
MT04-097

 

Abstract— A  simple  but  powerful  and  practical  approach 
using median and rational filters is proposed for removing noise 
and  outliers  from  gas  path  sensor  measurements  which  can 
contain  effects  of  long  term deterioration  and  sudden  abrupt 
faults.  Typical  gas  path  measurements  used  for  health 
monitoring  are  exhaust  gas  temperature,  low  and  high  rotor 
speed,  fuel  flow  rate,  and  pressure  and  temperature 
measurements  inside  the  engine.  Traditionally,  linear  filters 
such as the moving average have been used to smooth time series 
of gas path measurements before performing fault detection and 
isolation  functions  using  Kalman  filters,  neural  networks  or 
fuzzy logic.  However, linear filters can smooth out sharp trend 
shifts  in the signal  and are also not good at removing outliers. 
Since  most  fault  detection  and  isolation  algorithms  are 
optimized  for  Gaussian  noise,  they  can  show  performance 
degradation when outliers are present. In this study, numerical 
results with simulated data for engine deterioration and abrupt 
fault  show  that  the  nonlinear  rational  filter  with  median 
preprocessor  are  useful  for  gas  turbine  health  monitoring 
applications resulting in noise reduction of 73-96 percent while 
preserving signal features and removing outliers.

Index  Terms—Gas  turbines,  signal  processing,  fault 
diagnosis. 

I.INTRODUCTION
ealth  monitoring  applications  typically  involve 
detection and isolation of a system fault based on a 

comparison  between  a  “good”  baseline  system  and  a 
“damaged”  system.  Many  diagnostic  systems  are  designed 
based  on  mathematical  models  for  the  “good”  and  “bad” 
systems  using  methods  that  fall  under  the  broad  class  of 
model  based  diagnostics  [1].  A  health  signal  can  be 
interpreted  as  a  measurement  delta  between  the  damaged 
measurement  )(dz and  undamaged  measurement  )(uz and 
written as: )()( ud zz −=∆ . Under ideal conditions, when a 
system has no fault,  ∆=0. When a fault occurs,  ∆ assumes a 
nonzero  value  whose  magnitude  depends  of  the  size  and 
location  of the  fault.  In  this  idealized  system,  the  nonzero 
value  of  the  measurement  deviation,  along  with  other 
measurement deviations, can be used to detect and isolate the 
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fault. 

Studies of gas turbine data have shown two main features 
of the health signal ∆: (1) most major problems in the engine 
are caused by a “single fault” which is preceded by a sharp 
trend shift [2] and (2) long term deterioration in the engine 
causes a low order polynomial variation in the measurements 
with  time,  with  a  linear  polynomial  being  a  very  good 
approximation [3]. However, noise and outliers are present in 
the gas turbine health signals. Therefore, processing of health 
signals  is  often  done  before  using  fault  isolation  methods 
using linear filters [4]. However, linear filters smooth out the 
sharp edges in the signal that contain important  information 
about  the  fault  initiation  time as  well  as  repair  events  and 
could be used for  fault  isolation  applications.  Furthermore, 
linear filters are not good at removing outliers in the data.

For commercial  aircraft  engines,  only few data points are 
received for each flight. Therefore, it is important to keep the 
forward data point requirement to a minimum. In this paper, 
we  explore  filters  with  a  low  time  delay  for  gas  turbine 
applications. 

II.GAS TURBINE DIAGNOSTICS

Figure 1 shows a schematic of a turbofan engine which has 
five  modules:  fan,  low  pressure  compressor  (LPC),  high 
pressure compressor (HPC), low pressure turbine (LPT) and 
high pressure turbine (HPT). Faults in the gas turbine engine 
cause  efficiency deterioration  for  the  engine  modules.  The 
engine state is monitored using at least the four basic sensors: 
exhaust  gas  temperature  (EGT),  fuel  flow (WF),  low rotor 
speed (N1)  and  high  rotor  speed  (N2).  The  measurements 
which are taken at  altitude at  a given temperature  are then 
converted to standard  day sea level conditions and then the 
baseline measurement  of an undamaged engine at  the same 
condition (usually from a thermodynamics based performance 
model)  subtracted  from  the  measurements  to  yield  the 
measurement  deltas  ∆EGT,  ∆WF,  ∆N1  and  ∆N2.  The 
measurement  deltas are then used for estimating  the engine 
state.

Figure 2 shows a schematic of the gas turbine diagnostic 
process which used the engine measurement deltas to detect 
and isolate faults and then suggest prognostic action based on 
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non destructive testing, boroscope and manual inspections of 
the  fault  module.  It  is  clear  that  if  the  fault  module  is 
correctly identified,  the  cost  of maintenance  of the  airline 
comes down. 

III.TEST SIGNALS

The gas path signals can be modeled using (1) step and (2) 
ramp edges. Consider the time series for 25 points shown in 
the ideal step signal in Figure 3. This step signal simulates an 
abrupt fault. The onset of the fault(s) is at discrete time k=12. 
The noisy signal can be expressed as

where  ∆0 is the pure signal,  ε and  θ are  added Gaussian 
noise  and  outliers,  respectively,  and  α is  a  parameter  that 
allows control of the level of noise in the noisy health signal 
∆. Figure 3 shows the ideal step signal along with a noisy test 
signal  with  α=0.2.  The  outlier  signal  contains  five  points 
represented by θ=-1 at k=7, θ=0.75 at k=10, θ=-0.75 at k=14, 
θ=1 at k=18, and θ=-1.5 at k=22. These outliers are placed in 
an arbitrary way along the time series and do not follow any 
noise model. Lu [5] calls these “wild points” which tend to 
occur in  gas path sensor measurements.  Figure 4 shows the 
ideal and noisy test signal for a ramp edge simulating engine 
deterioration. The outliers are placed at the same location as 
for the step signal. 

Table 1 shows the fingerprint chart for a large commercial 
engine  similar  to  the  United  Technologies  PW4000-94” 
engine in cruise condition with engine pressure ratio of 1.29 
[4].  The fingerprints  are fault  signatures  of the engine  at  a 
given steady flight condition and relate the faults in a given 
module  to  changes  in  the  gas  path  measurements.  For  the 
fingerprints shown in Table 1, the measurement uncertainties 
for ∆EGT, ∆WF, ∆N2 and ∆N1 are 4.23 C, 0.50%, 0.17% and 
0.25%,  respectively [4].  These numbers were obtained by a 
study  of  airline  data.  Using  these  numbers  for  the  four 
measurements,  the  signal  to  noise  ratios  are  obtained  by 
dividing the fingerprints  in  Table 1 with  the corresponding 
measurement uncertainty. These results are shown in Table 2 
where it can be seen that the signal to noise ratios range from 
a low of 0.56 to a high of 7.84. Since the ideal test signals in 
Figure 3 and 4 have a maximum value of one, a noise level of 
0.10 leads to a signal to noise ratio of 10 and a noise level of 
0.4 leads to a signal to noise ratio of 2.5. Also note that the 
ideal  signals  vary from zero in  the  initial  stages to values 
between 0 and 1 for the ramp edge in Figure 4. Therefore, a 
wide range  of signal  to noise ratio are  addressed using  the 
variation  in  α from 0.1  to 0.4.  Results  shown later  in  the 
paper will vary the noise level from 0.10 to 0.4 to allow for 
evaluation  of the  filter  over  a  broad  range  of noise  levels 
likely to occur in  gas turbine applications.  Note that  actual 

fault data for gas turbines is very difficult to obtain and the 
use  of  simulated  data  allows  the  evaluation  of  the  filter 
performance as the ideal signal  is known.  Furthermore,  the 
types of signals used here have been used in the literature by 
Lu et al  [5] to evaluate a  filtering  approach  based on auto-
associative neural networks.

The  mean  square  error  (MSE)  also provides  information 
about the filter accuracy and is defined as
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where N is the number of samples, ∆ is the noisy or filtered 
signal  value and  ∆0 is  the  ideal  or  pure  signal  value.  The 
noise reduction is defined as
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IV.BACKGROUND ON FILTERING

The filters used in this study are the rational filter and the 
median filter. 

Rational  Filter. The  working  of  rational  filter  is  based 
upon  a  non-linear  operator,  which  is  able  to  attenuate  the 
Gaussian  noise in  a  signal,  while  preserving  the  edge to a 
good extent [6]. It is described by a rational function, which 
is the ratio of two polynomials. 
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Here k∆̂ is the filtered signal value at discrete time k. The 

values of data at  k-1,  k and  kth time are  kk ∆∆ − ,1 and 1+∆ k

and  these points  are  the  backward  predictor,  current  value 
and forward predictor, respectively. The parameters  κ and  w 
takes positive values and are used to control  the filter.  The 
rational filter differs from the linear FIR filter mainly for the 
scaling which is introduced on the 1−∆ k and 1+∆ k terms. Such 
terms are divided by a factor proportional to the edge sensing 
term.  When  κ=0,  the  rational  filter  acts  as  the  following 
linear filter.

kkkk ww ∆−+∆+∆=∆ +− )21()(ˆ
11

The sum of the coefficients or weights of the above filter is 
one.  The  filter  shows low pass  behavior  for 3/10 << w . 
For w=1/3, the filter becomes a moving average filter. When 

κ→∞,  the  filter  has  no  effect,  and kk ∆≅∆̂ .  For 

intermediate values of κ, the  2
11 )( +− ∆−∆ kk term perceives 

the  presence  of  a  detail  and  accordingly  reduces  the 
smoothing  effect of the  operator.  This  filter  has  good edge 
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preserving capability, which is required for health monitoring 
problems. It has a time delay of one point due to the forward 
predictor point ∆k+1. 

Median  Filter:  The  median  filter  belongs  to  a  group  of 
nonlinear  filters called order statistics filter which are based 
on  sorting  of the  signal  sample.  The  order  statistics  filters 
select one of the  sorted neighborhood samples of the  input 
signal  vector  in  each  sampling  period.  The  three  point 
median filter can be written as [4]

),,(ˆ
11 +− ∆∆∆=∆ kkkk median

The median filter shown above has a one point time delay 
and uses a forward and backward predictor. The median filter 
is  widely  used  in  signal  and  image  processing  for  the 
capability  of  outlier  removal  while  preserving  edges. 
However, the median is a selection filter which means that its 
output is limited to one of the input samples. Therefore, the 
median  is  not  very good at  removing  Gaussian  or  random 
noise since each element of the input sample contains random 
noise. However, the median filter is conceptually very simple 
though long length median filters involve sorting operations 
that  can  be  computationally  expensive.  Therefore,  in  this 
paper, we use only three point median filter to avoid forward 
point  requirements  and  keep  the  computational  expenses 
down. 

Median Plus Rational  Filter:  This  filter  preprocesses the 
signal with a median filter before using the rational filter and 
is  shown in  schematic  form  in  Figure  2  inside  the  dotted 
lines. We propose and use this combination in the paper for 
denoising  of  gas  path  measurement  deltas.  First,  the 
measurement delta is passed through the median filter.
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During this phase, the outliers in the data are removed. In 
the next phase, the median preprocessed data is sent through 
the rational filter. The rational filter can be defined using the 
outputs of the median filter from Eq. 7 as
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The  evaluation  of  the  filtered  value  using  the  above 
formulas  is  very fast  if one defines the denominator  of the 
rational  filter  as  a  variable  dk and  then  uses  it  for  the 
calculation  of  the  “median  plus  rational”  filter  output  as 
shown  above.  The  three  point  median  involves  a  simple 
sorting  operation  of  three  numbers  and  then  taking  the 
middle value. Therefore, the “median plus rational” approach 
is  computationally  efficient  with  a  two  point  time  delay 
requiring points within a five point window including the k-2, 
k-1, k, k+1 and k+2 discrete time points. 

In  this  study,  κ is  been  fixed  at  0.01  and  w at  0.16  as 
suggested by Ramponi who obtained these values as optimal 
for a signal contaminated with Gaussian noise [6].  This is a 
good assumption for the “median plus rational” approach as 
the data  is first  subjected to a median  filter  which removes 
outliers and the rational  filter  is then used on a signal  with 
trend shift and Gaussian noise.

V.NUMERICAL RESULTS

Numerical results are obtained using the test signal shown 
in Figure 3 and 4 which contain the step signal and the ramp 
signal  simulating  abrupt  fault  and  engine  deterioration 
respectively. The  noisy data  shown in  these figures uses  α
=0.2 and added outliers which were discussed earlier. Figure 
3 and 4 also shows the results of processing the noisy signal 
using  the  rational  and  median  plus  rational  filters, 
respectively. 

From Figure  3,  we see that  the  rational  filter  is  able to 
preserve  the  trend  shift  while  reducing  Gaussian  noise  to 
some  extent,  but  is  unable  to  discard  the  outliers.  The 
“median plus rational” approach results in the outliers being 
removed from the signal  and Gaussian  noise being reduced 
while preserving  the trend  shift.  Figure  4 shows that  for a 
linear  signal,  the rational  filter  is unable to remove outliers. 
However,  the  “median  plus  rational”  approach  results  in 
outlier removal along with some removal of Gaussian noise. 
The  visual  quality  of the  signals  is  considerably improved 
after  the  application  of  the  “median  plus  rational”  filter. 
Since  monitoring  “trend  plots”  of  gas  path  measurement 
deltas  form  an  important  diagnostic  tool  for  airline 
powerplant  engineers,  the  use  of  the  nonlinear  filters  for 
smoothing  the  data  can  greatly increase  their  capability of 
finding faults by visual inspections of the gas path sensor data 
itself. 

The  above  results  are  qualitative  and  provide  visual 
information  about  the  filters.  However,  they represent  only 
one  of  many  possible  noisy  data  samples.  To  obtain 
quantitative results,  1000 samples of noisy data  are  created 
about the ideal step and ramp signals in Figures 3 and 4 and 
the noise reduction after filtering is calculated. Tables 3 and 4 
show the  noise  reduction  based  on  the  mean  square  error 
(MSE) for the step signal  and the ramp signal,  respectively. 
The noise level added to the ideal signal varies from low (α
=0.10) to high (α=0.40). The rational filter reduces noise by 
47 percent for the step signal and by about 48 percent for the 
ramp  signal.  The  noise reduction  is  almost  constant  across 
the noise levels. The median filter reduces noise level by 65-
86 percent for the step signal and 70-96 percent for the ramp 
signal.  For  the median  filter,  the  noise reduction  decreases 
with  increasing  levels  of  Gaussian  noise  in  the  data.  The 
median filter works better when the data has outliers and low 
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levels  of Gaussian  noise.  The  “median  plus  rational”  filter 
reduces noise by 73-88 percent for the step signal and 77-96 
percent for the ramp signal. The “median plus rational” filter 
gives more noise reductions than the median filter at all noise 
levels. However, the advantage increases at  higher  levels of 
Gaussian  noise where the random noise removing ability of 
the rational filter is useful. 

The above results show that for gas path measurement data 
which often contain high levels of outliers and random noise, 
it is advantageous to use the “median plus rational” filter to 
preprocess  the  data  before  performing  fault  detection  and 
isolation  functions.  Using  these  filters  for  real  data  is  a 
subject of future work.

VI.CONCLUDING REMARKS

Simulated  health  monitoring  test  signals  are  used  to 
evaluate  the  denoising  capability  of  nonlinear  filters  for 
smoothing  gas turbine health  signals.  Linear  filters such as 
the moving average which are widely used in the gas turbine 
industry tend  to  smooth  out  the  sharp  edges in  the  signal 
which is often a precursor to an abrupt fault. Linear filters are 
also  not  good  at  removing  outliers.  The  effect  of  both 
Gaussian  noise  and  outliers  of  non-Gaussian  origin  are 
considered.  The  nonlinear  filters  used in  this  study are  the 
rational filter and median filter. 

The  median  and  rational  filters  show  good  edge 
preservation  capability.  However,  the  rational  filter  is  not 
good for outlier removal though it preserves the edges in the 
health  signal.  If the data  is preprocessed by a median  filter 
and  then  sent  through  a  rational  filter,  both  outliers  and 
Gaussian noise is removed while preserving the edges in the 
signal which are often precursors to abrupt faults. 

The “median plus rational” filter results in noise reduction 
of 73-96 percent for the noisy signals and is also conceptually 
simple and computationally efficient when implemented in a 
small  window  of  three  points  as  suggested  in  this  paper. 
Furthermore, the filter has a two point time delay, making it 
suitable  for  jet  engine  diagnostics  where  few  points  are 
obtained  for  each  flight  and  the  cost  of  transmitting 
additional points is high. The “median plus rational” filter is 
therefore  recommended  for  preprocessing  gas  turbine 
measurement  deltas  before  performing  fault  detection  and 
isolation functions.
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Table 1. Fingerprints for selected gas turbine faults η=-2%

Table 2. Signal to noise ratios for fingerprints of gas turbine faults in Table 1

Table 3. Noise reduction with filters for engine abrupt fault signal based on MSE

Table 4.  Noise reduction with filters for engine deterioration signal based on 
MSE

Figure 1. Schematic view of turbofan gas turbine engine modules and sensors
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Figure 2.  Schematics of noise and outlier removal in gas turbine diagnostics 
process

Figure 3. Ideal, noisy and filtered signal for engine “abrupt fault”

Figure 4. Ideal, noisy and filtered signal for engine “deterioration”
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