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SUMMARY

Advances in high throughput technology have accelerated the use of hundreds to millions of biomarkers to
construct classifiers that partition patients into different clinical conditions. Prior to classifier development
in actual studies, a critical need is to determine the sample size required to reach a specified classification
precision. We develop a systematic approach for sample size determination in high-dimensional (large p
small n) classification analysis. Our method utilizes the probability of correct classification (PCC) as the
optimization objective function and incorporates the higher criticism thresholding procedure for classi-
fier development. Further, we derive the theoretical bound of maximal PCC gain from feature augmenta-
tion (e.g. when molecular and clinical predictors are combined in classifier development). Our methods
are motivated and illustrated by a study using proteomics markers to classify post-kidney transplantation
patients into stable and rejecting classes.

Keywords: Design; Higher criticism threshold; Large p small n; Linear discrimination; Sample size.

1. INTRODUCTION

In recent years, high-dimensional classification analysis has received heightened attention due to its impor-
tance for personalized medicine: if validated classifiers (e.g. diagnostic tests) are available, clinicians can
use them to design effective treatment plans for individual patients (Hamburg and Collins, 2010). Sev-
eral approaches to deriving classifiers based on high-dimensional biomarkers have been developed in
the literature, and when applied to real world experiments, some promising results have been reported,
e.g. Clarke and others (2008), Simon (2008), and Wang and others (2008). However, rapid technological
advances enabling the collection of hundreds to millions of biomarkers from a single patient give rise to
study design challenges (Mardis, 2008; Schuster, 2008), including how to determine adequate sample size
to train classifiers.
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Fig. 1. Study flowchart for constructing classifiers of graft survival after kidney transplant. In Step I, investigators
will collect p = 108 proteomics biomarkers using microarrays for each patient in the stable and rejecting groups, and
a classifier of graft survival status will be developed. In Stage II, investigators will consider adding other clinical
characteristics and patient demographics to hopefully improve classification precision.

We address two key study design issues for classification studies with high-dimensional predictors (i.e.
“n � p” scenarios); namely, how to: (i) determine sample size that accounts for actual data analyses plans
in advance and (ii) assess gain in classification precision associated with feature augmentation. Given
space constraints, we focus only on study design related issues, an area that has received less attention.
The current design literature in this area focuses on classifiers that are constructed by first screening
biomarkers that may be differentially expressed across disease groups (i.e. assuming biomarkers important
for classification are sparse), and subsequently combine the selected biomarkers into a classification rule.
These types of classifiers rely on threshold cutoffs for selecting important features, the estimation of which
needs to be accounted for in the design stage.

This work is motivated by two collaborative projects. The first is our work with the Nephrotic Syn-
drome Study Network (NEPTUNE), which studies molecular mechanisms for rare renal diseases. One
of NEPTUNE’s goals is to identify tissue-based mRNA biomarkers to classify patients into risk groups
and predict disease remission. A comprehensive generalization of the NEPTUNE study design method
(Gadegbeku and others, 2013) is frequently needed in practice.

A second collaboration is joint work with a clinician at The University of Michigan Kidney Trans-
plantation Center, who aimed to predict patient’s graft survival status (stable vs. rejecting), a measure of
treatment effectiveness, after kidney transplant. The proposed study will proceed in two stages (Figure 1).
First, the investigator would like to know how many transplant patients are sufficient to derive and validate
a powerful classifier based on protein biomarkers. Second, the investigator would like to know if the clas-
sification prediction can be improved by adding clinical predictors such as routine measures of patient’s
laboratory tests (e.g. albium and hemoglobin) and demographic characteristics—i.e. the gain in prediction
accuracy due to feature augmentation.

Aside from sample size determination methods that optimize hypothesis testing criteria in high-
dimensional data settings (e.g. Hwang and others, 2002), few sample size methods for building classifiers
are available. One ground breaking method for classification analysis was proposed by Dobbin and Simon
(2007) (hereafter DS2007), which is based on optimizing the probability of correct classification (PCC,
Mukherjee and others, 2003). The classifier’s PCC (or sensitivity or specificity) is a more appropriate tar-
get for sample size determination for classification studies, rather than the classical concepts of Type I and
Type II errors for testing differences across groups. One limitation of DS2007’s method is that the thresh-
old for feature selection is optimized for the given design parameters (e.g. number of important features
and their effect size), and this threshold is treated as known in the sample size calculation. As a result, this
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Sample size in high-dimensional classification 3

design approach does not have a counterpart in the data analysis stage, because during analyses the true dif-
ferences between groups, and thus the threshold, are unknown. Liu and others (2012) develop sample size
determination methods for classifiers based on single nucleotide polymorphisms, which was extended
by Liu and others (2014) to multi-class classifiers. de Valpine and others (2009) develop a simulation-
approximation approach to determine sample size.

The benefits of feature augmentation in terms of the receiver operator curve have been investigated
(Pepe and others, 2006; Cai and Cheng, 2008; Pfeiffer and Bur, 2008; Lin and others, 2011). However,
there is no theoretical work specifically quantifying the amount of PCC gain due to feature augmentation,
nor under which scenarios PCC gain can be maximized.

Section 2 describes the model formulation for the features, the PCC definition, and two threshold-
ing techniques used to select important features with which the classification rule is constructed. One is
the higher criticism threshold (HCT) proposed by Donoho and Jin (2009), which is particularly relevant
when important features are rare and weak, and the other is a method based on cross validation (CV).
Section 3 presents our proposed methods for sample size determination which incorporate thresholding
techniques. We introduce a new simulation method to efficiently evaluate the PCC of HCT-based classi-
fiers. In Section 4, we establish a novel inequality with both the upper and lower bounds for PCC gain due
to feature augmentation. Section 5 illustrates the performance of three sample size determination strategies
and their use in the second motivating example of predicting kidney graft status, followed by a discussion.

2. MODEL, PCC, AND FEATURE SELECTION

In this section, we review existing work and modeling set up that serves as the context for our proposed
sample size determination methods. Suppose the study population can be divided into two groups: Group
+1 and Group −1. The design question is on how many subjects, n, a set of training data D = {(xi , yi ) | i =
1, . . . , n} will be collected to construct a classifier, where yi = {+1,−1} is the group label for subject
i ; population group prevalences are P(yi = +1) = p1 and P(yi = −1) = 1 − p1, respectively; and xi =
(xi1, . . . , xip)

T ∈ R p is a high-dimensional vector of features for subject i (e.g. proteomics biomarkers).
For brevity of exposition, in the rest of the paper we assume the sample size collected from each group is
equal by design (e.g. stratified sampling is used), irrespective of the group prevalences in the population.
Supplementary material available at Biostatistics online describes modifications needed when sample sizes
are unequal for the groups.

We assume that features follow the multivariate normal distribution within each group with equal vari-
ances: xi | yi = +1 ∼ N (+μ, �); and xi | yi = −1 ∼ N (−μ, �), where the vector μ = (μ1, . . . , μp)

T ,
with elements μ j � 0, j = 1, . . . , p, represents the signal strengths of the features. Setting E(xi | yi ) = μyi

is purely for notational convenience and is not needed in practice; this notation allows us to write the mean
differences of features between groups in terms of a single vector, namely 2μ. A higher value of μ j sug-
gests a better separation between two groups by feature j , and consequently feature j would be important
for classification. Assuming the equality of variances is needed to construct a linear classification rule
(Johnson and Wichern, 2002), which we assume at the design stage. Without loss of generality, we assume
the diagonal elements of � equal 1, which enables us to refer to 2μ as the vector of effect sizes. In practice,
this is achieved by dividing each feature by its pooled standard deviation calculated with the training data.

The dimension p of μ may be very high; hence it is commonly assumed that only a small number of
features, say, m (� p), have non-zero effect sizes. The m features are considered essential to construct
a classifier, while the other p − m features are noise (μ j = 0). For the ease of exposition, we reorder
features such that the important m features are listed first, i.e. μ = (μ1, . . . , μm, 0T

p−m)T , where 0p−m is
a zero vector of length p − m. The values of effect sizes, μ j , j = 1, . . . , m, are unknown at the design
stage and m is supplied by subject-matter scientists. Assume that it is possible to specify a lower bound
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4 B. N. SÁNCHEZ AND OTHERS

μ0 for μ1, . . . , μm based on some prior research results or a certain scientific hypothesis, and replace μ by
μ0 = (μ01T

m, 0T
p−m)T , where 1m is a vector of ones of length m. Then, we will simply state the effect size

as 2μ0. Under the linear classification rule and given the weighting scheme defined in (2.1), using a lower
bound in the design will lead to a conservative estimate of PCC and thus sample size, which is acceptable
in practice when no reliable pilot data are available to estimate μ1, . . . , μm satisfactorily.

In this paper, we consider a linear classifier in the design stage. Constructing a linear classifier is
equivalent to using training data D to derive a certain weighting scheme G that allocates weights w =
(w1, . . . , wp)

T = G(D). Let κ = 1
2 log((1 − p1)/p1) and a · b denote the inner product of two vectors. The

classification rule for a new subject is: if w · xi � κ , subject i is assigned to Group +1; otherwise to Group
−1. In general, the weighting scheme G can assign non-zero weights w to all available features; however,
this can harm PCC if most of them are not important. Instead, when n � p using regularized feature
selection allows us to include only important features in the classifier, thus enhancing the classifier’s PCC.
Feature selection is primarily driven by pairwise associations between features xi j and group membership
yi . Let Z = (z1, . . . , z p)

T be the vector of test statistics derived from training data D. Then z j ∼ N (0, 1) for
unimportant features, and z j ∼ N (τ, 1) for j = 1, . . . , m where τ = √

nμ0 is the signal strength. A natural
strategy for feature selection is to choose an appropriate threshold λ such that we only include features
satisfying |z j | � λ, j = 1, . . . , p. Given threshold λ, we incorporate this feature selection mechanism into
the definition of the weighting scheme:

w j = 1, if z j > λ; w j = −1, if z j < −λ; and w j = 0 otherwise. (2.1)

The threshold λ is determined empirically given D; Section 2.2 describes procedures to select it.

2.1 Objective function and connection to sample size

Following DS2007, we use PCC as the primary objective function for sample size determination. With
two groups, the PCC is the weighted average of the classifier’s sensitivity and specificity, with weights
equal to the group prevalences. Under the assumed model and for fixed weights w, it can be easily shown
that PCC(w;μ,�, p1) = p1�((w · μ − κ)/

√
wT �w) + (1 − p1)�((w · μ + κ)/

√
wT �w), where �(·)

is the standard normal CDF. The weights w = G(D), however, are random and depend on G(·) (and thus
λ) and the sample size n of D.

To make the connection between PCC and sample size, it is useful to think of the PCC as dependent on
sample size and the selected threshold λ, hence defining PCC(wλ;μ,�, p1, n) as the PCC of a classifier
built using training data on n subjects. Further, to define the optimal PCC, it is useful to think of the upper
bound of the PCC among linear classifiers. A linear classifier can reach the upper bound if it is the oracle
classifier, or if it is constructed from a study with infinite sample size (DS2007). This optimal classifier
has PCCoracle = p1�((μT �−1μ − κ)/

√
μ�−1μ) + (1 − p1)�((μT �−1μ + κ)/

√
μ�−1μ), which sim-

plifies to PCCoracle = �(
√

mμ0) when � = I , p1 = 1
2 , and μ is replaced by μ0 = (μ01m, 0p−m) at the

design stage.
Clearly, a practically achievable PCC will be lower than the upper bound, and its exact value depends

on how much relevant information can be extracted from the training data. At the design stage, a PCC
target is set lower than PCCoracle; for instance, DS2007 set PCCtarget as the smallest PCC that satisfies
PCCtarget � PCCoracle − 0.05. The sample size requirement is then defined as the smallest n such that
PCC(wλ;μ0, n) � PCCtarget. If the inverse function of PCC(n) could be analytically derived, then the sam-
ple size would be easily determined by n � PCC−1(PCCtarget). Since a closed form of PCC−1(·) rarely
exists, we employ numerical algorithms (e.g. the binary search algorithm) to determine sample size.

Finally, one must consider how to calculate PCC at the design stage. DS2007 consider an approximation
of PCC to warrant its fast computation. First they compute an optimal, fixed threshold λ using information
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Sample size in high-dimensional classification 5

on the assumed μ0, and show with Monte Carlo (MC) simulations that for a fixed λ the approximation
ED[PCC(wλ;μ0, n)] ≈ PCC(ED[wλ];μ0, n) is accurate. However, at the analysis stage, optimizing λ only
depends only on the data D, since μ is unknown. We describe two procedures to determine λ based only
on simulated data and are thus advantageous because they have an actual parallel in the analysis stage.

2.2 Feature selection procedures

2.2.1 CV threshold. We consider the following straightforward K-fold CV thresholding method to deter-
mine λ given only training data D, denoted by λ = CV(D). Such λ is chosen to maximize the apparent
PCC, P̃CC(D, λ), which is a function of both threshold λ and training data D. The apparent PCC can be
computed via the following steps:

(1) Follow the sampling strategy for D to divide it into K equal-sized subsets, D1, . . . , DK (e.g. divide
cases and controls separately if stratified sampling is used to collect D).

(2) For each q = 1, . . . , K , treat Dq , which has sample size nq , as a CV testing set and the rest of the
data D−q as a CV training set; given a threshold value λ∗, which is one of many threshold values on
a dense grid, use (2.1) to obtain the weighting w(D−q , λ∗) from the training set D−q , where z-scores
are calculated from dataset D−q only.

(3) For q = 1, . . . , K , calculate the apparent PCC based on testing set Dq , as P̃CC(Dq , w(D−q , λ∗)) =∑
(xi ,yi )∈Dq {I (xi · w(D−q , λ∗) � 0)I (yi = 1) + I (xi · w(D−q , λ∗) < 0)I (yi = −1)}/nq .

(4) Calculate the overall apparent PCC: P̃CC(D, λ∗) = (1/K )
∑K

q=1 P̃CC(Dq , w(D−q , λ∗)).
(5) Calculate the apparent PCC on a dense grid of values for λ∗, and select the optimal threshold λ that

maximizes the overall apparent PCC: CV(D) = argmaxλ∗>0 P̃CC(D, λ∗).

For an analysis employing the CV threshold, the expected PCC is calculated over the distribution of
D, ED{PCC(GCV(D)(D);μ), n}. This procedure optimizes the threshold λ without bearing on knowledge
of μ0; when embedded in sample size calculations it accounts for uncertainty in λ. When features are
independent and important features have the same effect size, CV thresholding with weights in (2.1) results
in the optimal Bayes classification rule, except for uncertainty in λ, and thus the optimal sample size.

2.2.2 Higher criticism threshold. Proposed by Donoho and Jin (2009), HCT provides a data-driven
approach to determine λ in a high-dimensional classification analysis. HCT determines a suitable thresh-
old λ based on the distribution of p-values obtained from univariate tests for associations of individual
features with the group assignment, and then the weighting scheme (2.1) can be applied. Let HCT(D)

denote the HCT procedure when applied to training data D. The association test for feature xi j with group
yi results in a two-sided p-value π j = 2{1 − �(|z j |)}. For an unimportant feature, π j ∼ Uniform(0, 1);
for an important feature the resulting π j does not follow Uniform(0, 1) and tends to be smaller than those
of the unimportant features. HCT only focuses on the smallest 	pα0
 p-values sorted in increasing order:
π(1), . . . , π(	pα0
); a typical choice is α0 = 10%. Donoho and Jin (2009) showed that the lth ordered p-value
with l = argmaxk=1,...,	pα0


√
p((k/p − π(k))/

√
k/p(1 − k/p)) provides an appropriate cutoff for feature

selection: features whose p-values are less than π(l) are considered important for classification. The z-score
threshold is thus HCT(D) = |�−1(π(l)/2)|. The resulting PCC is ED{PCC(GHCT(D)(D);μ, n)}.

As detailed by Donoho and Jin (2009), the theory of HCT brings new insights to the asymptotic prop-
erties of linear classifiers under the so-called rare-and-weak model, which is of interest in the context of
high-dimensional classification because it gives a structure under which the number of important fea-
tures m and signal strength τ vary with the total number of features p. This structure enables study
of asymptotic classification feasibility. In this rare-and-weak model, m increases with p according to
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6 B. N. SÁNCHEZ AND OTHERS

m = p1−β (Donoho and Jin, 2009), where β ∈ (0, 1) controls the sparsity. Similarly, instead of τ = √
nμ0,

which becomes arbitrarily large with increasing sample size, in this model the signal strength follows
τ =√2r log p; r ∈ (0, 1) controls the signal strength, and n ∝ {log(p)}γ for some γ > 0. This implies
that important features become rarer and their effect size becomes weaker when the total number of
features p increases, which is regarded as a more realistic mechanism (NCI-NHGRI, 2007; Jin, 2009)
than a mechanism where PCC always increases as p increases. It has been shown (Donoho and Jin,
2009; Jin, 2009) that as the number of features p → ∞ the PCC of any linear classifier is charac-
terized only by (β, r) through a certain function ρ(β) given in Section B of supplementary material
available at Biostatistics online: (i) when r > ρ(β), the classification analysis is asymptotically feasi-
ble, in the sense that the PCC of the HCT linear classifier approaches to 1 as p → ∞ and (ii) when
r < ρ(β), the classification analysis is asymptotically infeasible. The asymptotic result of feasibility is
critical to guide the design of classification analysis. Verifying the inequality r > ρ(β) can help inves-
tigators make a timely decision on the feasibility of a study at the planning stage (see Section 5 for an
illustration).

3. IMPLEMENTATION

Given an approach to evaluate PCC, sample size can be determined by inverting the PCC function numeri-
cally. We thus focus on PCC estimation approaches that incorporate thresholding procedures so the result-
ing PCC would more closely reflect what can be achieved in practice. Section C of supplementary material
available at Biostatistics online describes the evaluation of PCC for CV-based classifiers. Our primary con-
tributions here focus on approaches needed for HCT-based classifiers.

Since HCT(D) is a data-driven thresholding procedure, MC simulation can be applied to evaluate
ED{PCC(GHCT(D)(D);μ, n)}. However, because HCT(D) depends on the training data D exclusively
through the 	pα0
 smallest p-values, we propose a computationally fast MC algorithm that directly sim-
ulates the 	pα0
 smallest p-values from the distribution of ordered statistics instead of simulating D. The
algorithm is takes the following steps:

(a) Simulate z-scores for m important features from z j ∼ N (μ0
√

n, 1), j = 1, . . . , m.
(b) Convert the above z-scores to two-sided p-values by π j = 2{1 − �(|z j |)}, j = 1, . . . , m.
(c) Simulate a random variable u ∼ Beta(	pα0
, p − m + 1 − 	pα0
).
(d) Simulate variables v1, . . . , v	pα0
−1 independently from Uniform(0, u).
(e) Sort vector (π1, . . . , πm, v1, . . . , v	pα0
−1, u)T in an ascending order.

The 	pα0
 smallest values in (π1, . . . , πm, v1, . . . , v	pα0
−1, u)T have the same joint distribution as the
	pα0
 smallest p-values (π(1), . . . , π(	pα0
))

T derived from D (see supplementary material available at Bio-
statistics online, Section D for the proof). As a by-product, the above algorithm also supplies the z-scores
z1, . . . , zm for the m important features. This proposed algorithm has a clear computational benefit: instead
of generating np random variables needed for D (and calculating all p-values), only 	pα0
 + m variables
are generated. The computational efficiency ratio is np/(	pα0
 + m) ≈ n/α0 (since m is much smaller
than p); e.g. for n = 100 and α0 = 10%, the algorithm is ≈ 1000 times more efficient. Furthermore, the
algorithm below used to calculate PCC does not require generating test data.

To evaluate ED{PCC(GHCT(D)(D);μ, n)}, we repeat for k = 1, . . . , N iterations:

(1) For given n, μ0, and m, use Steps (a)–(e) to generate the 	pα0
 smallest p-values
(π(1), . . . , π(	pα0
))

T and the corresponding z-scores for m important features.
(2) Determine the optimal threshold λ = HCT(D).
(3) Use (2.1) to calculate weights w1, . . . , wm of important features using their z-scores and λ.
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Sample size in high-dimensional classification 7

(4) Calculate PCC(k) = p1�((μ0
∑m

j=1 w j − κ)/
√

#w) + (1 − p1)�((μ0
∑m

j=1 w j + κ)/
√

#w),

where #w =∑	pα0

j=1 I [π( j) < 2{1 − �(|λ|)}] is the number of elements in (π(1), . . . , π(	pα0
))

T that
are smaller than 2{1 − �(|λ|)}.

Then, the fast MC estimate of ED{PCC(GHCT(D)(D);μ, n)} is given by (1/N )
∑N

k=1 PCC(k).
Correlated features. When features are correlated, estimating PCC is more challenging. One diffi-

culty pertains to computing the denominator, wT �w, within the PCC formula, PCC(w;μ,�, p1) =
p1�((w · μ − k)/

√
wT �w) + (1 − p1)�((w · μ + k)/

√
wT �w). DS2007 proposed replacing this

quantity with an upper bound wT �w � ewT w, where e is the largest eigenvalue of �. This bound could
potentially be applied at Step 4 of the HCT-based algorithm above when calculating PCC(k). However, this
does not work for the HCT method since Step 1 relies on independence to prove that the u used to generate
the 	pα0
 smallest p-values follows a Beta distribution. Hence, we instead evaluate the expected PCC
using an alternative MC simulation strategy. The simulation strategy follows Steps 1–4 as above, with the
following modifications. First, we specify an assumed working correlation structure � for the features. In
Step 1, we now use this assumed � to generate p correlated features on n subjects, and compute z statistics
and accompanying p-values. The choice of structure for � (e.g. block diagonal) may be informed by sub-
stantive knowledge, if available, and the magnitude of the correlations should be varied to assess its impact
on the sample size calculation. Steps 2 and 3 of the algorithm remain unchanged to reflect that at the anal-
ysis stage the features are screened using pairwise associations and treated as independent. In Step 4, we
evaluate PCC(k) = p1�((μ0

∑m
j=1 w j − κ)/

√
#w) + (1 − p1)�((μ0

∑m
j=1 w j + κ)/

√
#w), where #w is

an estimate of wT �w based on the working correlation and is defined as #w =∑( j, j ′):w j �=0,w j ′ �=0 σ j j ′w jw j ′

and σ j j ′ denotes the ( j, j ′) entry of �. As with the eigenvalue approach, this approximation relies on the
working correlation structure �; however, this approach is less conservative than using the eigenvalue-
based bound (see Illustrations section). The MC approach for the CV method with correlated features
similarly relies on generating correlated data (see supplementary material available at Biostatistics online).

4. FEATURE AUGMENTATION

Because in practice multiple sources of features are typically collected, a key study design question is
to investigate the potential PCC gain resulting from adding new sources of features to the classification
analysis. For simplicity, let us focus on two sources of features (e.g. molecular biomarkers and clinical
variables). Denote features already in the study by Type A and the new set by Type B, with respective
dimensions pA and pB . For subject i , we collect measurements x A

i ∈ R pA and x B
i ∈ R pB . As in Section 2,

assume that the joint conditional distribution for features x A
i and x B

i is:(
x A

i

x B
i

)∣∣∣∣∣ yi ∼ N

(
yi

(
μA

μB

)
,

(
�A �AB

�B A �B

))
where μA and μB and �A, �B , and �AB = (�B A)T are the respective effect size vectors, variance, and
covariance matrices. Here we do not place any restrictions on either the effect size vectors (e.g. sparsity is
not assumed) or the variance matrices.

To study PCC gain, we need to consider the PCC of linear classifiers in three cases, including (i) Type A
features only; (ii) Type B features only; and (iii) Type A features augmented with Type B features. Denote
the respective weights in Cases (i) and (ii) by wA and wB ; we do not place any assumptions on these weights,
e.g. they may be derived from any thresholding procedure for feature selection. Conditioning on the weights
wA and wB , and assuming group prevalence is p1 = 1/2, the PCC of the classifier in Case (i) is PCCA =
�((μA · wA)/

√
wT

A�AwA); in Case (ii) is PCCB = �((μB · wB)/
√

wt
B�BwB); and finally, in Case (iii)
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8 B. N. SÁNCHEZ AND OTHERS

is PCCAB = �((μA · wA + μB · wB)/
√

wT
A�AwA + wT

B�BwB + wT
A�ABwB). When �B A = 0, the term

wT
A�ABwB drops from the denominator and we obtain PCCAB,IND. In Section E of supplementary material

available at Biostatistics online, we prove that:

min(PCCA, PCCB) � PCCAB,IND � �(
√

2 · �−1(max(PCCA, PCCB))). (4.1)

The first equality holds when the relative variance of the linear predictors goes to 0, i.e.

Var(wk · xk
i )/Var(w j · x j

i ) = wT
k �kwk/w

T
j �

jw j → 0 where ( j, k) = (A, B) if PCCA < PCCB and
( j, k) = (B, A) if PCCA � PCCB . In the latter case, the equality is reached when PCCA = PCCB and the
linear predictors have equal variance wT

A�AwA = wT
B�BwB . Inequality (4.1) provides the upper bound of

the PCC of the classifier when the linear predictors are combined into a new classification rule. If either
PCCA or PCCB approach 1, the upper bound will approach 1.

In practice, the features may be correlated, �B A �= 0, thus the linear predictors x A · wA and wB · x B
i

will too. Given the monotonicity of �(·) and that the covariance of the linear predictors, wT
A�ABwB ,

appears in the denominator PCCAB , the PCC gain will depend on the sign of the correlation:
PCCAB,+ � PCCAB,IND � PCCAB,−. In Section E of supplementary material available at Biostatistics
online, we also prove that min(PCCA, PCCB) � PCCAB,+, and that PCCAB,− � �((|δ| + 1)/|1 − δ| ·
�−1(max(PCCA, PCCB))), where δ =

√
wT

A�AwA/wT
B�BwB is the relative standard deviation of the lin-

ear predictors. Finally, in Section E of supplementary material available at Biostatistics online we also prove
inequality (4.1) for any proportion p1 ∈ (0, 1) when optimal weights are used in classifier construction.

5. ILLUSTRATIONS

PCC estimation and sample size determination given effect size and number of important features. For a
given effect size, the PCC evaluated at the design stage will depend on a pre-specified thresholding pro-
cedure and in turn impact the sample size. Thus, we first illustrate the estimated PCC using the DS2007
method, and using the CV and HCT thresholding methods. Figure 2 shows the PCC as a function of sam-
ple size when the number of available features is p = 500 or p = 10 000. The PCC estimated by the DS
method is always the highest, primarily because it uses the true effect size to choose the optimal threshold
λ. However, due to its reliance on μ0 to obtain the optimal threshold at the design stage, the DS method
has no counterpart in actual data analysis. On the other hand, the PCC estimated by the CV and the HCT
methods rely only on the simulated data to estimate the threshold, which introduces uncertainty in the
feature selection threshold, and thus yields lower PCC estimates. When the classification problem is more
difficult (e.g. m = 1), HCT yields higher PCC than CV as expected (Donoho and Jin, 2008). Since PCC
estimates from CV and HCT reflect more closely the achievable performance of the corresponding clas-
sifiers in real applications, the sample size estimates from these methods would better approximate the
sample size required in practice.

Figure 3 shows the sample size requirements for a range of effect sizes, m = 1 or 10, and PCCtarget =
PCCoracle − γ with γ = 0.05. In general, sample sizes obtained from the DS method are consistently lower
than with CV or HCT methods, as can be expected given in Figure 2. Sample sizes become comparable
(difference �2) when the effect size is large. However, when the features are relatively weaker, then the
DS method will tend to underestimate the needed sample size. Figure 2 also explains the facts that, for a
fixed PCCtarget, the sample sizes from HCT shown in Figure 3 are lower for scenarios when features are
rarer (i.e. m = 1) and lower for CV when features are less rare (m = 10). Hence, only the proposed HCT
approach will give sufficient sample size for cases when features are relatively weaker and rarer, without
being overly conservative (CV method is conservative in those cases, since the HCT classifier can achieve

 at U
niversity of M

ichigan on July 22, 2016
http://biostatistics.oxfordjournals.org/

D
ow

nloaded from
 

http://biostatistics.oxfordjournals.org/


Sample size in high-dimensional classification 9

(a) (b)

(c) (d)

Fig. 2. PCC estimates as a function of sample size estimated by DS, CV, and HCT methods, assuming the minimal effect
size of important features is 2μ0 = 0.8 and group prevalences are P(Y = +1) = P(Y = −1) = 0.5. (a) p = 500, m =
1, (b) p = 10 000, m = 1, (c) p = 500, m = 10, and (d) p = 10 000, m = 10. In (a) and (b), important features are rarer
(m = 1 important feature) compared with (c) and (d) (m = 10), which results in a marked difference in PCCoracle (gray
horizontal line). The PCC estimated using the DS method is always higher for a given sample size, leading to lower
sample size estimates. When features are rarer, (a) and (b), HCT gives a higher PCC, leading to lower sample size
requirements. When features are less rare (m = 10), selecting features using HCT (CV) leads to lower sample size
requirements for lower (higher) PCC targets compared with CV (HCT), given the crossing of the PCC curves. PCC
estimates for CV and HCT are obtained using MC simulations using the algorithms described in Section 3, with 500
replicates for CV and 1000 replicates for HCT.

the target PCC with a lower sample size). These assertions are verified with MC simulations shown in
Table 1 (top rows where � = I ).

It is evident from Figures 2 and 3, and Table 1 that it is important to not only calculate the sample size
based on the PCC estimates that are achievable by statistical methods at the analysis stage, but also to select
an analysis approach that can more efficiently attain the target PCC under a given parameter space. In rare-
and-weak cases, for example, the HCT-based classifier has been shown to perform better (Donoho and Jin,
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10 B. N. SÁNCHEZ AND OTHERS

(a) (b)

(c) (d)

Fig. 3. Sample size requirements estimated using DS, CV, and HCT design methods for a range of effect sizes (= 2μ0).
(a) p = 500, m = 1, (b) p = 10 000, m = 1, (c) p = 500, m = 10, and (d) p = 10 000, m = 10. For each effect size
and combination of m and p, the PCCoracle is shown as the inset value on the x-axis, and the target PCC is set as
PCCtarget = PCCoracle − 0.05. Sample size estimates for CV and HCT are obtained by numerically inverting the PCC
function and selecting the smallest n that satisfies PCC(n) � PCCtarget; PCC(n) is estimated using the MC algorithms
described in Section 3 with 500 replicates for CV and 1000 for HCT. The sample size required decreases as effect
sizes of important features increase, even in high target PCC cases. Sample sizes obtained with the DS method are
lower, but, as shown in Table 1, underestimate the required sample size particularly for rare-and-weak features.

2008), and thus we recommend determining sample sizes using our proposed HCT sample size calculator
in these scenarios.

Sample size calculations when features are correlated. The bottom part of Table 1 gives the sample
sizes computed from each method under different structures for � (� �= I ). The DS2007 method using the
correction based on the largest eigenvalue sometimes yields prohibitive sample sizes (n > 1000, denoted
as N A), because of the excessively large maximum eigenvalue of �. Both CV- and HCT-based methods
give sample sizes at which the target PCC is achieved. It is worth noting that when important features are
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Table 1. Sample size n calculated by DS, CV, and HCT design methods using the specified PCCtarget, and
differences between the target and what can be achieved in practice, �PCC = PCCtarget − PCCachieved

n �PCC �PCC n �PCC �PCC n �PCC �PCC

� m p 2μ0 PCCtarget DS CV HCT CV CV HCT HCT CV HCT

I500 1 500 0.8 0.605 98 0.035 0.018 134 −0.001 −0.014 118 0.019 −0.007
1.2 0.676 56 0.045 0.023 76 −0.003 −0.02 68 0.020 −0.002
1.6 0.738 36 0.047 0.028 50 −0.011 −0.023 46 0.008 −0.008

I10 000 1 10 000 0.8 0.605 138 0.033 0.026 182 −0.001 −0.013 170 0.011 −0.001
1.2 0.676 76 0.034 0.032 96 −0.005 −0.005 94 0.005 0.000
1.6 0.738 50 0.043 0.042 62 0 −0.005 62 0.000 −0.005

I500 10 500 0.8 0.847 94 0.014 0.031 102 0 0.025 146 −0.029 −0.002
1.2 0.921 38 0.015 0.027 44 −0.003 0.011 52 −0.015 −0.005
1.6 0.944 20 0.025 0.005 24 −0.004 −0.01 24 −0.004 −0.010

I10 000 10 10 000 0.8 0.847 138 0.01 0.032 152 0.001 0.021 202 −0.034 −0.001
1.2 0.921 58 0.021 0.032 66 −0.006 0.014 76 −0.019 0.000
1.6 0.944 30 0.031 0.027 36 −0.008 −0.001 36 −0.008 −0.001

�2 1 500 1.6 0.738 NA – – 44 −0.000 0.041 62 −0.034 −0.006
�3 0.738 NA – – 46 −0.005 0.060 168 −0.048 0.004
�4 0.738 NA – – 46 −0.002 0.054 160 −0.044 0.004
�1 10 500 1.6 0.762 26 −0.002 −0.037 26 −0.002 −0.037 18 0.064 −0.013
�2 0.762 26 0.029 −0.015 30 0.000 −0.030 24 0.032 −0.010
�3 0.762 NA – – 28 0.001 0.028 44 −0.039 −0.010
�4 0.762 NA – – 26 0.002 0.026 42 0.044 −0.006

The scenarios and respective sample sizes shown here are a subset of those shown in Figure 3 (see Figure 3 legend for details on how
sample sizes are obtained). Given the computed sample size n, �PCC was computed by generating 1000 training datasets of size
n and test datasets of size 100; training and test datasets were generated according to the model defined by �, m, p, and 2μ0. The
average of the �PCC across the 1000 replicates are shown. The � are block diagonal as follows: Ip is a p × p identity; �1 has first
block being 10 × 10 compound symmetry structure and correlation 0.80, denoted by C S10(0.8), and second block I490; �2 has 50
blocks of C S10(0.8); �3 has first block C S10(0.8), second block C S240(0.8), and third block I250; �4 has the first block C S250(0.8),
and the second block I250. NA indicates sample size estimates from DS2007 eigenvalue method were prohibitive, n > 1000.

very rare (e.g. m = 1), the HCT-based method yields conservative sample sizes whereas the CV method
can achieve the same target PCC with lower sample sizes.

Feature augmentation. Figure 4 illustrates the upper bound (left panel) of the PCC and PCC gain (right
column) due to feature augmentation discussed in Section 4. First, in the case when features are indepen-
dent (Figure 4(a)), we note that if both PCCA and PCCB are small (or one is large), then max(PCCA, PCCB)

will be small (or large). Hence, the upper bound of the PCC of classifiers with both Type A and Type B
features is only slightly higher than max(PCCA, PCCB). Combining two sets of features where both are
very good or both are poor does not greatly improve PCC. If both types of features are of medium quality
(e.g. both PCCA and PCCB are in the medium range around 0.8), then we could obtain the highest gain
(at most 10%) in PCC by feature augmentation. When features are negatively correlated, the PCC gain can
be substantial (Figure 4(b)).

An application. We demonstrate the proposed methods using the kidney transplant study (Figure 1). In
Stage I, the investigator hypothesizes that among p = 108 proteins, at least m = 10 of them are likely
informative for predicting graft survival status. Pilot data, n = 20, showed an effect size of approxi-
mately 0.8 (i.e. μ0 ≈ 0.4). Given these design parameters, the signal strength is τ ≈ 0.4

√
20; the sparsity

parameter is β = 1 − log m/log p = 0.51; and the strength parameter r lies above the feasibility bound-
ary: r ≈ τ 2/2 log p = 0.1903 > 0.01 = ρ(β). Hence, the classification problem feasible (see Section B
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12 B. N. SÁNCHEZ AND OTHERS

(a) (b)

Fig. 4. The upper bounds of PCC gain = PCCAB − max(PCCA, PCCB) when two sets of features, A and B, are com-
bined compared with using a single type of features. In (a), features are independent, �AB = 0 (all p1), or p1 = 0.5 and
have wT

A�ABwB � 0. The upper bound is attained when the linear predictors have equal variance. In (b), �AB �= 0,
group 1 prevalence is p1 = 0.5, and δ gives the relative standard deviation of the linear predictors. The upper bound
shown in (b) is attained when the linear predictor constructed from features A and B are perfectly negatively correlated.

of supplementary material available at Biostatistics online), and we can proceed to calculate sample size
requirements for given PCC targets (Figure 5(a)).

For Stage II, the investigator considers improving the PCC of the classifier with proteomics biomarkers
only say, PCCA = 0.7, by incorporating an additional set of features, including proteinuria, GFR, hema-
turia, albium, and cholesterol. Figure 5(b) shows a region describing the achievable PCC with both types of
features (PCCAB,IND for various values of the PCC with the additional features alone, i.e. PCCB). Substan-
tial enhancements to PCC occur when the second set of features is at least as informative as the proteomics
biomarkers (PCCB � PCCA).

6. DISCUSSION

We addressed two study design questions for studies using high-dimensional features for classification.
First, we developed sample size determination strategies for CV- and HCT-based classifiers. Our strategies
incorporate uncertainty of feature selection thresholds within the PCC calculation, which is particularly rel-
evant when important features are hypothesized to be rare and weak. We proposed a computationally effi-
cient algorithm based on order statistics to compute the PCC, and thus the sample size requirements, for the
HCT-based classifier. Second, we established an inequality for the upper and lower bounds of the achievable
PCC associated with feature augmentation. The approaches were illustrated with numerical examples and a
practical study, and are implemented in our R package HDDesign (available at https://cran.r-project.org/).

Our proposed methods can be improved in the following directions. Classification of more than two
groups commonly appears in clinical studies, thus extensions in this direction are of great importance.
Strong deviations from linearity (e.g. U-shaped associations) may undermine the applicability of the pro-
posed approaches. In this case, it may be possible to categorize the predictors and apply and/or extend the
study design methods of Liu and others (2012) to the case of rare-and-weak features. It is also of interest
to further investigate how correlations among features may be effectively incorporated into the sample size
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(a) (b)

Fig. 5. Application: study design for predicting graft survival after kidney transplant. (a) As expected, a larger sample
size is required when a higher PCC target is chosen and other design parameters are held constant (PCCoracle = 0.90).
The DS method yields the lowest sample size requirements, but these may underestimate the needed sample size
(see Table 1); whether HCT or CV require larger sample size depends on the target PCC. (b) PCC with the proteomics
markers (PCCA) is fixed at 0.7 (dashed line). If new features are not as informative as the proteomics markers (PCCB �
PCCA), combining both sets of features leads to a limited improvement of the classifier, and in some cases data
augmentation might actually degrade the classifier (shadowed area below 0.7) due to the noise introduced by low-
quality features in the new data source (e.g. some proteins can be measured with substantial errors if urine samples
are not stored under stringent conditions). If the new features are more informative (PCCB � PCCA), incorporating
them can substantially enhance the PCC.

determination. We proposed to directly plug in an assumed working correlation matrix within the CV- and
HCT-based approaches. As expected, positive correlations among features result in larger required sample
sizes, although our not as large as DS2007’s preliminary eigenvalue-based approach. Nevertheless, our
approach requires specifying sensible working correlation structures at the design stage, which may be
difficult to obtain in practice. Varying the structure and magnitude of the correlations based on available
scientific knowledge is needed with our proposed approach. Further improvements in this direction may
be possible by using the innovated HCT suggested by Hall and Jin (2010), or by developing sample size
determination methods based on regularized regression-based approaches that do not require pre-filtering
and hence do not rely on the marginal effects of the features. However, developing sample size calcula-
tions using regression-based procedures (e.g. LASSO) would require specifying the adjusted effect sizes
and, importantly, quantifying the uncertainty in feature selection, which remains an open problem in high-
dimensional inference.

In summary, we advocate the use of sample size determination methods that match, as closely as pos-
sible, the analytic approaches that will be actually applied at the data analysis stage and that capitalize
on prior knowledge of the underlying mechanism of interest. If the important features have strong sig-
nals, both HCT- and DS-based approaches provide adequate sample size calculations, and there is little
difference between them. Given that the HCT method is computationally fast and accounts for uncertainty
in the feature selection threshold, it is recommended in practice. If the important features are relatively
abundant but weak, we recommend the CV approach as it gives the least conservative sample size, albeit
computationally intensive. If the important features are rare and weak, we recommend the HCT-based
approach since it provides desired sample sizes with little conservatism, and is computationally efficient.
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14 B. N. SÁNCHEZ AND OTHERS

In summary, our work builds upon and further advances the pioneering work of DS2007, for sample, size
determination in high-dimensional classification problems.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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