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ABSTRACT
A fuzzy system that  automatically develops its  rule base 

from a linearized performance model of the engine by selecting 
the  membership  functions  and  number  of  fuzzy  sets  is 
developed in this study to perform gas turbine fault isolation. 
The faults modeled are module faults in five modules: fan, low 
pressure compressor, high pressure compressor, high pressure 
turbine and low pressure turbine. The measurements used are 
deviations  in  exhaust  gas  temperature,  low rotor  speed,  high 
rotor speed and fuel  flow from a base line ‘good engine’.  A 
genetic  algorithm is used to tune the fuzzy sets to maximize 
fault isolation success rate. A novel scheme is developed which 
optimizes the fuzzy system using very few design variables and 
therefore is  computationally efficient.  Results  with simulated 
data  show  that  genetic  fuzzy  system  isolates  faults  with 
accuracy  greater  than  that  of  a  manually  developed  fuzzy 
system.  Furthermore,  the  genetic  fuzzy  system  allows  rapid 
development  of  the  rule  base  if  the  fault  signatures  and 
measurement  uncertainties  change.  In  addition,  the  genetic 
fuzzy system reduces the human effort needed in the trial and 
error process used to design the fuzzy system. A radial basis 
neural  network  is  also  used  to  preprocess  the  measurements 
before  fault  isolation.  The  radial  basis  network  shows 
significant noise reduction and when combined with the genetic 
fuzzy system leads to a diagnostic system that is highly robust 
to the presence of noise in data.

INTRODUCTION
Several  researchers  have  proposed  model  based  engine 

condition monitoring systems for gas turbine engines over the 
past few years. A recent review of some of this work is given in 
[1]. These systems were initially developed for predicting the 

long-term deterioration in gas turbine engines which occurs due 
to operating in a harsh aero-thermodynamic environment [2-3]. 
Because  of  the  high  levels  on  uncertainty  in  gas  path 
measurements [4], researchers have tried to estimate the engine 
state  from  measurement  deltas,  which  are  deviations  in  the 
measurement from a baseline good engine. Since many older 
engines which are in service have limited instrumentation, with 
high levels of noise in the data, the fault isolation problem is a 
hard  inverse  problem  and  is  difficult  to  address.  While 
commercial  software  tools  tend  to  use  Kalman  filter  and 
weighed least  square type approaches [5-8], researchers have 
also focused on soft computing based methods in recent years 
[9-12]. Soft computing encompasses genetic algorithms, fuzzy 
logic,  neural  networks  and  Bayesian  networks  among  others 
and  has  emerged  as  a  powerful  approach  in  automated 
reasoning [13].

Recently, some work has also been directed at finding a 
fault in the engine once a measurement change in the form of a 
trend shift has been identified. This work is motivated by the 
realization  that  many  engine  faults  are  preceded  by  a  sharp 
change in the measurement deltas and occur because of a fault 
in  one  module  [14].  The isolation  of  these  so-called “single 
faults” from gas path measurement deltas has been studied by 
neural network [14-15], Kalman filter [16] and fuzzy logic [17] 
based methods.

Fuzzy systems are also universal function approximations 
in a manner similar to neural networks [18]. However, fuzzy 
systems have the added advantage that they are expressed in 
linguistic terms that are easy to understand [19]. Fuzzy systems 
also address the issue of uncertainty using a built in fuzzifier 
whereas a neural network learns the noise characteristics of the 
data through training. Ganguli  has shown that  fuzzy systems 
provide  very  accurate  fault  isolation  results  for  gas  turbine 
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diagnostics [17]. However,  the neural  and fuzzy methods for 
diagnostics are highly configuration dependent, meaning that if 
the  underlying  model  used  to  obtain  fault  signatures  or  the 
measurement uncertainties of the signal changed, the diagnostic 
systems have to be redeveloped. Since there are many different 
engines operating with different airlines, there are likely to be 
many  possible  combinations  of  fault  signatures  and 
measurement uncertainties for the fault isolation systems which 
need to be developed. Very often the process of redeveloping 
the underlying numerics or rules for the diagnostic system is a 
trial  and  error  process  that  can  be  very  tedious  and  require 
considerable human effort. 

Another way to address uncertainty in diagnostics systems 
is  to  filter  the  measurement  deltas  prior  to  fault  isolation. 
Neural network [14, 20] and median filter [21] based methods 
have been suggested as alternatives to the moving average and 
exponential average filters for gas path measurement deltas.

In this paper, we propose a genetic fuzzy system [22] that 
allows for easy development of rule base for an engine given 
fault  signature  and  measurement  uncertainties.  In  such  a 
system,  genetic  algorithms  are  used  to  tune  the  fuzzy 
membership functions and rules. Typically, if Gaussian fuzzy 
sets  are used,  the number of  fuzzy sets,  their  midpoints and 
standard deviations can be used as design variables. A measure 
of  the  performance  of  the  fuzzy  system  is  then  maximized 
using  a  genetic  algorithm.  The  genetic  fuzzy  system  thus 
automates the creation of  fuzzy system, greatly reducing the 
human  effort  needed.  Furthermore,  a  radial  basis  neural 
network preprocessor is studied for denoising signals typical of 
path  measurements.  The  advantages  of  using  such  a  signal 
processing algorithm prior to fault isolation by a genetic fuzzy 
system is shown. 

NOMENCLATURE
EGT      Exhaust gas temperature
FC         Flow capacity
FP4       High-pressure turbine area
FP45    Low-pressure turbine area
m Midpoint of fuzzy set
MAE Mean absolute error
N1         Low rotor speed
N2         High rotor speed
NR Noise reduction
T           Set of terms
U           Universe of discourse of fuzzy set
WF       Fuel flow
x            Elements of fuzzy sets
x           Design variables for GA
y           Module faults
z            Measurement deltas
∆ Change from baseline “good” engine
η            Efficiency
µA(x)      Degree of membership of x in fuzzy set A
σ        Uncertainty as standard deviation 
L            Length of universe of discourse
N Number of fuzzy sets

(max)N Maximum number of fuzzy sets

genN       Number of generations of GA

(max)
genN Maximum number of generations of GA

PROBLEM FORMULATION
Consider a twin spool gas turbine with five modules: fan, 

low-pressure  compressor  (LPC),  high-  pressure  compressor 
(HPC), high- pressure turbine (HPT) and low- pressure turbine 
(LPT).  Most  damages  to  the  engine  manifest  themselves  as 
changes in either the module efficiency or flow capacity/area. 
The FAN, LPC and HPC modules  have  efficiencies  and the 
flow capacities associated with them, while the HPT and LPT 
modules have efficiencies and areas associated with them. The 
fingerprints  or  fault  signatures  relating  a  change  in 
measurements deltas for four basic parameters with the faulty 
module is shown in Table 1 [17].

Table 1. Signature for Module Faults
Measurement 

Deltas
Module Faults

∆EGT 
(C)

∆N1 
(%)

∆N2 
(%)

∆WF 
(%)

FAN -7.72 1.35 -0.59 -1.40
LPC 9.09 0.28 0.57 1.32
HPC 13.60 0.10 -0.11 1.60
HPT 21.77 0.15 -1.13 2.58
LPT 2.38 -1.96 1.27 -1.92

The four basic parameters are found in almost all engines 
and are exhaust  gas term (EGT), low rotor speed (N1), high 
rotor  speed  (N2)  and  fuel  flow  (WF).  They  are  also  called 
cockpit parameters as they are displayed to the pilot of a jet 
engine  aircraft.  The  fault  signatures  in  Table  1  assume  the 
following  couplings  between  module  efficiencies  and  flow 
capacities [16]:

1.  FAN Coupled FAN (-2% ,-2.5 FC)η
2.  LPC Coupled LPC (-2% ,-2.2%FC)η
3.  HPC Coupled HPC (-2% ,-1.6 FC)η
4.  HPT Coupled HPT (-2% ,-1.5 FP4)η
5.  LPT Coupled LPT (-2% , +3.3% FP45)η
Each fault is modeled as a 2 percent decrease in efficiency 

from the baseline “good” engine. Since the fault signatures are 
derived  from  influence  coefficients,  they  are  only 
approximately  correct  because  they  do  not  account  for 
uncertainties  in  the  measurement  process.   Each  gas  path 
measurement is associated with an uncertainty. One measure of 
this uncertainty is the standard deviations from revenue service 
data. As given in [16] and [17], typical standard deviations for 
∆EGT,  ∆N1,  ∆N2,  and  ∆WF as  4.23C,  0.25%,  0.17%  and 
0.50%,  respectively.  These  numbers  are  obtained  from  an 
analysis of airline monitoring data.

NEURAL SIGNAL PROCESSING
Since  gas  turbine  measurements  are  often  contaminated 

with noise and outliers, it is useful to perform a data cleaning 
function prior to fault isolation. In this study, we use a radial 
basis  neural  network  for  removing  noise  from  simulated 
signals.  Radial  basis networks are an alternative to the more 
widely used multilayer perceptron networks trained using the 
backpropagation algorithm and take much less computer time 
for training [23].
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The radial basis function network (RBFN) model consists 
of three layers: an input layer, a hidden (kernel) layer and an 
output layer. The nodes within each layer are fully connected to 
the previous layer. The input variables are each assigned to a 
node in  an input  layer  and pass  directly  to  the hidden layer 
without weights. The hidden nodes or units contain the RBF, 
also called transfer functions. 

An RBF is symmetrical about a given mean or center point 
in a multidimensional space. In the RBFN, a number of hidden 
nodes with RBF activation functions are connected in a feed 
forward parallel  architecture.  The parameters  associated with 
the RBFs are optimized during training. These parameter values 
are not  necessarily  the same throughout  the network nor are 
they  directly  related to  or  constrained  by  the  actual  training 
vectors. When the training vectors are presumed to be accurate, 
i.e.  non  stochastic,  and  it  is  desirable  to  perform  a  smooth 
interpolation between them, then linear combinations of RBFs 
can be found which give no error at the training vectors. The 
methods of fitting RBFs to data,  for function approximation, 
are closely related to distance weighted regression. The RBF 
expansion  for  one  hidden  layer  and  an  arbitrary  RBF  is 
represented by the equation 

∑
=

−−=
H

i
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where yk = kth output, wki = weight from the ith kernel node to the 
kth output node, ci = centroid of the ith kernel node, σi = width of 
the  ith kernel  node  and  H  =  number  of  kernel  nodes.  The 
parameters of the RBF wki, ci and σi are commonly chosen by 
first  selecting  randomly  or  uniformly  the  ci and  then  using 
singular value decomposition (SVD) to solve for wki and σi. This 
approach  is  not  the  most  satisfactory.  A  better  approach, 
suggested  by  Leonard  et  al  [23],  involves  using  K-means 
clustering to determine the ci, a K-nearest heuristic to determine 
the σi and multiple linear regressions to determine the wki. The 
K-means clustering algorithm finds a set of cluster centers and 
a partition of the training data into subsets. Each cluster center 
is then associated with one of the  H  kernels or centers in the 
hidden layer. After the centers are established the width of each 
kernel  is  determined  to  cover  the  training  points  to  allow a 
smooth fit of the desired network outputs. 

FUZZY LOGIC SYSTEM
A fuzzy logic system (FLS) is a nonlinear mapping of an 

input feature vector into a scalar output [17].  A typical  FLS 
maps crisp inputs to crisp outputs using four basic components: 
rules,  fuzzifier,  inference  engine,  and  defuzzifier.  Once  the 
rules  driving  the  FLS  have  been  fixed,  the  FLS  can  be 
expressed as a mapping of inputs to outputs. Rules can come 
from  experts  or  can  be  obtained  from  numerical  data.  The 
discussion  below  is  condensed  from  [17]  where  a  more 
comprehensive account of FLS is given.

The fuzzifier maps crisp input numbers into fuzzy sets. An 
inference engine of the FLS maps fuzzy sets to fuzzy sets and 
determines the way in which the fuzzy sets are combined. In 
several applications, crisp numbers are needed as an output of 
the FLS. In those cases, a defuzzifier is used to calculate crisp 
values from fuzzy values.

A  fuzzy  set  generalizes  the  concept  of  an  ordinary  set 
whose membership function only takes two values,  zero and 

unity.  The  most  commonly  used  shapes  for  membership 
functions  (μ x) are triangular,  trapezoidal,  piecewise  linear  or 
Gaussian.  Rules for the fuzzy system can be expressed as:

Ri : IF  x1 is F1 AND x2 is F2 AND xm is  Fm THEN  y=Ci, 
i=1,2,3….M

where m and M are the number of input variables and rules, 
xi and y are the input and output variables, and Fi  є Vi and Ci є 
W are fuzzy sets characterized by membership functions μFi(x) 
and  μCi(x),  respectively.  Each rule can be viewed as a  fuzzy 
implication F1,2,3…m  =F1 x F2 x …..Fm  C→ i, that is a fuzzy set in 
V x W= V1 x V2 x V3 x … x Vm with membership function given 
by

            μRi (x,y) = μF1 (x1) * μF2  (x2) * …* μFm (xm) * μCi (y) 
where * is the product with x=[ x1 x2…. xm] є V and y є W. In 

pattern recognition problem the outputs are often crisp sets, and 
μCi (y)  =1  is  often  used  for  the  product  inference  formula. 
Popular  defuzzification  methods  include  maximum matching 
and centroid defuzzification. In our study, we keep the output 
as  fuzzy sets as  they are easier  to  interpret  linguistically  for 
diagnostic and prognostic action. Rules for the fuzzy system are 
obtained  by  fuzzification  of  the  numerical  values  in  the 
fingerprint charts using the following procedure [17]:

Algorithm 1
1. Each measurement delta is divided into  N fuzzy 

sets whose geometry is selected by the designer.
2. A set of four measurements delta corresponding to 

a given module fault is input to the FLS and the 
degree  of  membership  of  the  elements  of  the 
∆EGT, ∆WF, ∆N2 and ∆N1 are obtained. 

3. Each measurement  delta  is  then  assigned to  the 
fuzzy  set  with  the  maximum  degree  of 
membership.

4. One  rule  is  obtained  for  each  module  fault  by 
relating  the  measurement  deltas  with  maximum 
degree of membership to a module fault.

For any given input set of measurement deltas, the fuzzy 
rules  are  applied  using  product  implication.  Once  the  fuzzy 
rules are applied for a given measurement, we have degree of 
membership  for  FAN,  LPC,  HPC,  HPT and  LPT.  For  fault 
isolation, we are interested in the most likely fault. The fault 
with the highest degree of membership is selected as the most 
likely fault. 

The main problem in Algorithm 1 is in the selection of the 
number and type of fuzzy sets in Step 1. Typically, designers 
select  the  number  and  geometry  of  the  fuzzy  sets  based  on 
knowledge  of  the  problem.  For  example,  the  measurements 
may be classified into five fuzzy sets named very low,  low, 
medium, high and very high. In case Gaussian functions are 
selected as membership functions, the midpoints and standard 
deviations associated with each Gaussian fuzzy set needs to be 
selected so that the entire measurement range is spanned by the 
fuzzy sets and there is some intersection between the sets. 

Thus, the designer must manually iterate over Algorithm 1 
to obtain a fuzzy system which has good performance. This is a 
trial  and  error  process  and  the  final  result  obtained  is  not 
necessarily  optimal.  Genetic  algorithms  are  one  way  of 
optimizing this process.
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GENETIC ALGORITHM
Genetic algorithms (GA) are a probabilistic search method. 

A brief introduction to GA is given below. Goldberg [24] and 
recent papers [25], give more details about genetic algorithms.

The  genetic  algorithm is  motivated  by  the  hypothesized 
natural  process  of  evolution in biological  populations,  where 
genetic information stored in chromosomal strings evolve over 
generations  to  adapt  favorably  to  a  static  or  changing 
environment.  The  algorithm  is  based  on  elitist  reproduction 
strategy, where members of population, which are deemed most 
fit, are selected for reproduction, and are given the opportunity 
to strengthen the chromosomal makeup of progeny generation. 
This approach is facilitated by defining a fitness function or a 
measure indicating the goodness of a member of the population 
in the given generation during the evaluation process.

To  represent  designs  as  chromosome-like  strings,  the 
design variable is converted to its binary equivalent and thereby 
mapped into a fixed length string of 0’s and 1’s. A number of 
such  strings  constitute  a  population  of  designs,  with  each 
design having a corresponding fitness value. This fitness value 
could  be  the  objective  function  F(X) for  a  function 
maximization  problem.  Thus,  the  GA  can  be  used  to  solve 
optimization problems of the form,

Maximize F(X)         
Subject to Xi 

(min)  X≤ i  X≤ i 
(max)           

The starting population is selected randomly in the domain 
lying between the  minimum and maximum values  of  X and 
then the following genetic operators applied to improve results.

1. Reproduction.  Individuals  are  selected  and  the 
probability of selection is based on their fitness value. 
The new population pool  has  higher  average  fitness 
value than the previous pool.

2. Crossover.  In the two-point crossover approach, two 
mating  parents  are  selected  at  random;  the  random 
number generator is invoked to identify two sites on 
the  strings,  and  the  strings  of  0’s  and  1’s  enclosed 
between  the  chosen  sites  are  swapped  between  the 
mating strings.

3. Mutation. A few members  from the population pool 
are taken according to probability of mutation pm, and 
a  0  to  1  or  vice  versa  are  switched  at  randomly 
selected mutation site on the chosen string.

The  process  of  reproduction,  crossover  and  mutation 
constitute one generation of the GA. After several generations 
the GA is stopped and the best point among the values taken as 
the optimal point. Being a probabilistic search method, GA’s 
are very  good at  finding global  maxima.  Furthermore,  GA’s 
need only function values and not gradient information, which 
makes  them  easy  to  use  for  real  systems  where  accurate 
gradient  information  is  difficult  to  obtain,  and  local  minima 
may occur. However, they are computationally expensive.

GENETIC FUZZY SYSTEM
There are two main problems in the generation of fuzzy 

systems  [22].  The  first  is  that  it  is  difficult  to  select  the 
appropriate number of fuzzy sets. The second is selection of the 
membership functions. For a given number of fuzzy sets and 
type  of  membership  functions  the  rules  need  to  be  created. 
However, if the number of fuzzy sets or type of membership 
function changes, the rules can change. Most fuzzy systems are 
designed using a trial and error process. Therefore, any change 

in the membership functions or the number of fuzzy sets leads 
to a change in the rule base; the process of designing a fuzzy 
system is  iterative  and  can  become very  cumbersome  for  a 
human designer. It is therefore desirable to create an automated 
procedure for the design of fuzzy systems. 

A genetic algorithm is used to facilitate the design of the 
fuzzy system. The approach is discussed below:

Algorithm 2
1. Define  maximum  and  minimum  values  for  a 

measurement  delta  ∆z by  ∆z(max) and  ∆z(min), 
respectively. 

2. Define the universe of discourse for ∆z to be the 
set  of  real  numbers  between  the  minimum and 
maximum values, U (∆z) = [∆z(min), ∆z(max)].

3. Define L(∆z) = ∆z(max) - ∆z(min) as the length of the 
universe of discourse.

4. Divide  U  into  N Gaussian fuzzy sets  F1, F2,…FN 

and define the midpoint of fuzzy point F1 by ∆z(min) 

and of fuzzy set FN by ∆z(max), respectively. 
These  fuzzy  sets  can  be  defined  using  the 
following equation:

2

5.0
)(






 −−

= σµ
mx

ex
where m is the midpoint of the fuzzy set and σ is 
the  uncertainty  (standard  deviation)  associated 
with the variable.

5. Assuming  the  fuzzy  sets  are  equally  spaced, 
calculate the mid points of fuzzy set F2  as ∆z(min)  + 
∆m, of set F3 as ∆z(min)  + 2*∆m and set  Fi  as ∆z(min) 

+ (i-1)∆m where 

 
1
)(

−
∆=∆

N
zLm    

6. Allow the fuzzy sets for the measurement delta ∆z 
to  move  together  along  the  number  line  by  an 
amount x. This allows the midpoints of the fuzzy 
sets to change, along with the values  ∆z(min) and 
∆z(max). However,  the  distance  L(∆z) remains 
constant. With this definition, the midpoints of the 
fuzzy sets are defined once N and x are selected. 

7. Select the standard deviation of the fuzzy set for 
measurement  ∆z as the measurement uncertainty 
of ∆z.

The  above  approach  can  now  be  applied  to  the  four 
measurement deltas considered in this study. This procedure is 
discussed in the algorithm below.

Algorithm 3
1. Define  the  maximum  and  minimum  values  for 

each  measurement  ∆EGT,  ∆N1,  ∆N2 and  ∆WF 
from the fault signatures shown in Table 1. Thus 
for ∆EGT, the maximum and minimum values are 
21.77C and -7.72C, respectively.

2. Define  the  range  spanned  by  each  variable  as 
L1=L(∆EGT),  L2=L(∆N1),  L3=L(∆N2), and L4=L(
∆WF)

3. Choose  N fuzzy  sets  to  partition  each 
measurement. To start the algorithm, use N=2.

4. Let  x1, x2, x3 and x4 define  the  tuning variables 
associated  with  ∆EGT,  ∆N1,  ∆N2 and  ∆WF 
respectively. To start the algorithm, select random 
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values  satisfying  -25% Li ≤ xi  25%≤ Li,  i=1,4. 
Choose  σ for  ∆EGT,  ∆N1,  ∆N2 and  ∆WF as 
4.23C, 0.25%, 0.17% and 0.50%, respectively.

5. Generate  the  fuzzy  system  from  the  numerical 
data  using  the  conventional  procedure  outlined 
before in Algorithm 1. 

6. Using a sample of 100 noisy data points, calculate 
success rate as

T

C

N
N

S 100=

where  NC is the number of correct classifications 
and NT is the total number of classifications. 

7. Use  GA  to  solve  the  optimization  problem  by 

taking the best solution from 
(max)
genN generations:

Maximize 
S(x1, x2, x3, x4 )       

Subject to 
-25% Li ≤ xi  25%≤ Li, i=1,4.

8. Increase N by 1,
a.  if N<N(max) 

i. Go to 3, 
b. else 

i. Select  N with highest success rate  S 
(if  highest  S is  obtained  by  more 
than  one  value  of  N,  select  the 
lowest N that gives the highest S)

The only values, which need to be the input of the Genetic-
Fuzzy  system,  are  the  values  of  measurement  deltas 
corresponding to each fault, and the fault signature based on the 
linearized influence coefficients at the current operating point. 
For the standard deviations of the Gaussian fuzzy sets, we use 
the  measurement  uncertainty  data  that  can  be  obtained  by a 
statistical  analysis  of  engine  data.  If  the  measurement 
uncertainties change, the genetic fuzzy system can be tuned to 
the different numerics. Thus we get an automatic system that 
greatly reduces the need of manual manipulation.

NUMERICAL RESULTS
In this study, a maximum of nine generation of the GA are 

used for each N values of the fuzzy sets. The population size, 
crossover  probability  and mutation probability  are  chosen as 
20, 0.8 and 0.1, respectively. The maximum number of fuzzy 
sets is selected as 10. 

Since genetic algorithms are computationally intensive, the 
issue  about  computation  time  is  important  for  practical 
implementation.  As  an  example,  the  code  implementing  the 
algorithm  in  this  study  takes  about  3-5  minutes  to  run  on 
Matlab on a Pentium 4 PC with the full nine generations of GA. 
However,  in  many  cases,  the  convergences  occur  in  2-3 
generations given that we use only four design variables and 
have a starting population of 20 for each variable.

As mentioned earlier, a standard approach in the design of 
the  optimal  fuzzy  system  is  to  consider  the  midpoints  and 
standard  deviations  of  each  fuzzy set  as  design variables.  If 
there  are  N fuzzy  sets  and  M measurements,  the  maximum 
number of midpoint design variables is N*M and the maximum 
number  of  standard  deviation  design  variables  is  N*M.  The 
total number of design variables is therefore 2*N*M. For the 

case with  N=6 and  M=4, we would have a total of 2*6*4=48 
design variables, leading to high computer time requirements. 

The algorithm in this study uses some prior knowledge of 
the  problem  to  reduce  the  number  of  design  variables 
dramatically.  The standard deviations  are thus  selected to  be 
equal  to  the  measurement  uncertainties.  In  this  manner,  the 
fuzzifier is able to act as a filter which addresses noise in the 
data in  a direct  manner.  By making the requirement that  the 
universe  of  discourse  only  spans  the  neighborhood  of  the 
measurements,  the  region  where  fuzzy  set  discretization  is 
needed is optimized. Using a uniform distribution of fuzzy sets 
leads to so-called design variable linking in optimization and 
allows the midpoints to be defined using only two variables for 
each  measurement:  the  number  of  fuzzy  sets  N and  the 
translation variable  x.  For  a given number of fuzzy sets,  the 
number  of  design  variables  is  equal  to  the  number  of 
measurements which is four in this case.
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The fuzzy system is tested using simulated data developed 
from the fault signatures shown in Table 1. For each module, 
100 noisy data sets are generated for  module faults  with 2% 
deterioration  in  efficiency.  Noise  is  added  to  the  simulated 
measurement  deltas  using the typical  standard deviations  for 
∆EGT,  ∆N1,  ∆N2,  and  ∆WF as  4.23C,  0.25%,  0.17%  and 
0.50%, respectively. 

Table 2. Midpoints of Two Fuzzy Sets
∆EGT (C) -7.69 21.80
∆N1 (%) -1.93 1.38
∆N2 (%) -1.10 1.30
∆WF (%) -1.89 2.61

Table 3. Midpoints of Three Fuzzy sets
∆EGT (C) -8.16 6.58 21.33
∆N1 (%) -2.40 -0.75 0.91
∆N2 (%) -1.57 -0.37 0.83
∆WF (%) -2.36 -0.11 2.14

Table 4. Midpoints of Four Fuzzy Sets
∆EGT (C) -8.31 1.52 11.35 21.18
∆N1 (%) -2.55 -1.45 -0.35 0.76
∆N2 (%) -1.72 -0.92 -0.12 0.68
∆WF (%) -2.51 -1.01 0.49 1.99

Table 5. Midpoints of Five Fuzzy Sets
∆EGT (C) -7.82 -0.44 6.92 14.30 21.67
∆N1 (%) -2.06 -1.23 -0.40 0.42 1.25
∆N2 (%) -1.23 -0.63 -0.03 0.57 1.17
∆WF (%) -2.02 -0.89 0.23 1.36 2.48

Table 6. Midpoints of Six Fuzzy Sets
VL L  ML  MH  H VH

∆EGT (C) -9.62 -3.72 2.17 8.07 13.97 19.87
∆N1 (%) -2.23 -1.56 -0.90 -0.24 0.42 1.08
∆N2 (%) -1.21 -0.72 -0.25 0.23 0.71 1.19
∆WF (%) -2.25 -1.35 -0.45 0.45 1.35 2.25

Figure  1 shows the  success  rate  for  the  optimal  genetic 
fuzzy system as the number of fuzzy sets is increased from 2 to 
9. For each value of N in this figure, the optimal values of x are 
calculated using Algorithm 3. For only 2 fuzzy sets, the success 
rate is about 80 percent and quickly rises as the number of sets 
increases. The number  N=6 is selected by Algorithm 3 as the 
point  where  the  genetic  fuzzy  system  is  optimal  with  a 
minimum number of sets. Figure 2 shows the success rate of 
the fuzzy system with six sets as the GA generations’ progress. 
In  this  case,  only two generations  were needed to  achieve a 
success rate of 100 percent and the values of x corresponding to 
the second generation of GA is selected by Algorithm 3 as the 
optimal fuzzy system.

Tables 2-6 provide the midpoints of the fuzzy sets for the 
four measurements as the number of fuzzy sets increases from 
two to six. The starting values in Table 2 show two fuzzy sets 
with  midpoints  centered  near  the  maximum  and  minimum 
values of the measurements. The values in Table 6 correspond 

to  the  case  where  N=6 in  Figure  1  and  Ngen=2 in  Figure  2. 
Figures 3-7 show the evolution of the fuzzy system using the 
fuzzy sets for exhaust gas temperature as an example. Figure 3 
shows the starting case with two fuzzy sets which is a crude 
descretization. In Figure 7, the optimal level of discretization 
with six fuzzy sets is achieved. 
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Figure  3 Discretization  of  universe  of  exhaust  gas 
temperature using two fuzzy sets
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Figure  4 Discretization  of  universe  of  exhaust  gas 
temperature using three fuzzy sets

In Table 6, linguistic values are assigned to each fuzzy set 
varying  from  very  low  (VL),  low  (L),  medium-low  (ML), 
medium-high  (MH),  high  (H)  and  very  high  (VH).  These 
“linguistic measures” are shown in Figure 7 for the six  ∆EGT 
fuzzy sets. The fuzzy rule base for the case with six fuzzy sets 
is shown in Table 7. Table 7 is the result of fuzzification of the 
numerical data in Table 1. These rules can be read as follows 
for the FAN module:

            IF
                     EGT is Very Low AND∆
                     N1 is Very High AND∆
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                     N2 is Low AND∆
                     WF is Very Low∆
            THEN 

                      Problem in FAN module
The rules for the other modules can be similarly interpreted. 
These  rules  provide  a  knowledge  base  and  represent  how a 
human engineer would interpret data to isolate an engine fault 
using fingerprint charts.
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Figure  5 Discretization  of  universe  of  exhaust  gas 
temperature using four fuzzy sets
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Figure  6 Discretization  of  exhaust  gas  temperature  using 
five fuzzy sets

Table 7. Rules for Optimal Fuzzy System with Six Fuzzy Sets
∆EGT ∆N1 ∆N2 ∆WF

FAN VL VH L VL
LPC ML MH H MH
HPC MH MH ML H
HPT VH MH VL VH
LPT L VL VH VL

Table 8 shows the success rate of the fuzzy set with 100 
noisy data points. The average success rate is 100%, compared 
to 98.2% for the manually designed fuzzy system in Ref. [17]. 
The manually designed fuzzy system showed some problems in 
differentiating between faults in the LPC and those in the HPC. 
It is clear that the genetic-fuzzy system is able to identify the 
correct fault despite the presence of considerable uncertainty in 
measurements.
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Figure  7 Discretization  of  universe  of  exhaust  gas 
temperature using six fuzzy sets

Table  8.  Results  for  Optimal  Fuzzy  System  and  Manually 
Designed System

Module Success Rate (%) Success Rate (%)**

HPC 100 94
HPT 100 100
LPC 100 97
FAN 100 100
LPT 100 100

Average Success 
Rate

100 98.2

**from [17]

The effect of noise on the genetic fuzzy system is shown in 
Figure 8 and the results are compared with data from the fuzzy 
system from Ref. [17]. Here the noise ratio is defined as  σ/σ0 

where  σ0 is  the baseline noise level  used for  developing the 
genetic fuzzy system and σ is the noise level in the simulated 
data used for testing. It is clear that both the systems show a 
decline  in  the  average  fault  isolation  success  rate  with 
increasing noise levels in the data. However, the genetic fuzzy 
systems appear to show a somewhat better performance as the 
noise level increases. This is due to the “optimal” nature of the 
fuzzy  system developed  and  the  use  of  formal  optimization 
methods rather than a trial and error process in maximizing the 
success  rate.  The  result  of  applying  a  neural  network 
preprocessor to the genetic fuzzy system is discussed below.
    To study the signal processor, we assume time series of 100 
discrete points. From k=0 to  k=50, the signal changes linearly 
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from 0 to sign(∆z) σ0/2. From k=50 to k=51, the signal changes 
by  ∆z.  From  k=51  to  100  the  signal  changes  from  ∆z  to  ∆
z+sign(∆z) σ0/2. This simulates a “single fault” situation, where 
a step jump equal to the measurement deltas corresponding to 
the module faults is added to a linearly varying signal. As an 
example,  the  ∆EGT variation  for  an  HPC fault  is  simulated 
using a linear variation from 0C at  k=1 to 4.23/2=2.115C at 
k=50, followed by a change to 13.6+4.23/2=15.715C at  k=51, 
and a linear variation thereafter to 13.6+4.23=17.83C. Figure 9 
shows the noisy signal and RBF filtered signal.
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Figure  8 Success  Rate  in  Fault  Isolation  with  Increasing 
Noise Levels in Data
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Figure  9 Noisy and filtered  ∆EGT signal simulating HPC 
fault

For  determining  the  RBF  unit  centers,  we  use  a  ‘K-means’ 
clustering algorithm. The ‘K-means’ clustering algorithm finds 
a set of clusters each with centers from the given training data. 
The cluster centers become the centers of the RBF units. The 
number of  clusters  is  a  design parameter  and determines the 

number of RBF units, i.e. nodes, in the hidden layer.  We have 
used H=20. When the RBF centers have been established, the 
widths of each RBF can be calculated. The width of any RBF 
distance  to  the  nearest  p  RBF  units,  where  p  is  a  design 
parameter for the RBFN, for unit t is given by


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where  ∧
ki
x and  ∧

kj
x are the  kth entries of the centers of the  ith 

and jth hidden units. We have used p=5. When the centers and 
widths  of  the RBF units  have  been chosen,  then the  N=100 
training  samples  are  processed  through  the  hidden  nodes  to 
generate an H ×N matrix, called A. Let T be the M × N desired 
output  matrix  for  the  training  patterns  and  M=100 is  the 
number of output nodes. The objective is to find the weights 
that  minimize  the  error  between  the  actual  output  and  the 
desired  output  of  the  network.  Essentially,  we  are  trying  to 
minimize the objective (cost) function

WAT −
where  W is the  M  ×  H  matrix of weights on the connections 
between the hidden and output nodes of the network. We train 
the  RBF  network  with  added  Guassian  noise  at  σ0=4.23C, 
0.25%, 0.17% and 0.50%, respectively for ∆EGT, ∆N1, ∆N2, ∆
WF.

Table 9. Noise reduction using radial basis neural network
∆EGT (C)  ∆N1 (%) ∆N2 (%) ∆WF 

(%)
HPC 78.84 67.03 67.38 81.87
HPT 84.24 72.07 83.38 83.71
LPC 77.50 74.34 78.48 77.95
FAN 74.80 82.43 79.04 80.62
LPT 68.76 83.83 84.68 82.95

Average 76.83 75.94 78.59 81.42
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Figure  10 Noisy and Filtered  ∆WF signal simulating LPT 
fault
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Noise is added to the ideal signal using a baseline value σ0 

of typical standard deviations for ∆EGT, ∆N1, ∆N2, and ∆WF 
as 4.23C, 0.25%, 0.17% and 0.50%, respectively. The filtered 
signal in Figures 9 and 10 show considerable noise reduction 
while preserving the nature of the step edge. The visual quality 
of  the  data  is  considerably  improved.  Similar  results  are 
obtained for all the signals corresponding to the faults in Table 
1.  To summarize these results  concisely,  the following noise 
reduction measure is defined based on the mean absolute error 
(MAE) criteria.

∑
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N

i
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)()()( 1
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R MAE
MAEMAEN −=

For each signal, 100 samples of noisy data are created and the 
noise  reduction  calculated.  These  values  are  summarized  in 
Table 9 and show a noise reduction averaging between 75 to 81 
percent. Results in this paper clearly demonstrate the power of 
the soft computing framework for automated decision making 
under  uncertainty.  The  approach  uses  the  concept  of 
“hybridization  in  soft  computing”  where  using  different 
techniques  such  as  neural  networks,  genetic  algorithms  and 
fuzzy logic together gives better results than if each method is 
used individually [26]. 

CONCLUSIONS
A genetic fuzzy system is developed in this study for fault 

isolation in  gas  turbine  engines.  The  system  automatically 
selects  the  number  of  fuzzy  sets  and  membership  functions 
based on the fault signatures of the engine and measurement 
uncertainties.  The fault signatures are derived from influence 
coefficients. A radial basis neural network is also studied for 
data cleaning prior to fault isolation. The following conclusions 
can be drawn from this study.

1. For  simulated  faults  considered  in  this  study,  the 
genetic fuzzy system achieved a success rate of 100% 
for the five module faults (HPC, LPC, FAN, HPT, and 
LPT)  and  four  measurements  (∆EGT,  ∆N1,  ∆N2, 
∆WF). In contrast, a manually developed fuzzy system 
in  [17]  achieved  a  success  rate  of  98%  with  some 
confounding  between  the  LPC  and  HPC  module 
faults.

2. The  trial  and  error  process  used  to  design  a  fuzzy 
system leads to considerable human labor and is often 
sub  optimal.  Different  aircraft  engines  operated  by 
different airlines can have different numerics such as 
influence coefficients  and measurement uncertainties 
and it is a tedious process to develop a fuzzy system 
for each case. The genetic fuzzy system automates the 
process of design of the fuzzy system.

3. By  using  a  priori  information  about  measurement 
uncertainties and through design variable linking, the 
design of the fuzzy system is posed as an optimization 
problem with low number of design variables which 

can be solved using genetic algorithm in considerably 
low amount of computer time.

4. As  noise  levels  in  data  increase,  the  genetic  fuzzy 
system  retains  its  edge  over  the  manually  designed 
fuzzy system, giving 2-5 percent higher success rate 
with the same numerics. 

5. A radial basis neural network prefilter achieved 75-81 
percent  noise  reduction  for  simulated  signals  with 
linear deterioration and step changes. When the neural 
network  is  used  to  prefilter  signals  prior  to  fault 
isolation, the accuracy of the genetic fuzzy system is 
further improved for lower quality data by 2-4 percent. 

6. The  use  of  several  tools  of  the  soft  computing 
approach (neural network, genetic algorithm and fuzzy 
logic) together gives better performance than if they 
are  used  individually  and  shows  the  advantage  of 
“hybridization” in soft computing.
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