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ABSTRACT
Many previous techniques identify trending topics in social me-
dia, even topics that are not pre-defined. We present a technique
to identify trending rumors, which we define as topics that include
disputed factual claims. Putting aside any attempt to assess whether
the rumors are true or false, it is valuable to identify trending ru-
mors as early as possible.

It is extremely difficult to accurately classify whether every in-
dividual post is or is not making a disputed factual claim. We are
able to identify trending rumors by recasting the problem as finding
entire clusters of posts whose topic is a disputed factual claim.

The key insight is that when there is a rumor, even though most
posts do not raise questions about it, there may be a few that do.
If we can find signature text phrases that are used by a few people
to express skepticism about factual claims and are rarely used to
express anything else, we can use those as detectors for rumor clus-
ters. Indeed, we have found a few phrases that seem to be used ex-
actly that way, including: “Is this true?”, “Really?”, and “What?”.
Relatively few posts related to any particular rumor use any of these
enquiry phrases, but lots of rumor diffusion processes have some
posts that do and have them quite early in the diffusion.

We have developed a technique based on searching for the en-
quiry phrases, clustering similar posts together, and then collecting
related posts that do not contain these simple phrases. We then
rank the clusters by their likelihood of really containing a disputed
factual claim. The detector, which searches for the very rare but
very informative phrases, combined with clustering and a classifier
on the clusters, yields surprisingly good performance. On a typical
day of Twitter, about a third of the top 50 clusters were judged to
be rumors, a high enough precision that human analysts might be
willing to sift through them.
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1. INTRODUCTION
On April 15th of 2013, two explosions at the Boston Marathon

finish line shocked the entire United States. The event dominated
news channels for the next several days, and there were millions of
tweets about it. Many of the tweets contained rumors and misinfor-
mation, including fake stories, hoaxes, and conspiracy theories.

Within a couple of days, multiple pieces of misinformation that
went viral on social media were identified by professional analysts
and debunked by the mainstream media.1 These reports typically
appeared several hours to a few days after the rumor became pop-
ular and only the most widely spread rumors attracted the attention
of the mainstream media.

Beyond the mainstream media, rumor debunking Websites such
as Snopes.com and PolitiFact.org check the credibility of contro-
versial statements.2 Such Websites heavily rely on social media
observers to nominate potential rumors which are then fact-checked
by analysts employed by the sites. They are able to check rumors
that are somewhat less popular than those covered by mainstream
media, but still have limited coverage and even longer delays.

One week after the Boston bombing, the official Twitter account
of the Associated Press (AP) was hacked. The hacked account
sent out a tweet about two explosions in the White House and the
President being injured. Even though the account was quickly sus-
pended, this rumor spread to millions of users. In such a special
context, the rumor raised an immediate panic, which resulted in a
dramatic, though brief, crash of the stock market [10].

The broad success of online social media has created fertile soil
for the emergence and fast spread of rumors. According to a report
of the development of new media in China, rumors were detected in
more than 1/3 of the trending events on microblog media in 2012.3

Rather than relying solely on human observers to identify trend-
ing rumors, it would be helpful to have an automated tool to iden-
tify potential rumors. The goal of such a tool would not be to assess

1Source: http://www.cnn.com/2013/04/16/tech/
social-media/social-media-boston-fakes/, retrieved
on March 7, 2015; and
http://www.scpr.org/blogs/news/2013/04/16/13322/
boston-marathon-bombings-rumor-control-man-on-the/,
retrieved on March 7, 2015.
2Source: http://www.snopes.com/politics/conspiracy/
boston.asp, retrieved on March 7, 2015.
3Ironically, this report was misinterpreted by a major news media
source, which coined a new rumor that “more than 1/3 of trending
topics on Weibo are rumors.” Source: http://truth.cntv.cn/
erjiye/20/, retrieved on March 7, 2015.

http://www.cnn.com/2013/04/16/tech/social-media/social-media-boston-fakes/
http://www.cnn.com/2013/04/16/tech/social-media/social-media-boston-fakes/
http://www.scpr.org/blogs/news/2013/04/16/13322/boston-marathon-bombings-rumor-control-man-on-the/
http://www.scpr.org/blogs/news/2013/04/16/13322/boston-marathon-bombings-rumor-control-man-on-the/
http://www.snopes.com/politics/conspiracy/boston.asp
http://www.snopes.com/politics/conspiracy/boston.asp
http://truth.cntv.cn/erjiye/20/
http://truth.cntv.cn/erjiye/20/


the veracity of claims made in the rumors, merely to identify when
claims were being spread that some people were questioning or
disputing. If such a tool can identify rumors earlier and with suffi-
ciently high precision, human analysts such as journalists might be
willing to sift through all the top candidates to find those that were
worth further investigation. They would then assess the veracity of
the factual claims. Important rumors might be responded to earlier,
limiting their damage. In addition, such a tool could help to develop
a large collection of rumors. Previous research on rumor diffusion
has included case studies of individual rumors that spread widely
(e.g., [16]), but a fuller understanding of the nature of rumor diffu-
sion will require study of much larger collections, including those
that reach only modest audiences, so that commonalities and dif-
ferences between diffusion patterns can be assessed.

We propose a new way to detect rumors as early as possible in
their life cycle. The new method utilizes the enquiry behavior of
social media users as sensors. The key insight is that some people
who are exposed to a rumor, before deciding whether to believe it
or not, will take a step of information enquiry to seek more infor-
mation or to express skepticism without asserting specifically that
it is false. Some of them will make their enquiries by tweeting. For
example, within 60 seconds after the hacked AP account sent out
the rumor about explosions in the White House, there were already
multiple users enquiring about the truth of the rumor (Figure 1).
Table 1 shows some examples of these enquiry tweets.

(a) 60 seconds after the hacked
twitter account sent out the
White House rumor there
were already sufficient enquiry
tweets (blue nodes).

(b) Two seconds after the first
denial from an AP employee
and two minutes before the of-
ficial denial from AP, the rumor
had already gone viral.

Figure 1: Snapshots of the diffusion of the White House ru-
mor. Red, yellow and blue nodes: Twitters spreading, correct-
ing, and questioning the rumor.

Of course, not all tweets about a rumor will be such skeptical
enquiries. As features for classifying individual tweets, enquiry
signals are insufficient. Even if they yielded high precision, the re-
call would be far too low. As features for classifying tweet clusters,
however, they provide surprisingly good coverage. Our technique
for automatically detecting rumors is built around this signal.

Table 1: Examples of enquiry tweets about the rumor of explo-
sions in the White House

Oh my god is this real? RT @AP: Breaking: Two Explosions in the
White House and Barack Obama is injured
Is this true? Or hacked account? RT @AP Breaking: Two Explosions in
the White House and Barack Obama is injured
Is this real or hacked? RT @AP: Breaking: Two Explosions in the White
House and Barack Obama is injured
How does this happen? #hackers RT @user: RT @AP: Breaking: Two
Explosions in the White House and Barack Obama is injured
Is this legit? RT @AP Breaking: Two Explosions in the White House
and Barack Obama is injured

We make three contributions in this work. First, we develop an
algorithm for identifying newly emerging, controversial topics that
is scalable to massive stream of tweets. It is scalable because it
clusters only signal tweets rather than all tweets, and then assigns
the rest of the tweets only if they match one of the signal clusters.
Second, we identify a set of regular expressions that define the set
of signal tweets. This crude classifier of signal tweets based on
regular expression matching turns out to be sufficient. Third, we
identify features of signal clusters that are independent of any par-
ticular topic and that can be used to effectively rank the clusters by
their likelihood of containing a disputed factual claim.4

The algorithm is evaluated using the Twitter Gardenhose (a 10%
sample of the overall tweet stream) to identify rumors on regular
uneventful days. We also evaluate it using a large collection of
tweets related to the Boston Marathon bombing event. We com-
pare the algorithm to various baselines. It is more scalable and has
higher precision and recall than techniques that try to find all trend-
ing topics. It detects more rumors, and detects them much earlier
than a related technique that treats only debunks or corrections as
signals of rumors as well as techniques that rely on tracking all
trending topics or popular memes. The performance is also satis-
factory in an absolute sense. It successfully detects 110 rumors
from the stream of tweets about the Boston Marathon bombing
event, with an average precision above 50% among the top-ranked
candidates. It also achieves a precision of 33% when outputting 50
candidate rumors per day from analysis of the Gardenhose data.

2. RELATED WORK

2.1 Detection Problems in Social Media
Although rumors have long been a hot subject in multiple disci-

plines (e.g., [9, 31, 22]), research on identifying rumors from online
social media through computational methods has only begun in re-
cent years. Our previous work has shown that particular known
rumors can be retrieved with a high accuracy by training a machine
learning classifier for each rumor [28]. Here we seek to identify
new rumors, not necessarily retrieve all the tweets related to them.

Much previous research has tried to develop classifiers for a more
challenging problem than ours, automatically determining whether
a meme that is spreading is true or false ([35, 4, 14, 17]). Applica-
tion domains have included “event rumors” in Sun et al. [33], and
fake images on Twitter during Hurricane Sandy [16]. The “Truthy”
system attempts a related classification problem, whether a spread-
ing meme is spreading “organically” or whether it is being spread
by an “astroturf” campaign controlled by a single person or orga-
nization [29, 30].

Identifying the truth value of an arbitrary statement is very diffi-
cult, probably as difficult as any natural language processing prob-
lems. Even if one knows what the truth is, the problem is related to
textual entailment (recognizing whether the meaning of one given
statement can be inferred from another given statement), the accu-
racy of the art of which is lower than 70% on balanced lab data sets
[8]. This is even harder for short posts in social media.

Thus, most existing approaches that attempt to classify the truth-
fulness of spreading memes utilize information beyond the content
of the posts, usually by analyzing the collective behavior of how
users respond to the target post. For example, many studies iden-
tified the popularity of a post (e.g., number of posts that retweeted
4At the risk of redundancy, we emphasize that our technique does
not make any attempt to assess whether rumors are true or not, or
classify or rank them based on the probability that they are true.
We rank the clusters based on the probability that they contain a
disputed claim, not that they contain a false claim.



or replied to the post) as a significant signal. This information is
used either directly as features of the “rumor” classifier (e.g., [4,
14, 35, 17, 33, 34]), or as filters to prescreen candidate topics (e.g.,
to only consider the most popular posts [15] or “trending topics”
[4, 14]), or both [4, 14]. Other work identified burstiness [34], tem-
poral patterns [17, 15], or the network structure of the diffusion of
a post/topic [30, 4, 32, 17] as important signals.

Most of these features of the tweet collection can only be col-
lected after the rumor has circulated for a while. In other words,
these features only become meaningful when the rumor has already
reached and been responded to by many users. Once these fea-
tures become available, we also make use of them in our classifier
that ranks candidate rumor clusters. However, since we have set
ourselves the easier task of detecting controversial fact-checkable
claims, rather than detecting false claims, we are able to rely for
initial detection on content features that are available much earlier
in a meme’s diffusion.

Some existing work uses corrections made by authoritative sources
or social media users as a signal. For example, Takahashi and Igata
tracked the clue keyword “false rumor” [34]. Both Kwon et al.
[17] and Friggeri et al. [13] tracked the judgments made by ru-
mor debunking websites such as Snopes.com. Studies of rumors
on Weibo.com also tracked official corrections made by the site
[35, 33]. These correction signals are closer in spirit to those we
employ. They suffer, however, from limited coverage and delays,
only working after a rumor has attracted the attention of authori-
tative sources. In our experiments we will compare the recall and
earliness of rumor detection through our system using both correc-
tion and enquiry signals to a more limited version of our system
that uses only correction signals.

Another related problem is detecting and tracking trending topics
[20] or popular memes [18]. Even if they are effective at picking
up newly popular topics, they are not sufficiently precise to serve as
trending rumor detectors, as most topics and memes in social media
are not rumors. As an example, Sun et al. collected 104 rumors
and over 26,000 non-rumor posts in their experiment [33]. Later in
this paper, we will compare the precision of the candidate rumors
filtered using our method and those filtered through trending topics
and meme tracking.

2.2 Question Asking in Social Media
Another detection feature used in related work is question ask-

ing. Mendoza et al. found on a small set of cases that false tweets
were questioned much more than confirmed truths [21]. Castillo
et al. therefore used the number (and ratio) of question marks as
a feature to classify the credibility of a group of tweets. The same
feature is adopted by a few follow-up studies [14, 16].

In fact, the behavior of information seeking by asking questions
on online social media has drawn interest from researchers in both
social sciences and computer science (e.g., [6, 24, 25, 37]). Paul et
al. analyzed a random sample of 4,140 tweets with question marks
[25]. Among the set of tweets, 1,351 were labeled as questions
by Amazon Mechanical Turkers. Morris et al. conducted surveys
on if and how people ask questions through social networks. They
analyzed the survey responses and presented findings such as how
differently users ask questions via social media and via search en-
gines, and how different cultures influence the behaviors [24, 23,
36]. These studies have proved that question asking is a common
behavior in social media and provided general understanding of the
types of questions people ask.

To study question asking behavior at scale, our previous work
detected and analyzed questions from billions of tweets [37]. The
analysis pointed out that the questions asked by Twitter users are

tied to real world events including rumors. These findings inspired
us to make use of question asking behavior as the signal for detect-
ing rumors once they emerge.

Though inspired by the value of question marks as features for
classifying the truth value of a post, for our purposes we need a
more specific signal. Previous work has shown that only one third
of tweets with question marks are real questions, and not all ques-
tions are related to rumors [25, 37]. In this paper, we carefully
select a set of regular expressions to identify enquiry tweets that
are indicative of rumors.

3. PROBLEM DEFINITION

3.1 Defining a Rumor
Many variations of the definition of rumors have been proposed

in the literature of sociology and communication studies [26]. These
different definitions generally share a few insights about the nature
of rumors. First, rumors usually arise in the context of ambiguity,
and therefore the truth value of a rumor appears to be uncertain to
its audience. Second, although the truth value is uncertain, a ru-
mor does not necessarily imply false information. Instead, the term
“false rumor” is usually used in these definitions to refer to rumors
that are eventually found to be false. Indeed, many pieces of truth-
ful information spread as rumors because most people don’t have
first-hand knowledge to assess them and no trusted authorities have
fact-checked them yet. Having such intuitions and following the
famous work of DiFonzo and Bordia in social psychology [9], we
propose a practical definition:

“A rumor is a controversial and fact-checkable statement.”

We make the following remarks to further clarify this definition:

• “Fact-checkable”: In principle, the statement has a truth value
that could be determined right now by an observer who had
access to all relevant evidence. This excludes statements that
cannot be fact-checked or those whose truth value will only
be determined by future events (e.g., “Chelsea Clinton will
run for president in 2040.”).

• “Controversial (or Disputed)”: At some point in the life cycle
of the statement, some people express skepticism (e.g., ver-
ifications, corrections, statements of disbelief or questions).
This excludes statements that are fact-checkable but not dis-
puted (e.g., “Bill Clinton tried marijuana,” as Clinton himself
has admitted it.).

• Any statement referring to a statement meeting the criteria
above is also classified as a rumor. This includes statements
that point to several other rumors (e.g., “Click the link http:
//... to see the latest rumors about Boston Bombing.”).

The above definition of rumor is effective in practice. As we
describe below, human raters were able to achieve high inter-rater
reliability labeling statements as rumors or not.

3.2 The Computational Problem
Based on the conceptual definition, we can formally define the

computational problem of real-time detection of rumors.

DEFINITION 1. (Rumor Cluster). We define a rumor cluster R
as a group of social media posts that are either declaring, question-
ing, or denying the same fact claim, s, which may be true or false.
Let S be the set of posts declaring s, E be the set of posts question-
ing s, and C be the set of tweets denying s, then R = S ∪ E ∪ C.
We say s is a candidate rumor if S 6= ∅ and E ∪ C 6= ∅.

http://...
http://...


Naturally, posts belonging to the same rumor cluster can either
be identical to each other (e.g., retweets) or paraphrase the same
fact claim. Posts that are enquiring about the truth value of the fact
claim are referred to as enquiry posts (E) and those that deny the
fact claim are referred to as correction posts (C).

DEFINITION 2. (Real-time Rumor Detection). Consider the in-
put of a stream of posts in social media,D = 〈(d1, t1), (d2, t2) . . . 〉,
where di, i ∈ [1, 2, · · · ] is a document posted at time ti. The task
of real-time rumor detection is to output a set of clusters Rt =
〈Rt,1, Rt,2, . . . , Rt,l〉 at time t after every time interval ∆t, where
the fact claim st,j of each cluster Rt,j ∈ Rt is a candidate rumor.

Given any time point t where a new set of clusters are output, the
clusters must satisfy that

∀Rt,j ∈ Rt,∃(d′, t′) ∈ Rt,j s.t. t−∆t < t′ ≤ t

This means that the output rumor clusters at time t must contain
at least one tweet posted in the past time interval ∆t. Clearly, a
cluster about a fact claim s can accumulate more documents over
time, such that Rt1,j ⊆ Rt2,j if t1 < t2 and st1,j = st2,j = s.
Therefore, we can naturally define the first time (t1 in the previous
example) where a rumor cluster about a fact claim s is output as the
detection time of the candidate rumor s. Our aim is to minimize the
delay from the time when the first tweet about the rumor is posted
to the detection time.

4. EARLY DETECTION OF RUMORS
We propose a real-time rumor detection procedure that has the

following five steps.

1. Identify Signal Tweets. Using a set of regular expressions,
the system selects only those tweets that contain skeptical
enquiries: verification questions and corrections. These are
the signal tweets.

2. Identify Signal Clusters. The system clusters the signal
tweets based on overlapping content in the tweets.

3. Detect Statements. The system analyzes the content of each
signal cluster to determine a single statement that defines the
common text of the cluster.

4. Capture Non-signal Tweets. The system captures all non-
signal tweets that match any cluster’s summary statement,
turning a signal cluster into a full candidate rumor cluster.

5. Rank Candidate Rumor Clusters. Using statistical fea-
tures of the clusters that are independent of the statements’
content, rank the candidate clusters in order of likelihood
that their statements are rumors (i.e., controversial and fact-
checkable).

The algorithm operates on a real-time tweet stream, where tweets
arrive continuously. It outputs a ranked list of candidate rumor clus-
ters at every time interval ∆t, where ∆t could be as small as the
interval when the next tweet arrives. In practice, it will be easier
to think of the time interval as, for example, an hour or a day, with
many tweets arriving during that interval.

The system first matches every new tweet posted in that inter-
val to rumor clusters detected in the past, using the same method
of capturing non-signal tweets (component 4). Tweets that do not
match to any existing rumors will go through the complete set of
five components listed above, with a procedure described in Figure
2. If very short time intervals are used, signal tweets from recent
past intervals that were not matched to any rumor clusters may also
be included in this procedure. Below, each of the five steps are
described in more detail.

Pattern Regular Expression Type
is (that | this | it) true Verification

wh[a]*t[?!][?1]* Verification
( real? | really ? | unconfirmed ) Verification

(rumor | debunk) Correction
(that | this | it) is not true Correction

Table 2: Patterns used to filter Enquiries and Corrections

4.1 Identify Signal Tweets
The first module of our algorithm extracts enquiry tweets. Not

all enquiries are related to rumors [37]. A tweet conveying an in-
formation need can be either of the following cases:

• It requests a piece of factual knowledge, or a verification of
a piece of factual knowledge. Factual knowledge is objective
and fact-checkable. For example: “According to the Mayan
Calendar, does the world end on Dec 16th, 2013?”

• It requests an opinion, idea, preference, recommendation, or
personal plan of the recipient(s), as well as a confirmation of
such information. This type of information is subjective and
not fact-checkable.

We hypothesize that only verification/confirmation questions are
good signals for rumors. In addition, we expect that corrections (or
debunks) are also good signals. To extract patterns to identify these
good signals, we conducted an analysis on a labeled rumor dataset.

Discover patterns of signal tweets.
We analyzed 10,417 tweets related to five rumors published in

[28], with 3,423 tweets labeled as either verifications or correc-
tions. All tweets are lowercased and processed with the Porter
Stemmer [27]. We extracted lexical features from the tweets: un-
igrams, bigrams and trigrams. Then we calculated the Chi-Square
score for each feature in the data set. Chi-Squared test is a classical
statistical test of independence and the score measures the diver-
gence from the expected distribution if one assumes a feature is
independent of the class label [12]. Features with high Chi-Square
scores are more likely to appear only in tweets of a particular class.
Patterns which appear excessively in verification and correction
tweets but are underrepresented in other tweets were selected to de-
tect signal tweets. From the patterns with high Chi-Square scores,
human experts further selected those which are independent of any
particular rumor. The patterns we selected are listed in Table 2.

As a way to identify all the tweets containing rumors, this set
of regular expressions has relatively low recall. Even on the 3,423
tweets labeled as either verifications or corrections in our training
data, only 572 match these regular expressions. In the signal tweet
identification stage, however, it is far more important to have a high
precision. Low recall of signal tweets may still be sufficient to get
high recall of signal clusters. By identifying patterns that are more
likely to appear only in signal clusters, even though these patterns
only appear a few times inside each rumor cluster, our framework
can make use of them to detect many rumors. Note that although
current patterns are discovered from a data set containing only five
rumors, we could in principle rerun this process after we have more
rumors labeled by our rumor detection framework, shown as the
dotted line in Figure 2.

4.2 Identify Signal Clusters
When a tweet containing a rumor emerges, many people either

explicitly retweet it, or create a new tweet containing much of the
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Figure 2: The procedure of real-time rumor detection.

original text. Therefore, tweets spreading a rumor are mostly near
duplicates, as illustrated in Table 1. By clustering, we aim to group
all the near duplicates, which are either retweets or tweets contain-
ing the original rumor content.

There are many different clustering algorithms such as the K-
Means [19]. Many have a high computational cost and/or need to
keep an N ×N similarity matrix in memory. Given that we expect
tweets about the same rumor to share a lot of text, we can trade off
some accuracy for efficiency. In contrast to exploratory clustering
tasks where documents may be merely similar, we want to cluster
tweets that are near duplicates. Therefore, using an algorithm such
as connected component clustering can be efficient and effective
enough for our purposes. A connected component in an undirected
graph is a group of vertices, every pair of which are reachable from
each other through paths. An undirected graph of tweets is built by
including an edge joining any tweet pair with a high similarity.

We use the Jaccard coefficient to measure similarity between
tweets. Given two tweets da and db, the similarity between da
and db can be calculated as:

J(da, db) =
|Ngram(da) ∩Ngram(db)|
|Ngram(da) ∪Ngram(db)|

Here Ngram(da) and Ngram(db) are the 3-grams of tweets
da and db. Jaccard distance is a commonly used indicator of the
similarity between two sets. The similarity values from 0 to 1 and
a higher value means a higher similarity.

To further improve efficiency, we use the Minhash algorithm [2]
to reduce the dimensionality of the Ngram vector space, which
makes calculating Jaccard similarity much faster. The Minhash al-
gorithm is used for dimensionality reduction and fast estimation
of Jaccard similarities. In our approach, we randomly generate 50
hash functions based on the md5 hash function. Then we use the
50 corresponding Minhash values to represent each tweet. In our
implementation of the connected component clustering algorithm,
we set the threshold for adding an edge at 0.6 (60% of the hashed
dimensions for the two tweets are equal).

The connected components in this graph are the clusters. We
create a cluster for each group of three or more tweets connected
together. Connected components can be found by either breadth-
first search or depth-first search, which has a linear time complexity
O(E), where E is the number of edges. Since we want to cluster
tweets that are near duplicates, setting a high similarity threshold
(0.6) yields a relatively small number of edges.

At this point, the procedure will have obtained a set of candidate
rumor clusters R. The next stage extracts, for each cluster Ri, the
statement si that the tweets in the cluster promote, question, or at-

tempt to correct. In our approach, for each rumor cluster, we extract
the most frequent and continuous substrings (3-grams that appear in
more than 80% of the tweets) and output them in order as the sum-
marized statement. We keep the summarization component simple
and efficient in this study, though algorithms such as LexRank [11]
may improve the performance of text summarization.

4.3 Capture Non-signal Tweets
After the statement that summarizes the tweets in a signal clus-

ter is extracted, we use that statement as a query to match similar
non-signal tweets from the tweet stream, tweets that are related to
the cluster but do not contain enquiry patterns. To be consistent,
we still use the Jaccard similarity and select tweets whose similar-
ity score with the statement is higher than a threshold (0.6 in our
implementation). This step partially recovers from the low recall
of signal tweet detection using limited signal patterns.

Note the efficiency gain that comes from matching the non-signal
tweets only with the statements summarizing signal tweets. In par-
ticular, it is not necessary to compare each of the non-signal tweets
with each other non-signal tweet. Non-signal tweets may form
other clusters but we do not need to detect those clusters: they do
not contain nuclei of three connected signal tweets and thus are
unlikely to be rumor clusters.

4.4 Score Candidate Rumor Clusters
After we have complete candidate rumor clusters, including both

signal and non-signal tweets, we score them. A simple way to out-
put clusters is to rank them by popularity. The number of tweets
in a cluster measures the statement’s popularity. The most popu-
lar candidates, however, may not be the most likely to be rumors.
There may be statistical properties of the candidate rumor clusters
that are better correlated with whether they really contain disputed
factual claims.

We extracted 13 statistical features of candidate clusters that are
independent of any particular substantive content. We then trained
classifiers using these features, to obtain a better ranking function.
The features are listed as follows.

• Percentage of signal tweets (1 feature): the ratio of signal
tweets to all tweets in the cluster.

• Entropy ratio (1 feature): the ratio of the entropy of the word
frequency distribution in the set of signal tweets to that in the
set of all tweets in the cluster.



• Tweet lengths (3 features): (1) the average number of words
per signal tweet; (2) the average number of words per any
tweet in the cluster; and (3) the ratio of (1) to (2).

• Retweets (2 features): the percentage of retweets among the
signal tweets and the percentage of retweets among all tweets
in the cluster.

• URLs (2 features): the average number of URLs per signal
tweet and the average number per any tweet in the cluster.

• Hashtags (2 features): the average number of hashtags per
signal tweet and the number per any tweet in the cluster.

• @Mentions (2 features): the average number of usernames
mentioned per signal tweet and the number per any tweet in
the cluster.

We use rumor clusters labeled by human annotators to train a
classifier that ranks the candidate clusters by their likelihood of
being rumors (detail described in section 5.3). We select two com-
monly used classifiers, the Support Vector Machine (SVM [7]) with
the LIBSVM implementation [5], and the Decision Trees [1] with
the Matlab implementation 5. The detailed results are shown in
Section 5.

5. EXPERIMENT SETUP
In this section, we present empirical experiments to evaluate the

proposed method of early detection of rumors.

5.1 Data Sets
We first selected two different collections of tweets. One focuses

on a specific high-profile event, i.e. the Boston Marathon bombing
in April 2013. The other consists of a random sample of tweets
from a month that was not unusually eventful.

BOSTON MARATHON BOMBING (BOSTON). Two bombs exploded
at the finish line of the annual Boston Marathon competition on
April 15th, 2013.6 We chose this context as a typical example of
unpredictable real-world events.

To obtain a complete set of tweets related to this event, we col-
lected tweets containing keywords such as “Boston,” “marathon,”
and “explosion” and their combinations, starting several hours after
the explosion, using the official tracking API provided by Twitter.
The tracking API returned all tweets containing those keywords af-
ter 23:29 GMT. To collect tweets posted before this time point, we
used the Twitter search API to get tweets containing the same set
of keywords. In summary, we collected 10,240,066 tweets through
the search API (13:30 GMT, April 14 to 23:29 GMT, April 15) and
23,001,329 tweets through the tracking API (23:29 GMT, April 15
to May 10, 2013), adding up to 30,340,218 unique tweets in the
entire data set.

GARDENHOSE. Besides the stream related to a major event, we
are also interested in the performance of the proposed method in
detecting rumors from everyday tweets. We thus collected a tweet
stream in a random month of the year 2013 (November 1 to Novem-
ber 30, 2013), through the official stream API with Gardenhose ac-
cess (10% sample of the real-time stream of all tweets). This data
5http://www.mathworks.com/help/stats/
classificationtree-class.html, retrieved on March 7,
2015.
6http://en.wikipedia.org/wiki/Boston_
Marathon_bombings, retrieved on March 7, 2015.

set contains 1,242,186,946 tweets. Although the size is forty times
larger than the BOSTON set, we anticipated that the density of ru-
mors in this everyday tweet stream may be lower.

To process such data sets of over a billion records, we imple-
mented our methods in MapReduce and conducted the experiments
on a 72 core Hadoop cluster (version 0.20.2). The main compo-
nents of our framework, including filtering, clustering and retrieval
algorithm are implemented using Apache Pig (version 0.11.1).

5.2 Baselines and Variants of Methods
To obtain a comprehensive understanding of the effectiveness of

the overall method, the identifiers of signal tweets, and the algo-
rithms used to rank statements, we tested six variants of the method.
The first four variants all rank candidate rumors purely by popular-
ity, the number of tweets in the cluster. They vary in the algorithm
used to identify signal tweets. The last three variants all use both
enquiry and correction tweets as signals. They vary in the algo-
rithm used to rank the candidate rumor clusters.

Variant 1 (baseline 1): Trending Topics. This straightforward base-
line method directly clusters all the input tweets. It treats all the
tweets as signal tweets rather than selecting only a subset. This
method echoes the common approaches to detecting trending topics
and then identifying rumors among them [4, 14]. After tweets are
clustered and statements are extracted, this baseline method simply
outputs the top candidate clusters with the largest number of tweets.

Variant 2 (baseline 2): Hashtag Tracking. Hashtags are well rec-
ognized signals for detecting trending and popular topics and have
been used previously in rumor detection [30, 34]. As a second base-
line method, popular hashtags (i.e., those that appear more than 10
times) are used to filter the signal tweets. Tweets containing these
hashtags are clustered and statements are extracted from these clus-
ters. Again, clusters with the largest number of tweets are presented
to the user.

Variant 3 (baseline 3): Corrections Only. One novel contribution of
our approach is the utilization of enquiry tweets as early signals of
rumors. To test the performance of these signals, we downgraded
our identifier of signal tweets by only using correction tweets as
filtering signals, i.e., tweets containing the correction patterns in
Table 2, including “rumor,” “debunk,” or “(this|that|it) is not true.”
Certain correction patterns such as the phrase “false rumor” have
been used previously in the literature to identify rumors [34]. The
same clustering and statement detection procedures were applied
to tweets filtered with the correction signals. The largest candidate
rumor clusters are output by the system.

Variant 4: Enquiries and Corrections. Besides the baseline meth-
ods, we included three variants that treat both enquiries and correc-
tions as signal tweets, using the complete set of patterns from Table
2. To enable comparison with the baselines, variant 4 still ranks the
candidate rumor clusters purely by popularity.

Variant 5: SVM ranking. This version ranks the candidate rumor
clusters based on their scores using the trained SVM classifier. Like
Variant 4, it treats both enquiries and corrections as signal tweets.

Variant 6: Decision tree ranking. This version ranks the candidate
rumor clusters based on their scores using the trained Decision Tree
classifier. Like Variants 4 and 5, it treats both enquiries and correc-
tions as signal tweets.

http://www.mathworks.com/help/stats/classificationtree-class.html
http://www.mathworks.com/help/stats/classificationtree-class.html
http://en.wikipedia.org/wiki/Boston_Marathon_bombings
http://en.wikipedia.org/wiki/Boston_Marathon_bombings


5.3 Ground Truth
We recruited two human annotators to manually label candidate

rumors (i.e. rumor clusters as defined in Section 3) as either a real
rumor or not. The annotators made decisions based on the state-
ment extracted from the cluster, actual tweets in the cluster, and
other useful information about the statement through Web search.
To train the annotators, we developed a codebook according to the
definition of rumors discussed in Section 3 which includes both the
definition and examples of rumor and non-rumor statements. After
being trained, both annotators labeled all the top-ranked candidate
rumor clusters extracted by either the Popularity method, the Deci-
sion Tree method, or the Correction Signal method, from the first
week of the GARDENHOSE data set and the first two days and the
eighth day of the BOSTON data set. At most 10 clusters per hour
per method were annotated for the BOSTON data set and at most 50
clusters per day per method were annotated for the GARDENHOSE
data set. These added up to 639 candidate rumor clusters. The inter-
rater reliability was satisfactory, achieving a Cohen’s Kappa score
of 0.76. Such a high agreement also demonstrates the coherence
of our definition of rumors. For the statements the two annotators
did not agree on, an expert labeled them and broke the tie. Another
1,440 clusters generated by the first two baseline methods (Trend-
ing Topics and Hashtags) on the same 72 hours of the BOSTON data
set were then labeled by one of the two annotators after they were
well trained. It took an average about 80 hours for each annotator
to finish the labeling task including training.

5.4 Evaluation Metrics
We selected several quantitative metrics to evaluate the effec-

tiveness and efficiency of our proposed method. We calculated pre-
cision@N, which is the percentage of real rumors among the top
N candidate rumor clusters output by the a method. Since it is
not practical in general to manually label a complete data set with
tens of millions of tweets and hundreds of thousands of clusters,
we cannot directly evaluate the actual recall of a rumor detection
method. However, the number of rumors each method returns can
be an indirect way to understand whether one method can detect
more rumors than another. Another important dimension of the ef-
fectiveness of a rumor detection system is how early a rumor can be
detected. We calculated the detection time, the time when the algo-
rithm was first able to identify it as a candidate rumor. Finally, we
also evaluated the scalability of the proposed method by plotting
the scale of the data against the running time of the algorithm.

6. EXPERIMENT RESULTS

6.1 Effectiveness of Enquiry Signals
We evaluated the effectiveness of rumor detection algorithms us-

ing different signals. We first compared the precision of the top-
ranked candidate rumor clusters output by different methods. For
a fair comparison, all methods ranked the candidate rumor clusters
simply using the popularity (i.e. number of tweets in each cluster).

6.1.1 Precision of Candidate Rumor Clusters
We compared the precision of our proposed methods using both

enquiry and correction signals with all three baseline methods on
the BOSTON data set. Note that both the baselines 1 and 2 (Trend-
ing Topics and Meme Tracking) have to cluster a huge number of
tweets, nearly all the incoming tweets of every time period, hence
they cannot handle the scale of all tweets in the GARDENHOSE data
set. Therefore, we compare the proposed methods with only Base-
line 3 (Correction Signals) on the GARDENHOSE data set. These
results are summarized in Table 3. Clearly, the use of both enquiry

and correction signals typically detects more rumors than using no
signal (trending topics) or using memes (meme tracking), and the
top-ranked rumor clusters are much more precise. Using both en-
quiry and correction signals, our method detected 110 rumors from
the stream of tweets related to the Boston Marathon bombing, with
an average precision@10 above 50% (half of the top 10 candidate
clusters output by the system are real rumors). On the stream of
everyday tweets, this method detected 92 rumors from a random
month of 2013, with the average precision@50 above 26% (one
fourth of the top 50 clusters output by the system are real rumors).

Table 3: Precision of rumor detection using different signals.
Candidate rumors ranked by popularity only. Maximum num-
ber of output rumor clusters: 10 per hour for BOSTON and 50
per day for GARDENHOSE.

Method Data Set Candidates
Detected

Real Ru-
mors

Precision

Trending
Topics

BOSTON 720 71 0.099

Hashtag
Tracking

BOSTON 720 35 0.049

Corrections
only

BOSTON 109 52 0.466

Enquiries+
Corrections

BOSTON 194 110 0.521

Corrections
only

GARDENHOSE 312 87 0.279

Enquiries+
Corrections

GARDENHOSE 350 92 0.263

Some interesting observations can be made from these results.
Detecting trending topics or tracking popular memes can reveal
some rumors, but they both suffer from a low precision among the
candidate clusters (lower than 10%), and thus miss many rumors
if the user can only check a certain number of candidates (i.e., 10
per hour or 50 per day). This is because both methods inevitably
introduce many false positives, popular statements that are not dis-
puted. Detection using correction signals only also misses half of
the rumors in the Boston event, probably because the behavior of
debunking rumors is less common than enquiries in social media,
as it certainly requires more effort of the users.

Using correction signals achieves a high precision among de-
tected candidates. This is not surprising as statements already ex-
plicitly corrected or referred in tweets as “rumors” are likely to in
fact be disputed factual claims. Interestingly, using enquiry as well
as correction signals yields a similar precision.

6.1.2 Earliness of Detection
One of the most important objectives of our study is to detect

emerging rumors as early as possible so that interventions can be
made in time. Correction signals may appear only in a later stage
of a rumor’s diffusion. If this is the case, detecting rumors using
such signals may have less practical value, as the rumors may have
already spread widely. To verify this and further understand the
usefulness of enquiry signals, we measured the earliness of detec-
tion. We computed the difference between the time points at which
the same rumor was first detected by different methods, assuming
that the algorithms are run in batch mode to output results only
once per hour. The results are summarized in Table 4.

We first compare the method which uses both enquiry and cor-
rection signals with Baseline 3 (correction signals only). Since dif-
ferent methods may yield different clustering results and/or state-
ments for the same rumor, we manually matched the 52 rumors
detected by correction only from the BOSTON data set with the 110



Table 4: Earliness of detection comparing to Enquiries+ Cor-
rections: enquiry signals help to detect rumors hours earlier.

Method Data Set Rumors
detected

Rumors
matched

Average
delay

Corrections
only

BOSTON 52 46 +4.3h

Trending
Topics

BOSTON 71 53 +3.6h

Hashtag
Tracking

BOSTON 35 31 +2.8h

rumors detected by both enquiries and corrections. We obtained
46 rumors detected in the top 10 results per hour by both methods.

There are 27 rumors that enquiries and corrections detected at
least one hour earlier than correction only. The two detected the
rest of the 19 rumors in the same hour. The detection of a rumor
using enquiries and corrections is on average 4.3 hours earlier.

For example, at 20:00 (GMT) April 15th the enquiries and cor-
rections algorithm would have output the popular rumor that the
police identified a Saudi national as the suspect. This was one hour
earlier than people started to realize it was false and tweet correc-
tions. For another widespread rumor about an 8-year-old girl who
died in the explosion, enquiries and corrections identified it almost
one day earlier than tracking correction signals only.

In theory, how early can rumors be detected through enquiry
signals, if candidate rumors were output continuously rather than
hourly? We marked the time points when the system captures at
least three signal tweets. On average, a real-time system that tracks
enquiry signals can hypothetically detect a rumor after its first ap-
pearance in 9.6 minutes. To collect at least three correction tweets,
a method has to wait for 236.7 more minutes on average. Not
all candidate rumor clusters are actually output by our algorithms,
so precision would have to be sacrificed to detect all rumors that
quickly.

We also compare enquiries and corrections with Baseline 1 (trend-
ing topics), and Baseline 2 (meme tracking), on the earliness of
detection. For Baseline 1, we matched the 71 rumors detected by
trending topics with 110 rumors detected by our method. We ob-
tained 53 common rumors detected by both methods. On aver-
age these rumors were detected as trending topics 3.6 hours later
than using enquiry+correction signals. For Baseline 2, we matched
the 35 rumors detected by meme tracking with rumors detected by
our method. 31 of them are matched. On average these rumors
were detected as trending memes 2.8 hours later than using en-
quiry+correction signals. The earliness of our detection method
compared to other methods passed paired-sample t-test at signifi-
cance level of 0.01.

In brief, we see that the use of enquiry tweets as signals not only
detects more rumors, but also detects them hours faster than track-
ing trending topics or popular memes. Tracking correction signals,
although it yields high precision, is the latest among all methods.

6.2 Ranking Candidate Rumor Clusters
We assessed the benefits produced by ranking the candidate clus-

ters, using the 13 statistical features described in the previous sec-
tion. We tested the performance of ranking functions based on Sup-
port Vector Machines and Decision Trees compared with two other
baseline methods. The first baseline ranks the clusters by the num-
ber of tweets inside each cluster, referred to as Popularity. The
second baseline ranks the clusters based on the retweet ratio in the
cluster of tweets, which was reported as an indicative feature of
rumors [34]. The second baseline is referred to as Retweet Ratio.
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Figure 3: Precision@N of different ranking methods

We applied the ranking algorithms to the 350 candidate rumor
clusters labeled by human annotators (the 50 most popular clusters
for each of the seven days from 2013-11-1 to 2013-11-7 in GAR-
DENHOSE data set). We used 6 days of labeled results to train the
classifiers and the remaining day’s results to test the algorithms. We
did a 7-fold cross validation, holding out each of the seven days and
computing the average performance. Figure 3 shows the results.
We used Precision@N to evaluate different ranking algorithms. In
this figure, we can see that retweet ratio has comparable perfor-
mance to popularity, which remains about 0.3 no matter what N
is. Our ranking algorithm significantly improves the Precision@N
when N is small. The precision of the top 10 statements per day
is above 0.7 using a Decision Tree, which outperforms SVM and
the baseline methods. Of course, as N approaches 50, the preci-
sions equalize since all the algorithms are essentially re-ranking the
50 most popular items. Note we are dealing with the classification
task on only hundreds of examples and the 13 features we extracted
are in different scales. In such case a decision tree is easier to tune
than the more sophisticated SVM [3]; this may explain why the
Decision Tree algorithm achieved a better performance than SVM.
The improvement of Precision@10 and Precision@20 made by the
decision tree compared to other methods passed the paired-sample
t-test at significance level of 0.01.

Next, we tested whether the decision tree algorithm would find
more rumors if it was able to suggest its own 50 top-ranked candi-
date clusters among all the candidates instead of reranking the most
popular 50. In the previous figure, it was restricted to re-ranking the
50 most popular ones. We evaluated the performance using Preci-
sion@N. Figure 4 shows the results for the GARDENHOSE data set.
We used tweets from 2013-11-1 to 2013-11-3 in the GARDENHOSE
data set to train the decision tree and then used tweets from 2013-
11-4 to 2013-11-7 to test, with popularity ranking as the baseline.
Results show that we can not only improve Precision@N when N
is small, but also find more rumors in 50 output statements. 33%
of our output statements are rumors. The improvement of Preci-
sion@N when N ≤ 40 made by our ranking algorithm passed the
paired-sample t-test at significance level of 0.01.

In order to verify that the ranking algorithm is not overfitting
only one data set, We also applied the decision tree trained using
7 days of labeled results in GARDENHOSE data set to rank rumor
clusters detected hourly from BOSTON data set. We got similar re-
sults as in Figure 4. The average precision at 2, 4, 6, 8 an 10 in
an hour is improved compared to popularity based ranking. The



features used at the top levels of the decision tree include percent-
age of signal tweets and the average numbers of words, URLs and
@mentions per any tweet in the cluster.
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Figure 4: Precision@N if rumor clusters are ranked by the De-
cision Tree. One third of top 50 clusters are real rumors.

6.3 Efficiency of Our Framework
We have shown that our rumor detection algorithm is effective

in detecting rumors in their early stage with reasonable precision.
We now show that our framework is computationally efficient. Our
framework first filters tweets with specific signals, then uses clus-
tering to detect statements in this smaller group of tweets and at last
outputs potential rumor statements. Compared to approaches that
first generate trending topics and then identify rumors, we reduce
the cost significantly in the detection process.

We first tested the time cost of our algorithm (decision tree rank-
ing in Section 5.2 which uses both enquiry and correction signals)
compared to baseline methods of running the algorithm on one
batch of tweets from one time interval. We started from 1,000
tweet batches randomly sampled from tweets in our data set, then
increased the number of tweets to 100,000,000 exponentially. Fig-
ure 5 shows the results. The x-axis shows the number of tweets to
be processed in log scale. The baseline methods here are the Base-
line 1 and 2 from Section 5.2, which try to detect trending topics or
popular memes (hashtags) first. For baseline methods, we used the
same clustering and ranking implementations as our method except
they don’t filter tweets with enquiry or correction signals and they
don’t have to retrieve tweets back after clustering. When the scale
reaches one million tweets, Baseline 1 cannot finish in hours. Our
method performs consistently and does not take much longer even
at the 10 million scale: it can process 100 million tweets in about 80
minutes. It is intuitive that Meme Tracking achieves an intermediate
performance. It clusters only those tweets that contain popular and
trending hashtags, and thus scales somewhat better than clustering
all tweets to find trending topics, but is still not as efficient as our
method, which clusters a much smaller number of signal tweets.

We also tested our algorithm on one month’s tweets from the
GARDENHOSE data set, collected at November 2013. We set the
time interval to be a day. The average number of tweets every
day in the GARDENHOSE data set was about 40 million. As we
would expect, experiment results indicate that the time cost does
not increase significantly after processing several days, even with
the accumulation of older rumor clusters. On average it took 28.77
minutes for our algorithm to finish detecting rumors each day and
took 14.38 hours in total to process the 1.2 billion tweets in the
entire month.
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Figure 5: Running time vs. batch size.

6.4 Discussion
We have shown in the experiments that tweets asking verifica-

tion questions or making corrections to controversial statements are
very important signals of rumors early in their life cycle. Some
users who have an information need of evaluating a rumor will post
tweets either asking verification questions to express suspicions, or
will correct the rumor after their investigation. Verification ques-
tions are particularly useful because they appear much sooner and
thus facilitate earlier detection of rumors.

Not all clusters that include tweets that ask verification ques-
tions or use correction phrases are actually rumors. We identified
13 different statistical features of clusters of tweets, such as aver-
age tweet length and percentage of signal tweets, etc. By training
a decision tree model, we built a powerful ranking algorithm that
ranks tweet clusters by how likely they are to be rumors (i.e., con-
troversial, fact-checkable claims). The precision we can achieve is
much higher than without the ranking algorithm.

We demonstrated that our proposed framework can scale up well.
By clustering only the small set of signal tweets, we avoided the
computational cost of detecting popular statements or trending top-
ics from the entire corpus. Our proposed framework is robust even
if the number of tweets to be processed exceeds 100 million.

To give the readers a sense of the end-to-end operation of our
system, we present the rumors detected in the two data sets. For
the BOSTON data set, we identified the top 5 candidate rumor clus-
ters each hour. Figure 6 plots the number of tweets hourly of each
identified rumor statement. The dotted blue line in the background
shows the number of tweets arriving in that hour.

Although the small set of regular expressions may yield a low re-
call of enquiry signals, when the candidate rumor clusters detected
by our system are labeled by human experts, they can be used to
enrich the set of signals. Indeed, using statistical feature selection
techniques [12], one can extract features that are highly represen-
tative in the rumor clusters and underrepresented in the non-rumor
clusters. These patterns can be approved by human experts and
added into the pipeline to identify more signal tweets, thus improv-
ing precision and recall of rumor detection. By using rumors of our
two data sets labeled by annotators, we have already discovered
a few additional promising patterns such as “scandal?”, or “fact
check.” We leave the iterative improvement of the signal patterns
to future work.

One may be curious about what types of rumors are being cir-
culated in a random week of tweets. From the GARDENHOSE data
set, we output the 10 top-ranked rumors for each day and tracked
them (Figure 7). We also show example statements extracted from
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Figure 7: Tracking detected rumors in November 2013

the most popular rumor clusters. Most everyday rumors turn out to
be gossip about celebrities, with occasionally emerging anecdotes
like “python ate person.”

7. CONCLUSION
One post of a rumor in social media can sometimes spread be-

yond anyone’s control. A rumor about two explosions in the White
House is a perfect example of how a single tweet out of more than
9,000 tweeted in the same second spreads and causes real damage.

In social media, users share information based on different types
of needs, including the need to verify controversial information.
We point out that such information needs can not only help spread
rumors, but also provide the first clue for detecting them.

Based on this important observation, we designed a rumor de-
tection approach. We cluster only those tweets that contain enquiry
patterns (the signal tweets), extract the statement that each cluster
is making, and use that statement to pull back in the rest of the non-
signal tweets that discuss that same statement. We then rank the
clusters based on statistical features that compare properties of the
signal tweets within the cluster to properties of the whole cluster.

Extensive experiments show that our proposed method can detect
rumors effectively and efficiently in their early stage. With a small
Hadoop cluster, in about half an hour we process 10% of all the
tweets posted in one day on Twitter. If we output 50 candidate
statements, about one third of them are real rumors, and about 70%
of the top ranked 10 clusters are rumors.

There is still considerable room to improve the effectiveness of
the rumor detection method. We can improve the filtering of en-
quiry and correction signals by training a classifier rather than re-
lying on manually selected regular expressions. We can further de-
velop a method to automatically update the filtering patterns in real
time to prevent potential spamming of the detection system. We

can also explore more features for each statement and train a better
ranking algorithm for candidate rumor clusters. Another direction
is to adopt this method to detect rumors automatically and generate
a large data set of rumors, which can benefit many potential anal-
yses such as finding features that are potentially correlated to the
truth value of a rumor, or analyzing general diffusion patterns or
the life cycle of rumors.
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