x
1

should be divided intothis problem is to obtain an injection timer path that
corresponds to the combination of best SFC, best at least (x

1 max
−x

1 min
)×100 size ranges, where x

1 max
is the higher limit and x

1 min
is the lower limit of thepower p, and emissions within a particular range.

The input data are the SFC against n data, p against range of domain for x
1
. The required number m

1
of

Table 2 Precision and range of domain of
Table 1 Engine details the individual in Fig. 1

Bore (mm) 104 Required precision
Design (places after theStroke (mm) 113

Rated speed (r/min) 2800 variable decimal point) Range of domain
Maximum torque speed (r/min) 1800
Rated power (hp) 63 x

1
, x

3
2 12–18°

x
2
, x

4
0 1200–2800 r/minNumber of cylinders 4

Fig. 1 Characteristic of an individual timer
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bits is calculated as 3.3 Objective function for describing fitness

2m
1
−1<(x1 max−x1 min)×100∏2m

1
−1 The next step towards solving this problem is the

definition of an objective function. An objective
m

2
, m

3
, and m

4
are found in similar ways.

function is the parameter against which a particular
Thus,

individual or solution is compared with any other
210−1<(18−12)×100∏210−1, m

1
, m
3
=10 individual or solution. The objective function for this

problem is defined as follows. The lower the value of
211−1<1600∏211−1, m

2
, m
4
=11

this objective function for a solution, the better the
solution will be. This objective function is calculatedm

1
+m
2
+m
3
+m
4
=42

for all the individuals in the generation, N
p

, as
Thus, the chromosome n

j
representing the jth indi-

vidual of the present population can be represented
with a total length of 42 bits (see also Table 3) as [ f

0
]
j
=CWi=1, ..., 17 SFC

i
p
i
w
i

W

i=1, ..., 17
p
i
w
i
D
j

n
j
=011101100101000110101000101001010010100001

j=1, … , NpThe mapping from the binary string to a real
(1)number for decision variable x

1
is

where
[x
1
]
j
=Cx1−min+decimal (substring

1
)

p
i
=power

w
i
=weight×

x1−max−x1−min
2m
1
−1 D

j
i=selected point in the operating zone of the

engine which is considered for the calculation
j=1, … , Np of f

0
j=individual selected for fitness evaluationx

2
is calculated in a similar way. For decision vari-

ables x
3

and x
4

the condition that x
3
>x

1
and x

4
>x

2
should hold. Thus, the mapping is

3.4 Constraints

[x
3
]
j
=Cx1+decimal (substring

3
)×

x3−max−x
1

2m
3
−1 D

j
The constraint for this problem is to maintain the
value of [NO

x
] limited within a particular range. In

practice, the upper limit is fixed by the legislated
[x
4
]
j
=Cx2+decimal (substring

4
)×

x4−max−x
2

2m
4
−1 D

j
emission norm for NO

x
. The limit should be just

low enough to give production, with a sufficient
j=1, … , Np engineering margin. Too low a lower limit jeopardizes

the SFC and emission of smoke. To solve the twoHere the decimal (substring
1
) represents the

problems, the designer could end up with a costlierdecimal value of substring
1

for the decision variable x
1
.

fuel injection system. There are many strategies toDecimal values of x
2
, x

3
, and x

4
can be represented

handle constraints with GAs such as rejecting, repair-in similar ways.
ing, modifying genetic operators, and penalizingTable 3 shows the values of x

1
, x

2
, x

3
, and x

4
for n

j
.

[20, 21]. The strategy used for this problem is theThis string is one particular solution from the
penalising strategy, which has an advantage oversolution space and corresponds to a particular
the others in terms of searching both feasible andinjection timer. The procedure is discussed in the
infeasible solution spaces. Glover and Greenberg [22]algorithm that follows.
have suggested that constraint management tech-
niques allowing movement through infeasible regions

Table 3 Example of construction of an individual or a of search space tend to produce a better final solution
chromosome than approaches limiting search trajectories to

only feasible regions of search space. The penaltyDecimal Value of the decision
x Substring (substring) variable x technique transforms the constrained problem to

an unconstrained problem by penalizing infeasiblex
1

0111011001 473 14.77
solutions. This is achieved by adding a penalty termx

2
01000110101 565 1642

x
3

0001010010 82 15.25 to the infeasible solutions for any violation of the
x

4
10010100001 1185 2568

constraints. The constraint for this problem is
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defined as The injection time at these speeds

(v
ij

; i=1, 2, … , 17; j=1, 2, … , Np)if [NO
x
]<7 or [NO

x
]>7.5, penalty=0.0001

is taken from the timer path curve. The values ofelse
SFC and power are taken from the performance

penalty=1 maps available for different injection timings.
Interpolation and extrapolation are carried out for(2)
the points that lie in between or outside the map

Here, the legislated norm for NO
x

is 8 g/kW h, the range. 70 per cent more weight is given to the
engineering margin is 0.5, and the tolerance for values that fall in the maximum used range of
production is 0.5 g/kW h. engine speeds (1800–2800 r/min). The weighted

A modified GA is used to minimize the objective average as shown in equation (1) is taken as a
function. For this purpose, the minimization problem measure of power and SFC. Thus
is redefined as a maximization problem by defining

w
i
=0.3, i=1, 2, … , 6a fitness function as

w
i
=0.7, i=6, 7, … , 17

fitness=
1

f
0

penalty (3) To estimate the value of [NO
x
], emission data at

different injection timings are used. These tests are
A higher value of this fitness function for a solution carried out according to the 13-mode emission test
will mean a better solution and vice versa. cycle. In this step, five emission readings are taken

at an engine speed of 1800 r/min and correspond-
3.5 Algorithm ing v, five emission readings are taken at an engine

speed of 2800 r/min and corresponding v, andAfter the solution representation, fitness function,
three emission readings are taken at idle speed andand constraints for the problem are finalized, the
corresponding v.algorithm is defined as follows.

Injection timing is found for speeds equal to the
engine idle speed (minimum injection timing),

3.6 Initial population 1800 r/min, and 2800 r/min from the timer path
as per the individual in the population. The corre-An initial population is created as a set of 100 indi-
sponding value of emission is found from theviduals of randomly selected 42 bits. Thus, N

p
=100.

emission test data. Interpolation or extrapolationThese individuals are represented as n
j
, j=1, … , N

p
.

is carried out for points not within the test data.The corresponding timers are t
j
, j=1, … , N

p
.

The value of the objective function f
0

and the
penalty function for all the chromosomes in the3.7 Evaluation steps
population is evaluated using equations (1) and (2).

The process of evaluating the fitness of a chromosome
Step 3: evaluating fitness

j
: j=1, 2, … , N

p
. The fitnessconsists of the following steps.

function is evaluated for all the chromosomes
Step 1: convert the chromosome’s genotype to its in the population using equation (3). The best

phenotype. The genotype is the encoded solution generation individual is found.
and the phenotype is the decoded solution. Here,

Step 4: crossover. Two random individuals are selected
this means converting binary string into relative

and a crossover operation is performed on them
real values (x

1
, x

2
, x

3
, x

4
).

to produce an offspring. The crossover used here is
the one-cut-point method, which randomly findsStep 2: evaluate the objective function. 17 points are
the cut point and exchanges the right parts of twoselected on the injection timing curve path for
parents to generate an offspring. The crossoverevaluation. The engine speeds at these points are
probability p

c
is kept at 0.6.

n
ij
= [1200, 1300, 1400, … , 2800]

Step 5: mutation. This step carries out the mutation
i=1, 2, … , 17 operation. The mutation probability p

m
is kept very

low at 0.01.j=1, … , Np
Step 6: selection. In this step, the population iswhere

sorted in order of decreasing fitness. Deterministic
sampling is used, in which the least-fit individualsn=speed (r/min)
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of the population are replaced by the offspring 3.9 Termination criterion
from the crossover and mutation operation. For

The program termination criterion is given as
this, the population is ranked according to the

a particular number of generation runs or as a
fitness criterion and the least-fit N

0
individuals of

particular value of fitness or some other desired
the population are replaced with the offspring.

parameter. The termination criterion for this case
was the completion of a run consisting of 2500

3.8 Next generation
generations. The individual with the best fitness in
2500 generations is taken as the solution.The population after the previous steps consists of

some parents and offspring. This generation is taken
as the next generation. The fitness of the population
is evaluated again and the individuals are again 4 RESULTS
sorted out in decreasing order of their fitness as
in steps 2 to 6. These steps are repeated until the In this study, a maximum of 2500 generations of

the GA are used. The population size, crossovertermination criterion is met.

Fig. 2 Improvement in fitness of the population with advancing generations

Fig. 3 Improvement in the engine power of the population with advancing generations
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probability, and mutation probability are chosen as Figures 2 to 5 depict various aspects of the running
of the GA. To demonstrate the stability of solutions,50, 0.6, and 0.01 respectively. The code implementing

the algorithm in this study takes about 3–5 min to the graphs show results in excess of 2500 generations
obtained by resetting the constraints in the study. Therun on MATLAB on a Pentium 4 personal computer

with the full 2500 generations of the GA. The con- timescale is chosen to be logarithmic to emphasize
the important episodes in the early generations ofvergences occur in 1500–2000 generations. The initial

solutions are found to be the worst. The best fitness the method. The [NO
x
] value is between 7 and 7.5

after the first three generations. The method seemsin the first three generations is found to vary less
because the [NO

x
] values are greater than 7.5. to converge quickly in about eight generations. In

Fig. 4 Decrease in [NO
x
] resulting from the population with advancing generations

Fig. 5 Improvement in the SFC of the population with advancing generations
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APPENDIX n chromosome or an individual
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Notation
Subscriptsf

0
objective function

m number of bits for a design variable i selected points for injection timer
n engine speed evaluation in the engine map operating
N

o
number of offspring produced in each zone

j individual number in the population,generation
N

p
size of the population ranges from 1 to the size of the population
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