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This document is prepared to provide the detailed and complete proof of the lemma in section

2.2. The proof of the lemma is sketched in the appendix due to the space limitations. The main

theorem follows immediately from the lemma.

Proposition 1. If conditions (a) and (b) in the appendix are satisfied, then

Ŝ(θ̂n, γ̃)
pr→ S(θ0, γ0), n→ ∞,

V̂(θ̂n, γ̃)
pr→ V(θ0, γ0), n→ ∞.

Proof of Proposition 1. Rewrite Ŝ(θ, γ) and V̂(θ, γ) as follows:

Ŝ(θ, γ)
4
=

1
n

n

∑
k=1

gs(X(k−1)∆, Xk∆; θ, γ),

V̂(θ, γ)
4
=

1
n

n

∑
k=1

gv(X(k−1)∆, Xk∆; θ, γ).

By conditions (a) and (b), we have θ̂
pr→ θ0 and γ̃

pr→ γ0. Applying the uniform law of large

number (Theorem 4.1 in Wooldridge (1994)), the conclusions of proposition 1 are proved. �

Furthermore, note that under the null hypothesis of correct model specification, S(θ0, γ0) =

V(θ0, γ0). Thus, by condition (d) and Slutsky’s theorem, we have

tr
(

S−1(θ̂, γ̃)V(θ̂, γ̃)
) pr→ p, as n→ ∞.

Now, we provide a detailed and complete proof the lemma.
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Proof of Lemma . In this proof, we apply the uniform law of large number theorem multiple times,

and readers are refer to Theorem 4.1 of Wooldridge (1994) for the detail.

We consider the case that the null hypothesis H0 is true. Given that Ŝ(θ̂, γ̃) converges to the

positive definite sensitivity matrix S(θ0, γ0) in probability, we can obtain the following exact ex-

pansion:

Ŝ−1(θ̂, γ̃) = S−1(θ0, γ0) + Ŝ−1(θ̂, γ̃)− S−1(θ0, γ0)

= S−1(θ0, γ0) + S−1(θ0, γ0)
(
S(θ0, γ0)− Ŝ(θ̂, γ̃)

)
Ŝ−1(θ̂, γ̃)

= S−1(θ0, γ0) + S−1(θ0, γ0)
(
S(θ0, γ0)− Ŝ(θ̂, γ̃)

)
S−1(θ0, γ0)

+{S−1(θ0, γ0)(S(θ0, γ0)− Ŝ(θ̂, γ̃))}2Ŝ−1(θ̂, γ̃)

It follows that the information ratio statistic Rn can be represented as follows:

√
n {Rn − p} =

√
ntr
{

Ŝ−1(θ̂, γ̃)V̂(θ̂, γ̃)− Ip

}
=
√

ntr
{

Ŝ−1(θ̂, γ̃)V̂(θ̂, γ̃)− S−1(θ0, γ0)V(θ0, γ0)
}

= tr
{

S−1(θ0, γ0)
√

n
(
V̂(θ̂, γ̃)−V(θ0, γ0)

)}
+tr

{
S−1(θ0, γ0)V̂(θ̂, γ̃)S−1(θ0, γ0)

√
n
(
S(θ0, γ0)− Ŝ(θ̂, γ̃)

)}
+tr

{
Ŝ−1(θ̂, γ̃)V̂(θ̂, γ̃)S−2(θ0, γ0)

√
n
(
S(θ0, γ0)− Ŝ(θ̂, γ̃)

)2
}

.

For 1 ≤ i, j ≤ p, expanding the (i, j)-the element of Ŝ(θ̂, γ̃) around (θ0, γ0), we obtain

√
n
(
Ŝ(θ̂, γ̃)ij − S(θ0, γ0)ij

)
=
√

n(Ŝ(θ0, γ0)ij − S(θ0, γ0)ij) +
∂

∂θT Ŝ(θ0, γ̃)ij
√

n(θ̂ − θ0) +
∂

∂γT Ŝ(θ0, γ0)ij
√

n(γ̃− γ0) + op(1)

By conditions (a)-(c) and the uniform law of large number theorem (Theorem 4.1 in Wooldridge

(1994)), there exist matrices Mij
s,θ and Mij

s,γ such that

∂

∂θT Ŝ(θ0, γ̃)ij
pr→ Mij

s,θ ,

∂

∂θT Ŝ(θ0, γ0)ij
pr→ Mij

s,γ.

In the meanwhile, expanding Gn(θ̂, γ̃) around (θT
0 , γT

0 ), we have

Gn(θ̂, γ̃) = Gn(θ0, γ0) + Gn,γ(θ̌, γ̌)(γ̃− γ0) + Gn,θ(θ̌, γ̃)(θ̂ − θ0),
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where θ̌ lies between θ0 and θ̂ and γ̌ lies between γ0 and γ̃. Here Gn,θ(·) and Gn,γ(·) are the first-

order partial derivatives of Gn(·) with respect to θ and γ, respectively. By conditions (a) and (b),

applying the uniform law of large number theorem, we have Gn,θ(θ̌, γ̃) and Gn,γ(θ̌, γ̌) converge to

some constant matrices, denoted by Kg,1 and Kg,2, respectively.

Now, denote martingale estimating equation (5) by Hn(γ) = 1
n ∑n

k=1 h(X(k−1)∆, Xk∆; γ). Be-

cause γ̃ is the root of equation (5), the mean-value theorem implies,

Hn(γ̃) = Hn(γ0) + Hn,γ(γ̌)(γ̃− γ0),

where γ̌ lies between γ0 and γ̃ and Hn,γ(·) is the first-order derivative of Hn w.r.t.γ. Under con-

ditions (a) and (b), applying the uniform law of large number, there exist a matrix Kh, such that

Hn,γ(γ̌)
pr→ Kh. Thus, we have

√
n (γ̃− γ0) = −K−1

h
1√
n

n

∑
k=1

h(X(k−1)∆, Xk∆; θ0, γ0) + op(1)

4
=

1√
n

n

∑
k=1

fγ(X(k−1)∆, Xk∆; θ0, γ0) + op(1).

Using similar arguments to those given above, we obtain

√
n(θ̂ − θ0) = −G−1

n,θ (θ̌, γ̃)
√

nGn(θ0, γ0) + G−1
n,θ (θ̌, γ̃)Gn,γ(θ̌, γ̌)H−1

n,γ(γ̌)
√

nHn(γ0)

=
1√
n

n

∑
k=1

(
−K−1

g,1 g(X(k−1)∆, Xk∆; θ0, γ0) + K−1
g,1Kg,2Khh(X(k−1)∆, Xk∆; θ0, γ0)

)
+ op(1)

4
=

1√
n

n

∑
k=1

fθ(X(k−1)∆, Xk∆; θ0, γ0) + op(1).

Similarly, we have

√
n
(
Ŝ(θ̂, γ̃)ij − S(θ0, γ0)ij

)
=

1√
n

n

∑
k=1

gs(X(k−1)∆, Xk∆; θ0, γ0)− S(θ0, γ0)

+
1√
n

n

∑
k=1

Mij
s,θ fθ(X(k−1)∆, Xk∆; θ0, γ0)

+
1√
n

n

∑
k=1

Mij
s,γ fγ(X(k−1)∆, Xk∆; θ0, γ0) + op(1)

∆
=

1√
n

n

∑
k=1

hij
S(X(k−1)∆, Xk∆; θ0, γ0) + op(1),
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Again, using similar argument, we have

√
n
(
V̂(θ̂, γ̃)ij −V(θ0, γ0)ij

)
=
√

n(V̂(θ0, γ0)ij −V(θ0, γ0)ij) +
∂

∂θT V̂(θ0, γ̃)ij
√

n(θ̂ − θ0) +
∂

∂γT V̂(θ0, γ0)ij
√

n(γ̃− γ0) + op(1)

=
1√
n

n

∑
k=1

gv(X(k−1)∆, Xk∆; θ0, γ0)−V(θ0, γ0)

+
1√
n

n

∑
k=1

Mij
v,θ fθ(X(k−1)∆, Xk∆; θ0, γ0)

+
1√
n

n

∑
k=1

Mij
v,γ fγ(X(k−1)∆, Xk∆; θ0, γ0) + op(1)

∆
=

1√
n

n

∑
k=1

hij
V(X(k−1)∆, Xk∆; θ0, γ0) + op(1),

where Mij
v,θ and Mij

v,γ are some matrices such that

∂

∂θT V̂(θ0, γ̃)ij
pr→ Mij

v,θ ,

∂

∂θT V̂(θ0, γ0)ij
pr→ Mij

v,γ.

By conditional (a)-(c), applying the uniform law of large number and the martingale central

limit theorem in Billingsley (1961), we have
√

n
(
Ŝ(θ̂, γ̃)− S(θ0, γ0)

)2
= Op(

1√
n ). Therefore, we

can reach the following expression:

√
n {Rn − p} = tr

{
1√
n

n

∑
k=1

hRn(X(k−1)∆, Xk∆; θ0, γ0)

}
+ op(1)

where hRn = S−1(θ0, γ0)
{

hS(X(k−1)∆, Xk∆; θ0, γ0) + hV(X(k−1)∆, Xk∆; θ0, γ0)
}

, hS and hV are p× p

matrices with element hij
S and hij

V , respectively, i, j = 1, ..., p. Using the Billingsley (1961)’s martin-

gale central limit theorem, we obtain

√
n {Rn − p} L→ N(0, σ2

R).

where σ2
R is the asymptotic variance, which can be consistently estimated by

σ̂2
R =

1
n

n

∑
k=1

(
p

∑
i=1

hi
Rn

)2

where hi
Rn

is the i-th diagonal element of matrix hRn .

�
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