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S

In the presence of data contamination or outliers, some empirical studies have
indicated that the two methods of generalised estimating equations and quadratic inference
functions appear to have rather different robustness behaviour. This paper presents a
theoretical investigation from the perspective of the influence function to identify the
causes for the difference. We show that quadratic inference functions lead to bounded
influence functions and the corresponding M-estimator has a redescending property, but
the generalised estimating equation approach does not. We also illustrate that, unlike
generalised estimating equations, quadratic inference functions can still provide consistent
estimators even if part of the data is contaminated. We conclude that the quadratic
inference function is a preferable method to the generalised estimating equation as far
as robustness is concerned. This conclusion is supported by simulations and real-data
examples.

Some key words: Data contamination; Generalised method of moments; Influence function; Longitudinal data;
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1. I

In longitudinal or clustered data, observations are repeatedly measured from the same
subject or cluster, and therefore the within-cluster correlation has to be accounted for
in order to make a proper statistical inference. The method of generalised estimating
equations (Liang & Zeger, 1986) has gained popularity in estimation of parameters. The
generalised estimating equation approach requires correct specification of the first two
moments of a model. However, these moment assumptions can be distorted by con-
taminated or irregular measurements. As a result, the generalised estimating equation
method fails to give consistent estimators, and more seriously this will lead to incorrect
conclusions (Preisser & Qaqish, 1996, 1999; Mills et al., 2002).
Downweighting and deleting putatively contaminated clusters are two common ways

suggested by Preisser & Qaqish (1996, 1999) of ensuring consistent estimation in the
generalised estimating equation method. However, the implementation of these strategies
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relies on whether, or how, potentially problematic clusters are identified beforehand.
Furthermore, it is also difficult to judge whether a large residual is attributed to an
irregular measurement on the response or on the covariates. Therefore, it is generally
uncertain which downweighting strategy to take between the ‘Mallows’ class on the
covariates and the ‘Schweppe’ class (Pregibon, 1982; Künsch et al., 1989) on the response.
The nonparametric smoothing spline M-estimator is proposed by He et al. (2002) for
obtaining a consistent estimator in the presence of outliers, but the correlated nature of
measurements is not incorporated in their approach.
As an alternative to the generalised estimating equation, Qu et al. (2000) proposed the

quadratic inference function to improve the efficiency of the regression parameter estimator
when the working correlation of the generalised estimating equation is misspecified.
Notably, the method appears to create a downweighting strategy automatically in the
estimation procedure, so that it behaves robustly against irregular measurements arising
from either response or covariate variables. In fact, its greater robustness compared to
the generalised estimating equation method was observed in several empirical studies, and
this motivated us to explore theoretical explanations in the present paper.
A robust estimator characteristically has a bounded influence function (Hampel et al.,

1986). In this paper, we show that the influence function of the quadratic inference
function estimator is bounded, whereas the influence function of the generalised estimating
equation estimator is unbounded. An intuition behind this difference is that the generalised
estimating equation method imposes a parametric working covariance matrix that is
essentially independent of any residual variations. In contrast, the estimating equations
derived from the quadratic inference function involve the variability of residuals, which
gives rise to an automatic downweighting for any observations associated with large
residual values.
In particular, the minimiser of the quadratic inference function has a redescending

property (Holland & Welsch, 1977; Hampel et al., 1986, p. 150); that is, the associated
estimating function g(z) tends to zero as the Euclidean norm of z goes to infinity. This
implies that the truncation based on certain tuning constants (Huber, 1981; Ronchetti &
Trojani, 2001; Mills et al., 2002) in M-estimation emerges automatically in quadratic
inference function estimation.

2. G      

Let y
it
be a response variable and let x

it
be a q×1 vector of covariates, measured at

time t=1, . . . , n
i
, for subjects i=1, . . . , N. We assume that the model satisfies the first

moment model assumption that

m
it
=E(y

it
)=m(x∞

it
b), (1)

where m( . ) is a known link function, and b is the regression parameter.
To estimate b, Liang & Zeger (1986) proposed generalised estimating equations

s(b)=∑ (m< i )∞W−1i (y
i
−m
i
)=0, (2)

where y
i
= (y
i1

, . . . , y
in
i

)∞, m
i
= (m

i1
, . . . , m

in
i

)∞, m< i=∂mi/∂b and W
i
=AD
i
RAD
i
, with A

i
being

the diagonal matrix of marginal variances for the ith cluster and R=R(a) being the
working correlation matrix. If the model assumption (1) is satisfied, then the generalised
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estimating equation estimator is consistent regardless of whether the working correlation
is correctly specified or not. Furthermore, the generalised estimating equation estimator
is efficient when the working correlation is correctly specified.
The quadratic inference function method proposed by Qu et al. (2000) does not require

more assumptions than does the generalised estimating equation method, but yields a
substantial improvement in efficiency for the estimator of b when the working correlation
is misspecified, and equal efficiency to the generalised estimating equation when the
working correlation is correct. The fomulation is based on the assumption that the inverse
of the working correlation R can be approximated by a linear combination of basis
matrices; that is,

R−1= ∑
m

i=1
a
i
M
i
, (3)

whereM1 , . . . , Mm are known matrices and a1 , . . . , am are unknown constants. Therefore,
the generalised estimating equation (2) becomes

∑
N

i=1
(m< i )∞A−Di (a

1
M
1
+ . . .+a

m
M
m
)A−D
i

(y
i
−m
i
)=0,

which is a linear combination of elements of the extended score vector

g(b)= ∑
N

i=1
g
i
(b)=AWNi=1 (m< i )∞A−Di M

1
A−D
i

(y
i
−m
i
)

e

WN
i=1

(m< i )∞A−Di M
m
A−D
i

(y
i
−m
i
)B . (4)

Since the dimension of the extended score in (4) is greater than the number of unknown
parameters, one cannot directly solve g(b)=0 for b. Instead, we follow Hansen’s (1982)
generalised method of moments and estimate b by minimising the quadratic distance
function

Q(b)=g∞C−1g, (5)

where C=WN
i=1

g
i
(b)g∞
i
(b) is the sample variance matrix of g. The empirical estimator C

plays an important role in robust estimation for which we will provide more details in
the next section. The objective function Q is referred to as the quadratic inference function
since it also provides an inference function for testing. Note that, if an independent working
correlation, or exchangeable correlation for balanced data, is assumed, the quadratic
inference function estimator is identical to the generalised estimating equation estimator,
because they have the same estimating functions.
It is easy to see that the Q function in (5) is bounded between 0 and N. The lower
bound of 0 is obvious since C is nonnegative definite. To establish the upper bound of N,
let H= (g1 , . . . , gN )∞ and let 1N be an N-element vector with 1 for all components. Denote
the projection matrix by P

H
=H(H∞H)−1H∞. It follows immediately that, by orthogonal

projection and idempotent properties of the projection matrix,

Q=1
N
∞H(H∞H)−1H∞1

N
=1
N
∞P
H
1
N
=dP

H
1
N
d2∏d1

N
d2=N.

Here d .d denotes the Euclidean norm of a matrix A= (a
ij
), defined by dAd= (W

i
W

j
a2
ij
)D.

Note that dAd={tr (A∞A)}D. The bounded quadratic inference function is important for
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deriving the redescending M-estimator from the quadratic inference function. Figure 1
illustrates the boundedness property. The next section provides details of how Fig. 1
was drawn.
Qu et al. (2000) showed that the quadratic inference function estimator of b is consistent
and asymptotically normal, and that the asymptotic variance matrix (D∞S−1D)−1 attains
the minimum in the sense of Löwner ordering, where D=E(∂g/∂b) and S=var {g(b)}.
Furthermore, the quadratic inference function has desirable inferential properties as a
likelihood ratio test. In particular, one may construct a goodness-of-fit test statistic Q(b@ )
for testing the model assumption (1). Hansen (1982) showed that the asymptotic
distribution of Q(b@ ) is x2 with {dim (g)−dim (b)} degrees of freedom under the model
assumption (1). Note that these properties hold whether or not the working correlation
is correctly specified.

Fig. 1. (a) Bounded quadratic inference function. (b) The M-estimator
corresponding to solving (8) for the quadratic inference function estimator
has a redescending property, where working correlations are (1)
(solid line) and exchangeable (dotted line) structures. (c) TheM-estimator
corresponding to solving the generalised estimating equations in (2) does
not have a redescending property, where working correlations are (1)

(solid line) and exchangeable (dotted line) structures.
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3. R 

Hampel (1974) defined the influence function of the b-estimator T as

 (z, T , P
b
)= lim
e�0

T {(1−e)P
b
+eD

z
}−T (P

b
)

e
, (6)

where P
b
is the probability measure of the assumed model, and D

z
is the probability

measure with mass 1 at the single contaminated data point z. Heuristically, the influence
function measures the asymptotic bias caused by fractional data contamination. It
is known that an estimator T whose influence function is unbounded may have an
unbounded asymptotic bias under single-point data contamination.
An M-estimator is defined as the solution to the estimating equation

∑
N

i=1
s
i
(z
i
, b)=0

for specified functions s
i
. Let z denote the suspect observation under investigation. Hampel

et al. (1986) showed that the influence function of the M-estimator is

 (z, T , P
b
)=−{E

b
(s< )}−1s(z, T ), (7)

where s may be s
i
if the ith observation happens to be the z, and s< is the first derivative

of s with respect to b.
Since for a given z the influence function of an M-estimator is proportional to the
estimating function s(z, T ), this implies that the influence function of an M-estimator is
bounded if and only if s(z, T ) is bounded. Theorem 1 below claims that the quadratic
inference function estimator has a bounded influence function and the corresponding
M-estimator has a redescending property. In contrast, we show that the generalised
estimating equation does not have such robustness properties.
Note that minimising the quadratic inference function in (5) is asymptotically equivalent

to solving

g< ∞C−1g=∑
i

D∞C−1g
i
=0, (8)

since g< is nonrandom. The quadratic inference function estimator derived by solving (8)
is therefore an M-estimator.
Suppose cluster i, say, is being investigated. To avoid possible confusion in notation,
we use g

i
to indicate the cluster of interest, but let z=y

i
−m
i
be the residual associated

with cluster i under the model assumption (1), in which we omit the subscript for simplicity.

T 1. T he quadratic inference function estimator has a redescending property; that
is, the estimating function D∞C−1g

i
(z) is bounded and approaches zero as dzd�2.

Proof. For contaminated cluster i, denote the corresponding residual by z, and
let dzd�2. Since C=W g

j
g∞
j
=G+g

i
(z)g
i
(z)∞, where G=W

jNi
g
j
g∞
j
, then, by Rao

(1973, p. 33),

C−1={G+g
i
(z)g∞
i
(z)}−1=G−1−

1

1+g∞
i
(z)G−1g

i
(z)

G−1g
i
(z)g∞
i
(z)G−1,
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provided that both C−1 and G−1 exist. It follows that

C−1g
i
(z)=G−1g

i
(z)−

g∞
i
(z)G−1g

i
(z)

1+g∞
i
(z)G−1g

i
(z)

G−1g
i
(z)

=
1

1+g∞
i
(z)G−1g

i
(z)

G−1g
i
(z).

Since g
i
(z) given in equation (4) is effectively linear in z, it is easy to see that

dD∞C−1g
i
(z)d2=

g∞
i
(z)G−1DD∞G−1g

i
(z)

1+g∞
i
(z)G−1g

i
(z)

1

1+g∞
i
(z)G−1g

i
(z)

� 0

as dzd�2, where on the right-hand side the first term is bounded and the second term
tends to zero when dzd�2. Therefore, the quadratic inference function estimator has a
redescending property with the horizontal axis as the asymptote. %

The implication of Theorem 1 is as follows. If there is an unduly large residual z caused
by either an irregular measurement of response y, or an irregular predictor m caused by
misspecification of the model or irregular values of covariates, the estimating equation
in (8) will automatically downweight the corresponding cluster through the inverse of
the C matrix. This inverse matrix penalises any large residual values in the estimating
equations. This property also indicates that the truncation usually applied in robustness
estimation is inherent here.
On the other hand, the generalised estimating equation in (2) is not bounded when

a residual dzd�2. Note that the term m< i is a function of covariate x
i
and marginal

mean m
i
, and that the working variance matrix for the ith cluster is W

i
=AD
i
RAD
i
, where

A
i
=w diag {V (m

i1
), . . . , V (m

in
i

)} is a parametric function of the marginal mean m
i
and is

not associated with the response y
i
, and the working correlation R(a) is the same for all

clusters. Here V ( . ) is a known variance function and w is the dispersion parameter that is
either known, in some cases such as Bernoulli and Poisson, or can be factorised out of
the estimating equations if it is unknown. Clearly, neither A

i
nor R(a) has a downweighting

effect on irregular observations with large variation, since they are either the same for all
clusters or do not depend on the residual z in any way. As a result, the generalised
estimating equation diverges at a linear rate as dzd�2. This is why, without down-
weighting influential cases, the generalised estimating equation estimator can be badly
biased in the presence of outliers.
We simulated 50 clusters, each with cluster size of 10, from a simple linear model

y
i
=bx

i
+e
i
, where the true b=1, the covariate x

i
is (0·1, 0·2, . . . , 1·0)∞ and the errors e

i
were generated jointly from a 10-variate normal distribution with mean 0, marginal
variance 1 and correlation structure either first-order autoregressive,  (1), or exchange-
able. We created one contaminated cluster in which the values of the response were
assigned as bx+e, where b varies from−100 to 100, and e has the same distribution as e

i
above. These outliers are specified according to the well-known location-shift violation
model, in which the true model corresponds to b=1. Figure 1(a) displays the bounded
quadratic inference function in (5), Fig. 1(b) displays the bounded estimating functions
in (8) derived from the derivative of the quadratic inference function, and Fig. 1(c) shows
the unbounded generalised estimating equation in (2).
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The redescending property of the M-estimator is very attractive computationally since
the solution of (8) is always unique because the estimating function never reaches zero
as |b|�2.

4. S

We conducted a simple simulation study to demonstrate how the generalised estimating
equation and the quadratic inference function estimators are affected by the proportion
of contaminated data, where contaminated clusters contain only a single outlying
observation.
We used the configuration that led to Fig. 1. In particular, we let the parameter involved

in the above two correlation structures be 0·5. Results based on other choices of the
parameter show similar patterns to those in Table 1. To contaminate a cluster, one outlier
on one subject’s response variable was introduced by using 100y

it
. The proportions of

contaminated clusters were chosen to be 0%, 10%, 20%, 50% and 100%. The results
listed in Table 1 are based on 1000 replications.

Table 1: Simulation study. Average bias of estimates and standard errors,
in parentheses, for the quadratic inference function and the generalised
estimating equation methods, and the power of the goodness-of -fit test for
the model assumption using the quadratic inference function. T here are

1000 simulations; r=0·5.

(1) Exchangeable Unspecified
%   Test   Test   Test

True correlation is (1)
0 0·001 0·002 0·054 0·004 0·001 0·045 0·004 0·001 0·053

(0·11) (0·11) (0·12) (0·11) (0·48) (0·12)

10 2·56 0·02 0·235 2·54 0·02 0·350 3·17 0·02 0·235
(1·19) (0·13) (1·18) (0·22) (1·60) (0·13)

20 5·15 0·03 0·758 5·07 0·03 0·815 7·30 0·03 0·758
(1·64) (0·14) (1·60) (0·24) (2·82) (0·14)

50 12·91 0·09 0·996 12·35 0·005 0·998 23·35 0·09 0·996
(2·68) (0·15) (2·45) (0·27) (6·12) (0·15)

100 25·63 0·27 1·00 23·01 0·05 1·00 53·90 0·27 1·00
(3·58) (0·18) (2·76) (0·33) (9·78) (0·179)

True correlation is exchangeable
0 0·007 0·006 0·053 0·005 0·005 0·047 0·013 0·005 0·047

(0·14) (0·14) (0·09) (0·09) (0·18) (0·10)

10 2·62 0·03 0·241 2·63 0·01 0·309 3·19 0·03 0·241
(1·23) (0·17) (1·23) (0·29) (1·63) (0·17)

20 5·23 0·08 0·797 5·19 0·11 0·845 7·33 0·08 0·797
(1·65) (0·18) (1·62) (0·31) (2·77) (0·18)

50 12·78 0·25 0·995 12·38 0·39 0·997 23·00 0·25 0·995
(2·63) (0·18) (2·43) (0·32) (5·98) (0·18)

100 25·62 0·78 1·00 23·36 1·33 1·00 54·00 0·78 1·00
(3·74) (0·18) (2·94) (0·33) (9·98) (0·18)

, generalised estimating equation; , quadratic inference function; %, percentage of
contamination.
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For the quadratic inference function method, we used the extended score in (4). It
is known from Qu et al. (2000) that the exchangeable working correlation matrix
corresponds to two basis matrices in (3), M1=I, the identity matrix, and M2 a matrix
with 0 on the diagonal and 1 off the diagonal. Similarly, the  (1) working correlation
corresponds toM1=I,M2 with 1 on the two main off-diagonals and 0 elsewhere, andM3
with 1 at the corners (1, 1) and (10, 10), and 0 elsewhere. In the simulation study and § 5,
the quadratic inference function estimators were obtained by using only two basis matrices,
M1 and M2 , for the  (1) correlation structure, to avoid the confounding of components
in (4).
For the unspecified working correlation, we applied the conjugate gradient quadratic

inference function method (Qu & Lindsay, 2003) with M1=I and M2=VC , where
VC= (1/N) W (y

i
−m
i
) (y
i
−m
i
)∞ is a consistent estimator of the variance matrix of y. We

obtained the quadratic inference function estimator of b by minimising Q(b) in (5) and the
standard errors by the square roots of the diagonal elements of (DC ∞CC−1DC )−1, where the
quadratic inference function estimator is used in DC and CC . To yield the generalised
estimating equation estimator and the standard errors, we applied Liang & Zeger’s (1986)
method for the chosen working correlation structures.
We calculated the bias of an estimator as the absolute difference between the estimator b@

and the true value b0=1. From Table 1, it is easy to see that the bias of the quadratic
inference function estimator appears marginal, being less than 1 in all cases. In contrast,
the bias of the generalised estimating equation estimator is considerably higher and
increases dramatically as the contamination proportion rises. In the case of light con-
tamination, 10% say, the bias of the estimator from the quadratic inference function is so
small as to be ignorable, being only 0·01–0·03, but that from the generalised estimation
equations is as much as three times the true value of the parameter. In the worst case
of 100% contamination, the bias of the generalised estimating equation estimator exceeds
50 and 20, respectively, under the unspecified and the  (1) or exchangeable working
correlations. Likewise, the standard error of the generalised estimating equation estimator
increases quickly as more contamination is introduced. In such situations, the generalised
estimating equation method is useless.
To detect whether or not the model assumption (1) is satisfied for different levels of
data contamination, we applied the goodness-of-fit test (Hansen, 1982) introduced in § 2.
Given that the test statistic Q(b@ ) follows a x2 (1) distribution, we calculated the percentage
of 1000 test statistics larger than the critical value 3·84 at the 5% significance level. With
no contamination, the test sizes were all around 0·05. The power of the test increases as
the contamination level rises. As shown, the power becomes very close to 1 when the
contamination proportion is 50% or higher. In conclusion, the goodness-of-fit test is
helpful for detecting violation of the model assumption when 10% or more of the clusters
are contaminated.

5. D 

5·1. Example of normal responses

The drug chenodiol is known to be effective in dissolving gallstones in the kidney
(Wei & Stram, 1988), but it might increase levels of serum cholesterol, which is a known
risk factor for atherosclerotic disease. In the National Cooperative Gallstone Study,
patients were assigned to take a high dose of chenodiol or a placebo. One question of
major interest is whether or not chenodiol would increase cholesterol levels significantly.
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The response variable is the serum cholesterol which was recorded at months 6, 12, 20
and 24, and covariates include treatment, with 0 for placebo and 1 for high dose, baseline
cholesterol level and month. There were 67 subjects, 31 in the placebo group and 36 in
the drug group.
For the continuous response, we used a linear model with the identity link,

m
ij
=b
0
+b
1
Drug+b

2
Baseline+b

3
Month+b

4
(Drug×Month).

Table 2 consists of two subtables, corresponding to the analyses under the original data
and the contaminated data, respectively. The latter were created by altering the observed
level of 387 to 5000 for the subject in the placebo group who had the largest baseline serum
cholesterol level. Thus, in the contaminated data there is only one cluster contaminated
by a single outlying response value.

Table 2: National Cooperative Gallstone Study data. Estimators of the regression parameters
using the generalised estimating equation and quadratic inference function methods for the
original data and the contaminated data with a single high leverage case for a subject in the

placebo group. T he bold figures indicate significant changes of estimators or Z scores.

Original data Contaminated data
Ind (Exch) (1) () (1) ( ) Ind (Exch) (1) () (1) ( )

Intercept 247·81 247·60 248·73 274·89 274·61 249·03
 4·44 4·50 4·16 22·96 22·71 4·17
Z 55·83 54·99 59·84 11·97 12·09 59·72

Drug 8·05 8·33 6·84 −13·10 −12·87 6·44
 5·94 6·14 5·68 21·90 21·68 5·71
Z 1·36 1·36 1·20 −0·60 −0·60 1·13

Base 0·66 0·66 0·66 1·96 1·95 0·66
 0·06 0·06 0·06 1·02 1·01 0·06
Z 11·44 11·15 11·36 1·92 1·93 11·00

Month 1·02 0·99 1·14 7·51 7·50 1·34
 0·27 0·26 0·28 6·39 6·38 0·34
Z 3·86 3·74 4·02 1·18 1·18 3·94

Drug×Month −0·69 −0·65 −0·84 −7·17 −7·17 −1·08
 0·41 0·42 0·39 6·40 6·39 0·47
Z −1·66 −1·55 −2·16 −1·12 −1·12 −2·30

Ind, independent working correlation; Exch, exchangeable working correlation; , generalised estimating
equation; , quadratic inference function; , standard error.

The generalised estimating equation estimates are listed under three different working
correlations, namely independence, exchangeable and  (1). Note that the generalised
estimating equation and the quadratic inference function estimators are indeed identical
under independence or exchangeable correlation for balanced data, since the number of
equations in (4) is the same as the number of parameters, because of confounding. We
combine them in the second and fifth columns of Table 2 for the original data and the
contaminated data respectively.
Comparing the two subtables in Table 2, we note that in the presence of a single high

leverage point the generalised estimating equation method failed to give reasonable
estimators: under all chosen working correlations the generalised estimating equation
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estimates differ widely between the settings of the original and the contaminated data. In
particular, the sign of the drug effect switches from positive to negative, leading to a
completely opposite interpretation of the relationship between the use of chenodiol and
the serum cholesterol level. In addition, the baseline effect changes from highly significant
to insignificant, as does the effect of month. In contrast, the quadratic inference function
method under the  (1) working correlation performs very robustly.
Figure 2 plots the residuals against the baseline cholesterol level under the  (1) work-

ing correlation. Figure 2(a) indicates that the added high leverage point is very influential
on the generalised estimating equation regression line as the residuals clearly show a
downward trend, which implies that the modelled trend had to be pulled up towards the
outlier. However, Fig. 2(b) does not show any trend, suggesting that the quadratic
inference function regression line was not affected by the outlier.

Fig. 2: Wei & Stram’s (1988) data. Residual versus baseline cholesterol based on
(a) the generalised estimating equation method using (1) working correlation,
and (b) the quadratic inference function method using (1) working correlation.

Finally we tested the goodness of fit of the model assumption in (1) for the contaminated
data, and obtained the test statistic Q(b@ )=17·513. Based on the x2 (5) distribution, the
corresponding p-value is 0·004, indicating that this model assumption is not satisfied.
Clearly, the quadratic inference function is more tolerant of the violation of the model
assumption than is the generalised estimating equation.

5·2. Example of binary responses

We now consider the data example from Preisser & Qaqish (1999) on urinary
incontinence. The response variable is binary, indicating whether or not the subject’s daily
life is bothered by accidental loss of urine with 1 corresponding to bothered and 0 other-
wise. Subjects are correlated if they are from the same hospital practice. There are



457Assessing robustness

137 patients from 38 practices, and each cluster contains at least 1 patient and at most
8 patients. There are five covariates, gender (‘female’), age (‘age’), daily leaking accidents
(‘dayacc’), severity of leaking (‘severe’) and number of times to use the toilet daily (‘toilet’).
The logistic link function is assumed for the marginal model, so that

logit (m
ij
)=b
0
+b
1
female+b

2
age+b

3
dayacc+b

4
severe+b

5
toilet,

where m
ij
denotes the probability of being bothered for patient j in cluster i. For the

logistic regression, the matrix A
i
in (2) is a diagonal matrix with diagonal elements

A
ij
=m
ij
(1−m

ij
), for j=1, . . . , n

i
. The exchangeable working correlation is assumed to

account for the within-cluster correlation for both the generalised estimating equation
and the quadratic inference function.

Table 3: Urinary incontinence data. Estimators and standard errors of the
regression parameters obtained by the generalised estimating equation and
quadratic inference function methods using exchangeable working correlation
structure. T he bold figures indicate that |Z| scores are significant at test size 0·05

and are greater than 1·96.

   

Est Z Est Z Est Z Est Z

All observations Remove 8th patient
Intcpt −3·05 −3·18 −3·66 −2·81 −2·66 −3·23 −3·13 −2·69
 0·96 1·31 0·82 1·17

Female −0·75 −1·24 −1·06 −2·02 −1·08 −1·92 −1·38 −2·75
 0·60 0·53 0·56 0·50

Age −0·68 −1·21 −0·66 −1·16 −0·91 −1·58 −0·81 −1·51
 0·56 0·56 0·58 0·53

Dayacc 0·39 4·20 0·60 3·59 0·46 4·65 0·60 4·20
 0·09 0·17 0·10 0·14

Severe 0·81 2·26 0·60 1·51 0·65 1·96 0·55 1·59
 0·36 0·40 0·33 0·35

Toilet 0·11 1·09 0·25 2·51 0·14 1·23 0·23 2·12
 0·10 0·10 0·12 0·11

Remove 44th patient Remove both patients
Intcpt −3·37 −3·27 −4·04 −2·91 −3·02 −3·15 −3·67 −2·89
 1·03 1·39 0·96 1·27

Female −0·76 −1·19 −1·02 −1·92 −1·14 −1·94 −1·48 −2·80
 0·64 0·53 0·59 0·53

Age −0·78 −1·32 −0·85 −1·44 −1·08 −1·74 −0·99 −1·78
 0·59 0·59 0·62 0·55

Dayacc 0·39 3·86 0·61 3·38 0·47 4·44 0·59 3·75
 0·10 0·18 0·11 0·16

Severe 0·72 2·06 0·64 1·54 0·53 1·76 0·61 1·63
 0·35 0·41 0·30 0·37

Toilet 0·21 2·08 0·29 2·54 0·27 2·64 0·33 2·80
 0·10 0·11 0·10 0·12

Est, estimate; , standard error; Z, Z-score; Intcpt, intercept; , generalised estimating equation;
, quadratic inference function.
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Patients 8 and 44 were identified as possible outliers by Preisser & Qaqish’s (1996,
1999) diagnostics. Preisser & Qaqish (1999) applied two downweighting strategies of
‘Mallows’ and ‘Schweppe’ classes. Without the use of the downweighting strategies, the
generalised estimating equation estimators are very sensitive to these two outliers. For
example, in Table 3 both covariates ‘dayacc’ and ‘severe’ are significant based on the
full data, and yet ‘severe’ becomes insignificant if patient 8 is removed, with or without
patient 44, and ‘toilet’ becomes significant with patient 44 being removed, with or
without patient 8.
In contrast, the quadratic inference function provides fairly robust estimates with or

without patient 44 and/or patient 8. The only covariate causing doubt is ‘female’. Its
Z score is −1·92 with p-value equal to 0·055 for the scenario without patient 44 but with
patient 8, but it is clearly significant for the other three scenarios. Overall, ‘female’ may
be concluded to be a significant factor.
Preisser & Qaqish (1999) applied a downweighting strategy based on the ‘Mallows’

class, and obtained results very similar to the generalised estimating equation results using
the full data. They also applied the ‘Schweppe’ class downweighting strategy and found
that ‘age’ and ‘toilet’ were significant but ‘severe’ became insignificant. The quadratic
inference function method agrees on variables ‘toilet’ and ‘severe’ with their ‘Schweppe’
downweighting generalised estimating equation method; however, these two methods differ
on variables ‘age’ and ‘female’.
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