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ABSTRACT
Information networks are widely used to characterize the
relationships between data items such as text documents.
Many important retrieval and mining tasks rely on ranking
the data items based on their centrality or prestige in the
network. Beyond prestige, diversity has been recognized as
a crucial objective in ranking, aiming at providing a non-
redundant and high coverage piece of information in the top
ranked results. Nevertheless, existing network-based rank-
ing approaches either disregard the concern of diversity, or
handle it with non-optimized heuristics, usually based on
greedy vertex selection.
We propose a novel ranking algorithm, DivRank, based on

a reinforced random walk in an information network. This
model automatically balances the prestige and the diversity
of the top ranked vertices in a principled way. DivRank
not only has a clear optimization explanation, but also well
connects to classical models in mathematics and network
science. We evaluate DivRank using empirical experiments
on three different networks as well as a text summarization
task. DivRank outperforms existing network-based ranking
methods in terms of enhancing diversity in prestige.

Categories and Subject Descriptors: H.2.8 [Database
Applications]: Data Mining

General Terms: Algorithms

Keywords: Diversity, ranking, information networks, rein-
forced random walk

1. INTRODUCTION
Consider the task of recommending three restaurants to a

visitor. Without any prior information, a natural strategy is
to recommend the three most famous ones, all of which hap-
pen to be seafood restaurants. However, the visitor could be
a vegetarian, could prefer Chinese food, or could be allergic
to seafood. A better strategy is thus to include something
different in the recommendation, even though it is not as
famous as the seafood restaurant it has replaced. A similar
situation can be found in setting up the program committee
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of a conference, where an ideal committee should consist of
prestigious researchers who cover all the related areas.

Many retrieval and mining tasks are concerned with find-
ing the most important and/or relevant items from a large
collection of data. Top ranked web pages are presented to
the users of a search engine; top ranked job applicants are
invited to on-site interviews; top ranked researchers are se-
lected as the recipients of prestigious awards. Many rank-
ing approaches have been proposed, ranging from pointwise
weighting methods that use simple properties of each data
item to network-based methods that utilize the relations
among items, and to learning-to-rank methods that balance
a lot of factors. Information networks, which characterize
the relationships between the data items, have been playing
an important role in these tasks. For instance, a search en-
gine ranks web pages based on their prestige in a web hyper-
link graph [14, 9]; researchers and scientific publications are
ranked based on how well they are cited by other researchers.
It is natural to assign a higher weight to data items that are
referred to by many items, connected to many items, or on
the paths between many items. These measures are known
as centrality (or prestige) measures in general, with various
instantiations like degree, closeness, betweenness [13], and
more complicated measures such as the PageRank score [14]
and the authority score [9]. These measures can be also com-
bined with other features such as the relevance to a query.

However, the information need of a user usually goes be-
yond prestige or centrality. The diversity in top ranked re-
sults has been recognized as another crucial criteria in rank-
ing. The top ranked items are expected to contain as little
redundant information as possible, cover as many aspects
as possible, or be as independent as possible. The need of
diversity in ranking is even more urgent when the space of
output is limited, for example in a mobile application.

Consider a toy example (illustrated in Figure 1(a)) which
presents a network with 20 vertices. Vertex 1, 2, 3 and their
neighbors are closely connected, while the ego-networks of
vertex 4 and vertex 5 are loosely connected to the major
community. Suppose the task is to find top-3 vertices to
present the information of the whole network. If we rank the
vertices using a prestige measure like degree or the PageR-
ank (presented in Figure 1(b)), we can see that the top 3
ranked vertices are 1, 2, 3 respectively. All the three vertices
are from the largest community and even form a clique by
themselves. They are therefore likely to carry redundant in-
formation. Information of the two smaller communities cen-
tered at vertex 4 and vertex 5, however, does not present. A
more desirable selection of the top-3 nodes should contain



(a) An illustrative network. (b) Weighting with PageRank. (c) A diverse weighting.

Figure 1: An illustration of diverse ranking in a toy network.

diverse information, like in Figure 1(c). Vertex 1, 5, and 4
receive the majority weight, representing the three commu-
nities. Vertex 1, which represents the largest community, is
ranked to the top. Although vertex 2 and 3 has a higher
degree than vertex 5, they are ranked lower because vertex
1 has already partially covered their information.
A greedy vertex selection algorithm may achieve diver-

sity by iteratively selecting the most prestigious vertex and
then penalizing the vertices “covered” by the already se-
lected ones. An example is the Maximum Marginal Rele-
vance [3]. One may also consider first clustering the nodes
(e.g., [17]) and then selecting centroids of clusters. However,
it’s difficult to predefine the number of clusters in this task.
There lacks a principled objective and a unified process that
automatically balances centrality and diversity.
In this paper, we propose a novel and unified process that

balances prestige and diversity in ranking, based on a time-
variant random walk in the network. The proposed model,
called DivRank (abbreviation for Diverse Rank), intro-
duces the rich-gets-richer mechanism to PageRank style ran-
dom walks with reinforcements on transition probabilities.
In contrast to the greedy vertex selection methods, DivRank
provides a unified and intuitive stochastic process, as well as
a principled optimization explanation. The process is well
connected to a number of classical models in mathematics
and network science, such as the vertex-reinforced random
walk, the Polya’s Urn, and the preferential attachment.
DivRank not only has a solid theoretical foundation, but

also presents a strong empirical performance. The result
presented in Figure 1(c) is actually generated using DivRank.
We compare DivRank with a number of representative meth-
ods in literature using real world datasets and tasks. In all
these tasks, DivRank outperforms the state-of-the-art meth-
ods in generating diverse top ranked results.
There are many potential applications of DivRank. The

tasks presented in our experiments (i.e., ranking actors in
social networks, ranking authors and publications, and text
summarization) are by no means the only possible tasks.
One may expect DivRank be applied in diversifying search
results, snippet generation, keyword selection, mobile search,
expert finding, and in various recommender systems.
The rest of the paper is organized as follows. In Section 2,

we briefly introduce the task of ranking in information net-
works. In section 3, we formally introduce DivRank, includ-
ing the general form and two practical approximations. We
then provide an analytical discussion of DivRank in Sec-
tion 4, followed by a comprehensive empirical analysis in
Section 5. We discuss the related work in Section 6 and
present our conclusions in Section 7.

2. RANKING VERTICES IN INFORMATION
NETWORKS

In this section, we introduce the basic concepts and task
of ranking vertices in networks, followed by the commonly
used random walk processes for prestige measurement.

2.1 Information Networks
Let G = (V,E) be a graph (or a network) where V is a

finite set of vertices and E is a finite set of edges. We define
an ordered pair (u, v) as an edge from vertex u to vertex
v. When G is an undirected graph, we have (u, v) = (v, u);
when G is a directed graph, we have (u, v) ̸= (v, u). In a so-
cial network, V refers to a set of social actors (people) and
E refers to the social ties between actors. In an information
network, V and E broadly correspond to any type of infor-
mation objects and the relationships between objects. We
define the weight of an edge using w(u, v). Note that when
the edge corresponds to a citation between two documents
or a hyperlink between two web pages, w(u, v) takes a bi-
nary value. w(u, v) could take any non-negative real value
in other scenarios, e.g., when the edge corresponds to the
similarity or cooccurrence of two objects, etc.

We then cast the task of ranking the vertices based on
their prestige (or centrality in different contexts, which we
will use interchangeably with prestige) in a network as find-
ing a prestige function f : V → R+. Beyond simple mea-
sures such as degree, recent research focuses on a family of
centrality measures based on the stationary distribution of a
random walk in the network, such as the well-known PageR-
ank [14] and its counterpart in text networks, LexRank [5].

2.2 Prestige Ranking with Random Walks
A family of prestige measures in networks leverages the

stationary distribution of a random walk in the network. A
random walk defines a Markov chain in the given (either
directed or undirected) network, where each vertex repre-
sents a state and a walk transits from one state to another
based on a transition probability, denoted as p(u, v). In
other words, a random walk on G is defined by a transition
probability function p : V × V → [0, 1]. Let us use pT (u) to
denote the probability that the walk is at state u at time T .
A standard random walk can be defined as

pT (v) =
∑

(u,v)∈E

p(u, v)pT−1(u). (1)

If the Markov chain is ergodic, pT (v) converges to a sta-
tionary distribution π(v) which is commonly used to mea-
sure the importance of vertices.

Most existing random walk models assume that the tran-



sition probability p(u, v) doesn’t change over time, and in-
stead can be estimated based on the topological structure of
the network and/or the prior knowledge about the process.
In a Web hyperlink graph, p(u, v) can be estimated by

p(u, v) =


(1− d) ·

1

N
+ d ·

I[(u, v) ∈ E]

deg(u)
, if deg(u) > 0

1

N
, o.w., (2)

where d is a damping factor and deg(u) is the out-degree of
the web page u (the number of hyperlinks from u to other
web pages). The Markov chain defined by p(u, v) is ergodic.
The stationary distribution of this random walk, π(u), yields
to the well known PageRank score for ranking web pages.
There are different ways to estimate p(u, v). For example,

in a general weighted graph, such as a document similarity
graph, one can estimate p(u, v) using w(u, v)/

∑
v∈V w(u, v)

to substitute I[(u, v) ∈ E]/deg(u)1 in Equation 2, where
w(u, v) is the weight of the edge (u, v). In another scenario
where we have a prior distribution p∗(v) (s.t.

∑
v p

∗(v) =
1), we can substitute 1/N in Equation 2 with p∗(v). The
stationary distribution of such a random walk then yields to
personalized PageRank, or topic-sensitive PageRank.
In all these cases, we notice that the transition probabil-

ities do not change throughout the random walk process.
In other words, the corresponding Markov chain is time-
homogenous. π assigns higher weights to vertices that are
more prestigious. If one vertex is visited very frequently by
the walk, all its neighbors are also more likely to be visited,
thus inherit a prestige score from that vertex. This is known
as a regularization process [23, 22], or a smoothing process
[12] of scores in the network. In the scenario that vertices
with high degrees are well connected, the top ranked ver-
tices are likely to contain redundant information. In other
words, the top ranked results is not diverse.
How to achieve diversity in a random walk? We may

expect that there is not only a smoothing process between
neighbors, but also a competing process. By doing this, we
expect that rich nodes get richer over time and “absorb”
the scores of its neighbors. In next section, we propose a
principled way to facilitate this mechanism.

3. DIVRANK
We propose a new ranking algorithm in a network, called

DivRank, which automatically balances centrality and di-
versity in the top ranked items. DivRank is motivated from
a general time-variant random walk process known as the
vertex-reinforced random walk in mathematics literature [15].

3.1 Vertex­Reinforced Random Walk
Time-homogenous random walks (e.g., PageRank) assume

that the transition probabilities remain constant over time.
In a real world random walk process, it is reasonable to con-
sider the change of transition probabilities over time. In-
deed, a visitor is more likely to walk to a museum that have
already been visited by many visitors; people tend to join
larger groups in a banquet; an actor accumulates prestige
when acting in various movies, and the prestige in turn help
her get even more opportunities. These can all be considered

1I(X) is an indicator function which returns 1 if the state-
ment X is true and zero otherwise.

as random walk processes with time-variant transition prob-
abilities. One particular family of time-variant random walk
processes is known as the vertex-reinforced random walks
(VRRW) in mathematics literature. The basic assumption
is that the transition probability to one state from others is
reinforced by the number of previous visits to that state.

Formally, let p0(u, v) be the transition probability prior to
any reinforcement and let NT (v) be the number of times the
walk has visited v up to time T . Then a VRRW can be de-
fined sequentially as follows. First, we initialize N0(v) =
1 for v = 1, . . . , n. Suppose we know the random walk
stays at state u at time T , then at time T + 1, the ran-
dom walk moves to state v (v = 1, . . . , n) with probability
pT (u, v) ∝ p0(u, v)NT (v) for any state u. In other words,
pT (u, v) is reinforced by NT (v). The discussion of proper-
ties of vertex-reinforced random walks can be found in [15],
which shows that, under some well-defined conditions, the
score in VRRW converges to some stationary distribution
almost surely.

3.2 The General Form of DivRank
We then introduce the general form of DivRank based

on a similar reinforced random walk. Let pT (u, v) be the
transition probability from any state u to any state v at time
T . We can then define a family of time-variant random walk
processes in which pT (u, v) satisfies

pT (u, v) = (1− λ) · p∗(v) + λ · p0(u, v) ·NT (v)

DT (u)
, (3)

where

DT (u) =
∑
v∈V

p0(u, v)NT (v). (4)

Here, p∗(v) is a distribution which represents the prior
preference of visiting vertex v. When p∗(v) is uniform, the
left component is similar to the random jumping probabil-
ities in PageRank. p∗(v) could also be realized as a topic-
sensitive distribution, similar to the personalized jumping
probability in personalized PageRank. p∗(v) could even be
realized as the stationary distribution of a time-homogeneous
random walk (e.g., PageRank). When λ = 1, Equation 3
yields to a standard vector-reinforced random walk.

p0(u, v) is the “organic” transition probability prior to any
reinforcement, which can be estimated as in a regular time-
homogenous random walk. After each step, the transition
probabilities will be reinforced by the expected number of
visits to each vertex. It is reasonable to assume that at any
time, there is a probability that the walk stays at the current
state, and this probability is reinforced by the number of
visits at the current state. In other words, we assume there
is always an “organic” link from a vertex to itself. We have

p0(u, v) =

 α ·
w(u, v)

deg(u)
, if u ̸= v

1− α, if u = v. (5)

If the network is ergodic, after a sufficiently large T , the
reinforced random walk defined by Equation 3 also converges
to a stationary distribution π(v). That is

π(v) =
∑
v∈V

pt(u, v)π(u), ∀t ≥ T. (6)

π(v) is then used to rank the vertices in the information
network, denoted as DivRank. Apparently,

∑
v∈V π(v) = 1.



3.3 Efficient Approximations
In Section 3.2, we introduced the general form of DivRank

based on a general reinforced random walk. Note that the
exception of NT (v) follows the recurrent formula

E[NT+1(v)] = E[NT (v)] + pT+1(v) , (7)

where pT+1(v)=
∑

u pT (u, v)pT (u). It is easy to show that
if π(v) exists, we have E[NT (v)] ∝ π(v) when T is suf-
ficiently large. However, in DivRank pT (u, v) depends on
NT (v) and tracking NT (v) is non-trivial. Efficient approxi-
mation is needed for practical applications.
In the original study of vertex-reinforced random walk,

Pemantle proposed an approximation as follows [15]: Let
1 ≪ L ≪ T , we can assume that the random walk process
from time T to T +L behaves as if NT+L(v) doesn’t change
over NT (v) since L ≪ T . Therefore, the random walk in
this period approximates a time-homogenous Markov chain
with a fixed transition probability pT (u, v). Since L ≫ 1, we
may also assume that NT+L(v) − NT (v) is proportional to
the stationary distribution of such a Markov chain, πT (v).
We can thus approximate NT+L(v) using NT (v)+L ·πT (v).
This approximation, however, is still computationally in-

efficient. To find π(v), one needs to compute the stationary
distribution, πT (v), of many different Markovian random
walks. In this section we propose two more practical ap-
proximations of DivRank.

Cumulative DivRank
One way to simplify the computation is to approximate
NT (v) using E[NT (v)]. In other words, we let pT (u, v) ∝
p0(u, v)E[NT (v)] where

E[NT (v)] ∝
T∑

t=0

pt(v). (8)

This is more efficient than the Pemantle approximation,
since there is no need to compute the stationary distribu-
tion for every Markovian random walk. The underlining
assumption is that the random walk approximately stays
with every pt(v) for an equal period of time. We denote this
approximation of DivRank as cumulative DivRank.

Pointwise DivRank
An even simpler approximation is to use pt(v) directly to ap-
proximate E[Nt(v)]. Indeed, when the random walk reaches
the stationary status (at time T ), pt(v) converges to π(v).
When the walk continues running for a sufficiently long time
(t ≫ T ), E[Nt(v)] is proportional to π(v), or pt(v). With
this simple approximation, we have

E[NT (v)] ∝ pT (v). (9)

We denote this simple approximation as pointwise Di-
vRank. Equation 3 can then be simplified as

pT (u, v) = (1− λ) · p∗(v) + λ · p0(u, v) · pT (v)
DT (u)

, (10)

where DT (u) =
∑

v∈V p0(u, v)pT (v). Below we use DivRank
to refer to this pointwise DivRank unless specially noted.

4. ANALYTICAL DISCUSSION
We have now introduced the general form of DivRank and

its two practical approximations. In this section, we present

an analytical discussion of DivRank, including an optimiza-
tion explanation and the connections to existing models.

4.1 The Optimization Explanation
What is the intuition behind DivRank, and what principle

enhances diversity in ranking? Embedding Equation 3 into
Equation 1, it is not hard to get

pT+1(v) = (1− λ)p∗(v) + λ
∑
u∈V

p0(u, v) ·NT (v)

DT (u)
pT (u). (11)

What does this process end up optimizing? Let us con-
sider the scenario where the network is undirected (e.g.,
w(u, v) = w(v, u)) and p0(u, v) is estimated through (1 −
α) · I(u = v) + α · w(u, v)/deg(u). Let D′

T (u) =
∑

v∈V

w(u, v)NT (u)NT (v). Consider the following objective:

OT (G) = λ ·
∑
u,v

w(u, v)NT (u)NT (v)(
fu

D′
T (u)

−
fv

D′
T (v)

)2

+ (1− λ)
∑
v∈V

1

D′
T (v)

(fv − f∗
v )

2. (12)

By taking the partial derivative of fv, it is not hard to show

∂OT (G)

∂fv
= 2 ·

1

D′
T (v)

fv − 2 ·
1

D′
T (v)

[(1− λ)f∗
v

+ λ ·
∑
u

w(u, v)NT (v)∑
v′ w(u, v′)NT (v′)

· fu]. (13)

Let fv = pT+1(v), fu = pT (u), f
∗
v = p∗(v). It is easy to

show that we can get Equation 11 from setting ∂OT (G)
∂fv

= 0.
This is to say, at every time T , the random walk defined in

Equation 11 is attempting to improve the objective function
in Equation 12. Let us analyze Equation 12. We can see
that by minimizing the right component in the summation,
fv keeps close to the predefined value, f∗

v . By applying
different f∗

v , one can incorporate various assumptions about
f . For instance, one can assume that a reasonable f should
rank nodes with a larger degree higher, and thus set f∗

v

proportional to the degree of v.
The left component is more interesting. By minimizing

the left component, the system regularizes the weights of
vertices by dragging fu/fv towards D′

T (u)/D
′
T (v). In other

words, this component in the objective function reflects the
consistence of fv/D

′
T (v) over the network, which is related

to the consistency regularizer in machine learning literature
[21, 22] but varies over time.

We knowD′
T (v) =

∑
u∈V w(u, v)NT (u)NT (v) andN0(u) =

N0(v). When the random walk starts, the optimization pro-
cess is dragging f towards the degree distribution, which is
exactly a Markovian random walk in the undirected graph.
Nodes with a higher degree will get a higher weight, which
in turn results in a larger accumulative NT . When the ran-
dom walk proceeds, the nodes which already have a high NT

tend to get an even higher weight. The self-link to a vertex
guarantees that even if all the neighbors of v shrink, D′

T (v)
could still be large as long as NT (v) is large.

In other words, at time 0, the objective function in Equa-
tion 12 favors nodes with a higher centrality. As time goes
by there emerges a rich-gets-richer phenomenon.

Indeed, the ratio of two adjacent nodes fu/fv is propor-
tional to D′

T (u)/D
′
T (v) when the left component of Equa-

tion 12 is optimized. Originally, this ratio is proportional



to the ratio of their degrees. As the random walk proceeds,
this ratio tends to become more and more skewed. The
self-links guarantee that adjacent nodes will “compete” for
DivRank scores. Nodes already having high weights (thus
higher D′

T (v)) are likely to “absorb” the weights of its neigh-
bors directly, and the weights of neighbors’ neighbors indi-
rectly. As a result, the connectivity among the top ranked
vertices tend to be low, thus enhances the diversity of infor-
mation.
This provides an optimization explanation of DivRank on

an undirected network. If the network is directed and there
exists a reversible random walk (π(u)p(u, v) = π(v)p(v, u)),
one could find a corresponding optimization explanation sim-
ilar to the regularization framework on directed graphs in
[22], but time-variant. However, it is generally hard to show
an optimization explanation on an arbitrary directed graph,
even for time-homogenous random walks like PageRank.

4.2 Connections to Other Models
Although DivRank is a novel model, it is well connected

to a number of classical models in other contexts. First,
when there is no jumping behavior (i.e., λ = 1), DivRank
yields to a vertex-reinforced random walk with self-links.
If the graph is fully connected with uniform edge weight,

the VRRW yields to a Polya’s Urn. π converges to a Dirich-
let compound multinomial distribution. Such a process has
been used to model the word burstiness in text [11]. Indeed,
the word sampling process in [11] can be viewed as a special
case of a reinforced random walk on a network of words.
Furthermore, the process of DivRank is also related to

preferential attachment models in network evolution, e.g.,
the Barabási-Albert model [2]. In a preferential attachment
model, new nodes are more likely to attach to existing nodes
that have already got a larger number of attachments, thus
generates networks with a power-law degree distribution.
Although DivRank does not model the evolution of networks
(instead assumes that the topological structure is stable over
time), we do see a related principle underneath, as well as
a similar rich-gets-richer phenomenon. DivRank models the
evolution of node weights and transition probabilities in the
random walk in a “preferential transition” flavor. Indeed,
one may call it a “preferential ranking” model.
There is another random walk based model in literature

which improves the diversity in ranking. The Grasshopper
model in [24] leverages an absorbing random walk. The
model starts with a regular time-homogenous random walk.
Every step the vertex with the largest weight is selected
into the top ranked set, which is then set as an absorbing
state. The model then reruns the random walk with absorb-
ing states, and select the next vertex based on the expected
number of visits to each node before absorption. In this way,
Grasshopper also achieves diversity in the top ranked results.
Comparing to DivRank, we can see Grasshopper takes a
greedy approach of selecting vertices one by one. Such a
process is similar to other greedy vertex selection methods
like MMR, but with a “soft” penalization. In contrast, Di-
vRank generates the ranking of vertices in a unified process,
which balances prestige and diversity automatically. In the
following section, we will compare DivRank with Grasshop-
per using real world datasets and tasks.

5. EXPERIMENTS
In this section, we evaluate the effectiveness of DivRank

empirically. We select ranking tasks on three real world
networks as well as a document summarization task.

5.1 Baselines and Evaluation Measures
A natural competitor of DivRank is PageRank, the ran-

dom walk based centrality measure without diversity. We
also compare with its two variations, namely the person-
alized PageRank and LexRank in the context of text sum-
marization. We also compare DivRank with two diversity-
aware methods, namely the Maximum Marginal Relevance
(MMR) and Grasshopper. We believe that these baseline
methods (except MMR) well represent the random walk
based ranking methods in literature.

Note that MMR is originally proposed in a query-dependent
context, thus it is not directly comparable to DivRank. In
MMR, there is an explicit notion of relevance to the query.
Although our setup is query-independent, we make a small
variation to MMR so that it is comparable to PageRank,
DivRank, and Grasshopper. The idea is to use PageRank
score as the initial “relevance” score of MMR.

What is a reasonable general measurement of diversity?
The recent “Redundancy, Diversity, and Interdependent Doc-
ument Relevance” workshop at SIGIR 2009 concluded that
“there is no evaluation metric that seems to be universally
accepted as the best for measuring the performance of algo-
rithms that aim to obtain diverse rankings” (quoted from
[16]). Without a query, it is not feasible to apply the uni-
fied measures in retrieval that are related to “relevance” and
“subtopics” [18, 4]. In our experiments, we thus present sep-
arate measures for prestige and diversity in the top-ranked
results. [24] applies an ad hoc diversity measure in a par-
ticular context of ranking movie stars, i.e., the coverage of
countries in the top ranked actors. Such a measure only as-
sesses diversity indirectly and cannot be generalized to other
datasets/tasks where such metadata is not available. In gen-
eral, we need a measure that accounts for the redundancy
of information in the top ranked vertices, even if we do not
have any information other than the network itself.

In our experiments, we propose to leverage the density
measure in network science. The density of a graph is de-
fined as the number of edges (excluding self-links) presenting
in the network divided by the maximal possible number of
edges in the network. Formally, we can define

d(G) =

∑
u∈V

∑
v∈V,u ̸=v I[w(u, v) > 0]

|V | × (|V | − 1)
. (14)

where |V | is the number of vertices in G. Note that this
general definition applies to both undirected graphs and di-
rected graphs. Specifically, given the top-K ranked vertices,
we can construct a subgraph of G, GK , consisting of the
top-K vertices and the edges among them. We then use the
density of the subgraph, d(GK), as an inverse measure of
diversity in top-K ranked vertices. Our assumption is that
the smaller d(GK) is, the more independent the top-K ver-
tices are, thus the less redundancy and higher diversity is
contained by the top-ranked results (and vice versa).

For each task, we also define task-specific measure(s) to
evaluate the quality (e.g., prestige) of the top-K vertices.
Note that although it is difficult to develop a general mea-
sure that combines quality and diversity, in some tasks like
document retrieval and text summarization, we can leverage
the standard and unified measures in those contexts.
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(a) Density (the lower the better). (b) Country coverage. (c) Movie coverage.

Figure 2: Comparison of network-based ranking methods in ranking IMDb stars.
Parameters: λ (or d) = 0.9 in PageRank, Personalized PageRank, DivRank, Cumulative DivRank, and Grasshopper; α = 0.25 in

DivRank and Cumulative DivRank; .

5.2 Ranking in an Actor Social Network
Our first experiment considers a movie star social network

extracted from the Internet Movie Database (IMDb2). It is
exactly the same dataset used in Zhu et al. 2007 ([24]). The
dataset covers 3452 unique actors/actresses from 1027 com-
edy movies produced between 2000 to 2006. We construct
an actor social network by using all movie stars as vertices
and weighting an edge between a pair of stars with the num-
ber of movies they co-starred in. Following [24], we also add
a self-link to each actor with weight 1.
The task is to find the top-K actors that represent this so-

cial network. Ideally, the selected actors/actresses should be
prestigious (appear at central positions in this network), and
the top-K actors should also cover diverse groups of movie
stars. Besides the density measure, we also include the
“country coverage” measure which is used in [24]. To mea-
sure the “quality,” we follow [24] and compute the unique
number of movies covered by the top-K stars (called “movie
coverage”). The basic assumption is that the ideal top-K
stars should cover as many unique movies as possible, and
also cover comedians from different countries (which are as-
sumed to represent different communities). Note that a pres-
tigious actor is supposed to be starring in many movies, not
necessarily co-starring with many actors. One could notice
that the movie coverage measure is not a pure prestige mea-
sure, where there is also an implicit notion of diversity.
Following [24], we set the prior distribution p∗(v) to be

proportional to the number of movies that the actor has
starred in. The same information is provided to Grasshop-
per and personalized PageRank.
We compare the performance of the random walk based

ranking methods, including two approximations of DivRank,
PageRank, personalized PageRank, and Grasshopper in Fig-
ure 2 using density, country coverage, and movie coverage.
We set the jumping probability in all these methods to 0.1.
Since there are separate measures for prestige and diver-
sity, we didn’t tune the parameter α and simply set it 0.25.
From Figure 2(a), we can clearly see that (pointwise) Di-
vRank achieves the largest diversity in the top ranked re-
sults (K < 500), followed by cumulative DivRank, then
Grasshopper. When K is large enough (e.g., K ∼ 500),
these diversity generated by those three methods becomes
similar. Density in top-K vertices generated by PageR-
ank or personalized PageRank is clearly and consistently
higher than those three methods, suggesting that PageRank-
style random walks are not effective in enhancing diversity.

2http://www.imdb.com

Similar patterns can be observed in Figure 2(b), plotted
with country coverage. The three diversity enhancing meth-
ods cover much more countries than PageRank and per-
sonalized PageRank, where cumulative DivRank provides
the best coverage when K is smaller than 150, and point-
wise DivRank provides the best coverage when K is be-
tween 200 and 400. One would ask whether the enhance-
ment of diversity is at the expense of quality. From Fig-
ure 2(c), we see that the three diversity enhancing meth-
ods also generate higher movie coverage. The three meth-
ods perform comparably in terms of movie coverage, with
Grasshopper slightly higher. All three methods present sig-
nificantly larger movie coverage than PageRank and per-
sonalized PageRank. We also explored MMR, which gener-
ates similar results as Grasshopper 3. It is interesting that
personalized PageRank results in both the lowest diversity
and the lowest movie coverage. This is because the movie
coverage measure also partially accounts for diversity, and
personalized PageRank works ineffectively with diversity.

Does the benefit of DivRank really come from the rich-
gets-richer mechanism? To test this, we plot the score distri-
bution of the top-K results by PageRank (left) and DivRank
(right). From Figure 3, we can clearly see that the score dis-
tribution in top 100 results is much skewer in DivRank than
in PageRank. Indeed, the riches (e.g., the top ranked ver-
tices) have accumulated a significantly larger proportion of
wealth (e.g., DivRank score 4), which enhances the diversity.
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Figure 3: Score distribution in top 100 actors.

Although it is not meaningful to tune the parameters with
multiple evaluation measures, we plot the performance of
pointwise DivRank over different values of the parameter α,
which controls the strength of self-links.

3Note that the parameter setting of MMR is different from the
random walk based methods. Without a unified measure, it is
hard to set a “reasonable” parameter. Thus we don’t plot MMR.
4Note that the scores sum to 1.



Figure 4 plots the performance of pointwise DivRank us-
ing different values of α (K = 100). From Figure 4(a, b,
c), we can see that density in top-K results is lower than
PageRank and Grasshopper as long as the value of α is not
extreme (i.e., close to 0 or 1). In the “comfort zone,” a
smaller α generates a higher movie coverage and a larger α
generates a higher country coverage. The density measure
is optimized when α is in the middle range of (0, 1). In gen-
eral, the performance is not sensitive when α in the middle
range of (0, 1). Figure 4(d) shows the number of iterations
needed before DivRank converges. We can see that the con-
vergence rate of DivRank is not sensitive to α. In general,
the converging time presents the pattern that PageRank <
DivRank < Cumulated DivRank < Grasshopper5.
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(a) Density v.s. α. (b) Country coverage v.s. α.
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Figure 4: Effect of parameter α on the performance
of DivRank (K = 100)

In summary, DivRank generates promising results in rank-
ing movie stars, consistently outperforming PageRank and
personalized PageRank in terms of diversity, country cov-
erage, and movie coverage. It also provides top-K actors
(K < 500) with comparable movie coverage but higher di-
versity, comparing to other diversity enhancing algorithms.

5.3 Ranking in Academic Networks
The results in ranking IMDb actors are promising. It is in-

teresting to test whether the good performance of DivRank
can be generalized to other datasets, especially to directed
networks. To test this, we include a larger dataset with two
directed networks extracted from an academic community.
The dataset is known as the ACL Anthology Network6

(AAN), which contains an author citation network as well as
a paper citation network constructed from 14912 papers col-
lected in the ACL Anthology7. The author citation network
covers 9641 authors, with each edge weighted by the number
of times an author cited the work of the other. The paper
citation network covers 11609 papers, with unit-weighted
edges from each paper to the papers it cited.
5Note that Grasshopper selects one vertex at a step. Each step
takes a few iterations to converge. The execution time is thus
proportional to the size of output. Grasshopper is faster than
DivRank if only the top few items are needed (e.g., K < 10), but
slower when K is larger (e.g., K ∼ 100).
6Downloadable at http://clair.si.umich.edu/clair/anthology/.
7http://www.aclweb.org/anthology-new/

These two networks are good representatives of directed
networks. The task is to rank the most prestigious re-
searchers (authors) and papers in the corresponding net-
work, of course with diversity into consideration.

Like in the experiment with the actor social network, we
use density to measure the inverse of diversity in the top-K
results. To measure the quality, in this context the prestige
of the top ranked authors, we leverage the well known h-
index measure. By definition, if an author has published at
most x papers which are cited for at least x times, the h-
index of that author is x [8]. H-index provides a reasonable
estimation of the author’s impact in the community, which
is widely used in ranking scholars in reality. We use the av-
erage h-index of the top-K authors as the prestige measure
of ranking authors. Please note that the number of publica-
tions and the citations of papers are not visible in the author
network. For ranking papers in the paper citation network,
we use the average number of citations of top-K papers as
the prestige measure.

Please note that unlike movie coverage, both h-index and
average citation purely measures prestige without any no-
tion of diversity. For ranking papers in the paper cita-
tion network, we also include a measure that is similar to
movie coverage, impact coverage, which counts the number
of unique papers citing the top-K papers. This may be a bet-
ter quality measure than the average number of citations.

The results are summarized in Figure 5. To simplify the
illustration, we only plot three most representative meth-
ods: PageRank, DivRank, and Grasshopper. From Figure 5
(a) and (d), we can see that DivRank again effectively en-
hanced the diversity in top ranked results, which generates
clearly and consistently sparser subgraph (i.e., higher diver-
sity) with top-K items than PageRank and Grasshopper.

From Figure 5(b) and (e), we can see that in DivRank, the
enhancement of diversity results in a lower average prestige
when K is large, if the prestige measure considers every ver-
tex independently. This is reasonable, since centrality-based
methods (e.g., PageRank) always rank the most prestigious
vertices to the top, which easily yields to the maximum in-
dependent prestige if the prestige measure correlates with
the centrality. By enhancing diversity, one is optimizing
the marginal prestige instead of the independent indepen-
dent prestige. Like the movie coverage measure in ranking
actors, the impact coverage in ranking papers (Figure 5(f) )
confirms this intuition: both DivRank and Grasshopper pro-
duce a consistently higher impact coverage than PageRank,
where DivRank is better for the top results (K ≤ 40) and
Grasshopper is better when K > 40. We’ve also tried MMR
and it generates comparable results with Grasshopper.

It is worth mentioning that even with the independent
prestige measure, the top-ranked results by DivRank out-
perform PageRank and Grasshopper. Indeed, when K ≤ 30,
we can clearly see from Figure 5 (b, e) that DivRank gen-
erates the highest average prestige among the three. This
is desirable since for the user, the most useful (and preserv-
able) information in a ranked list is always at the very top.

We also plot the score distribution of the top 100 papers in
the paper citation network, presented in Figure 5(c). Again,
we can see that the DivRank score distribution (in the right
plot) presents a much skewer pattern than the PageRank
score distribution (in the left plot) and the top ranked ver-
tices have absorbed a much larger wealth. The pattern also
appears in the author citation network.
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(a) AuthorCite: Density (b) AuthorCite: Avg. h-index. (c) PaperCite: Score distribution.
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(d) PaperCite: Density (e) PaperCite: Avg. citations. (f) PaperCite: Impact coverage.

Figure 5: Comparison of network-based ranking methods in AAN networks.
AuthorCite - Author Citation; PaperCite - Paper Citation. In (a), (d) (density comparison): the lower the better
Parameters: λ (or d) = 0.9 in PageRank, DivRank, and Grasshopper; α = 0.25 in DivRank. p∗(v) is uniform.

This experiment proves that the effectiveness of DivRank
generalizes to larger and directed networks.

5.4 Text Summarization
In both the actor social network and the AAN academic

networks, DivRank is evaluated using the task of prestige
ranking directly. The good thing is that it gives us straight-
forward assessment of the performance of the ranking algo-
rithms; the limitation, however, is that there isn’t a unified
metric that reasonably combines prestige and diversity.
This motivates us to evaluate DivRank by applying it to

a task which has a well defined evaluation measure. Such a
task should be able to be cast as a ranking problem, should
be easy to evaluate, and should benefit from diversifying the
top ranked results. We select document summarization as
it does not depend on the input of queries. Document sum-
marization is also chosen in [24] to evaluate Grasshopper.
We compare DivRank and its competitors using the Task

2 of the 2004 Document Understanding Conference (DUC)8.
The goal is to generate a summary with no more than 100
words for a set of documents about each of the 50 included
topics. We cast multi-document summarization as the prob-
lem of extracting the top-K sentences from the documents,
and further as ranking the sentences based on a cosine sim-
ilarity network. Because of the size limit of the summary,
an ideal system should not only select the sentences most
relevant to the topic, but also avoid redundant information
in the selected sentences. We present each sentence in a
topic with a TF-IDF vector space model. Then we create
the graph of sentences by adding an unit-weighted edge be-
tween every two sentences if their cosine similarity is higher
than 0.1. This is exactly the same setting in [5] and [24].
We evaluate the algorithms using ROUGE, the standard

metric for text summarization [10]. ROUGE is a recall-
based measure which compares the overlap between the sys-
tem generated summary and the gold standard (human gen-
erated summary). Following [24], we also report ROUGE-1
score (unigram matching). The 50 topics were randomly

8http://www-nlpir.nist.gov/projects/duc/guidelines/2004.html

split into a training set (with 30 topics) and a test set (with
20 topics). The former is used to select the optimal param-
eters in the models and the latter is used for evaluation.

Table 1: Results on DUC04 Task-2.

Method
Training Testing

R-1 95% C.I. R-1 95% C.I.
LR 0.359 [0.337, 0.381] 0.343 [0.318, 0.366]
PPR 0.378 [0.356, 0.398] 0.368 [0.350, 0.385]
MMR 0.363 [0.347, 0.379] 0.343 [0.318, 0.366]
GH 0.380 [0.360, 0.397] 0.356 [0.333, 0.378]
DR 0.387 [0.367, 0.404] 0.379 [0.366, 0.394]
CDR 0.384 [0.365, 0.401] 0.362 [0.342, 0.378]

R-1: Rouge-1. LR = LexRank (PageRank), PPR = personalized
PageRank, MMR = marginal maximum relevance, GH =
Grasshopper, DR = DivRank, CDR = cumulative DivRank.
C.I.: Confidence Interval.

The averaged ROUGE-1 results on both training set and
test set were listed in Table 1. Note that the MMR method
uses LexRank [5], the counterpart of PageRank in summa-
rization, as the “relevance” score. Consistent with [24], we
provide the position information to personalized PageRank,
Grasshopper, DivRank, and cumulative DivRank, by setting
p∗(v) according to the position of the sentence in a docu-
ment. If the sentence v is the lth sentence in a document,
we set p∗(v) ∝ l−β , where β is a parameter.

From Table 1, we see that when tuning the parameters on
the training data, DivRank performs the best, followed by
cumulative DivRank and Grasshopper. Personalized PageR-
ank performs reasonably well (better than LexRank), show-
ing the importance of sentence position in document sum-
marization. The good performance of DivRank generalizes
well on the test data. The improvement over LexRank and
Grasshopper is significant. This experiment shows that Di-
vRank is effective when applied to text summarization.

6. RELATED WORK
The importance of enhancing diversity in ranking has been

recognized in various contexts, including novelty detection
[20], subtopic retrieval [18], diversifying search results [1,
6], recommender systems [25], and so on. [16] provides a



summary of research problems and existing work on diver-
sity in information retrieval. Our paper studies the diversity
problem in the context of ranking in information networks.
Centrality/Prestige ranking is a classic topic in network

science. Many measures have been proposed, including de-
gree, closeness, betweenness, impact domain, etc [13]. In
the context of computer science, there have also been many
well-accepted models and algorithms such as PageRank [14],
HITS [9], LexRank [5], personalized PageRank [7], manifold
regularization (e.g., [23]), etc. Most of these models are
based on random walks or regularization on the network
structure. However, none of them takes the diversity of in-
formation in the ranking into consideration.
The most related model to DivRank is Grasshopper, which

is a vertex selection algorithm based on absorbing random
walk [24]. Like MMR [3], Grasshopper takes a greedy ap-
proach to select one vertex at each step. Indeed, Grasshop-
per can be interpreted as a “soft” version of MMR. Instead
of greedy vertex selection [3, 19, 24], DivRank generates the
entire ranked list with one unified process, which automat-
ically balances prestige and diversity based on a reinforced
random walk model. To the best of our knowledge, DivRank
is the first model which achieves this.
The theoretical framework of DivRank is related to quite

a few classical models in mathematics literature, including
the vertex-reinforced random walk [15] and the Polya’s Urn.
The rich-gets-richer mechanism of DivRank is also related to
the preferential attachment (e.g., the Barabási-Albert model
[2]) in network evolution which lays the foundation of scale-
free networks, and word burstiness [11] in text mining.

7. CONCLUSION
We present DivRank, a novel ranking method in informa-

tion networks that balances prestige and diversity. Unlike
PageRank, DivRank employs a time-variant random walk
process, which facilitates the rich-gets-richer mechanism in
ranking. Diversity is achieved through the “competition”
process between adjacent vertices.
We’ve shown that DivRank has nice theoretical connec-

tions to a number of classical models in various contextsWe
also present an optimization explanation of DivRank.
Empirical experiments show that DivRank effectively en-

hances diversity in the top ranked results without the sacri-
fice of quality, outperforming greedy selection methods. The
good performance generalizes well to directed graphs as well
as real tasks that network-based ranking can be applied to.
There are many potential applications of DivRank. Given

its good performance on paper citation networks, one can
expect that DivRank facilitate ranking web pages in a web
hyperlink graph. The results in text summarization also sug-
gest potential applications in snippet generation and opin-
ion extraction. One may imagine other applications such as
keyword extraction and various recommender systems.
An interesting future direction is to combine DivRank

with other features in a learning-to-rank framework. Like
PageRank, DivRank is proposed in a query-independent setup.
It is interesting to extend DivRank to a query-dependent
scenario, which leads to applications like subtopic retrieval,
search result diversification, and expert finding.
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