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Composite Likelihood Bayesian Information Criteria
for Model Selection in High-Dimensional Data

Xin GAO and Peter X.-K. SONG

For high-dimensional data sets with complicated dependency structures, the full likelihood approach often leads to intractable computational
complexity. This imposes difficulty on model selection, given that most traditionally used information criteria require evaluation of the full
likelihood. We propose a composite likelihood version of the Bayes information criterion (BIC) and establish its consistency property for
the selection of the true underlying marginal model. Our proposed BIC is shown to be selection-consistent under some mild regularity
conditions, where the number of potential model parameters is allowed to increase to infinity at a certain rate of the sample size. Simulation
studies demonstrate the empirical performance of this new BIC, especially for the scenario where the number of parameters increases with
sample size. Technical proofs of our theoretical results are provided in the online supplemental materials.
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1. INTRODUCTION

In the analysis of high-dimensional data with complex de-
pendency structures, exact likelihood inference often leads to
computational complexity. A compromise approach is to use
simpler pseudolikelihoods, such as the composite likelihood ap-
proach (Lindsay 1988; Cox and Reid 2004). A composite like-
lihood is constructed from low-dimensional likelihood objects
defined over small subsets of data. This dimension-reduction
methodology on the likelihood function has been successfully
applied in many areas, including generalized linear mixed mod-
els (Renard, Molenberghs, and Geys 2004), genetics (Fearn-
head and Donnelly 2002), spatial statistics (Hjort and Omre
1994; Heagerty and Lele 1998; Varin and Vidoni 2005), and
multivariate survival analysis (Parner 2001; Li and Lin 2006). It
has been demonstrated to have desirable theoretical properties,
including estimation consistency and asymptotic normality, and
can be used to establish hypothesis testing procedures in a sim-
ilar fashion to the classical likelihood ratio test [see the recent
review by Varin (2008) and references therein].

There are often many potential candidate models for reveal-
ing the data-generating mechanism. Model selection has be-
come a very important issue in statistical modeling. Varin and
Vidoni (2005) proposed a composite likelihood information
criterion analogous to Akaike’s (1973) information criterion
(AIC). Their method selects the model with the best prediction
power by minimizing a composite Kullback–Leibler (KL) dis-
tance for a future experiment. The proposed first-order unbiased
selection statistic contains two components, the composite log-
likelihood of the data under a candidate model and the penalty
related to the effective number of parameters in the model. In
particular, when the composite likelihood takes the form of an
ordinary likelihood, the penalty term reduces to the exact num-
ber of parameters in the model, which coincides with the AIC.
Note that the AIC focuses on selecting models with the best
prediction power and that it is not a consistent model selection
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criterion (e.g., Haughton 1988). As a result, the AIC tends to
favor overfitting models. In effect, Varin and Vidoni’s compos-
ite likelihood selection criterion resembles the AIC, in that it
penalizes the number of parameters at the rate of O(1). In some
applications, building a parsimonious model is critical to proper
interpretation of covariate effects. Therefore, although overfit-
ting does not greatly affect prediction power, it is problematic
in studies of association.

This article focuses on the development of a Bayes informa-
tion criterion (BIC) for the composite likelihood methodology.
The BIC was first proposed by Schwarz (1978) in the paradigm
of maximum likelihood methodology. Subsequently, many au-
thors have extended it to other estimation methods, including
Konish, Ando, and Imoto (2004) in the penalized maximum
likelihood method (see also Berger, Ghosh, and Mukhopadhyay
2003; Chakrabarti and Ghosh 2006; Jiang 2007). Essentially,
the BIC penalizes more heavily on the number of parameters
at the rate of O(log n), and has been shown to be a consis-
tent model selection criterion in many settings, including lin-
ear models (Rao and Wu 1989), partially linear models (Wang,
Li, and Tsai 2007), change point analysis (Yao 1988; Csörgö
and Horváth 1997), and longitudinal data analysis (Wang and
Qu 2009). Recently, Chen and Chen (2008) proposed an ex-
tended BIC (EBIC) criterion in the setting of linear regression
models with high-dimensional covariates, with an extra penalty
proposed to penalize the dimension of model space that suppos-
edly increases with increasing sample size. This penalty is es-
sentially to force the selection of sparse models when the num-
ber of regression coefficients, P, tends to infinity as the sample
size n increases. Such an EBIC has been shown to be a consis-
tent model selection criterion in the case of generalized linear
models with large model space (Chen and Chen 2009).

Here we consider a general statistical model for high-
dimensional data with complicated correlation structures. One
example of high-dimensional data is correlated regression data
(e.g., longitudinal or clustered data) with a large number of
covariates. When using the composite likelihood method of pa-
rameter estimation, it is of interest to investigate whether the
BIC is valid for model selection and, if so, how it behaves.
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This motivates us to address the following three goals: (1) to
define a composite likelihood BIC (CL-BIC) that will be ap-
plicable in situations where the number of parameters increases
with the sample size; (2) to establish a large-sample property
of the model selection consistency for the proposed CL-BIC,
which is a key advantage of the BIC or its variants, as shown
in the literature; and (3) to compare CL-BIC with Varin and
Vidoni’s composite likelihood AIC (CL-AIC), to gain insight
into the differences in performance between the AIC and BIC
in composite likelihood methodology. In the simulation studies
presented in Section 4, we include a comparison of the CL-
BIC in the full and composite likelihood methods, given the
full likelihood method’s status as the gold standard in terms of
sensitivity and selectivity.

The article is organized as follows. Section 2 presents the
BIC in the composite likelihood framework, and Section 3 con-
centrates on the property of model selection consistency for the
proposed CL-BIC. Sections 4 and 5 illustrate the performance
of the CL-BIC and report the comparisons with the CL-AIC via
simulation studies and real data analysis. Section 6 concludes
with some remarks.

2. COMPOSITE LIKELIHOOD BAYESIAN
INFORMATION CRITERION

2.1 Composite Likelihood

The CL paradigm (Lindsay 1988) constitutes a rich class
of pseudolikelihoods based on marginal likelihood objects. Let
{f (y;ψ),ψ ∈ �} be a parametric statistical model, with the pa-
rameter space � ⊆ RQ. Let Y = (Y′

1, . . . ,Y′
n)

′ denote the data
set, where Yi = (yi1, . . . , yimi)

′ are the vector of observations
sampled independently on unit i, i = 1, . . . ,n, from a study pop-
ulation. For convenience, we may regard Y as vectorized data,
in which one observation yij is indexed by j = 1, . . . ,mi and
i = 1, . . . ,n. Because the methodology of composite likelihood
lies in the idea of dimension reduction for likelihood function,
the parameter ψ would be partitioned as ψ = (θ ,η), where θ is
the parameter of interest to be estimated and η is the nuisance
parameter that will not be estimated by the composite likeli-
hood method. Consequently, the model selection in composite
likelihood methodology is concerned with parameter θ , and the
corresponding parameter space is � ⊆ RP, with dimension P
possibly dependent on the sample size.

To form a composite likelihood, first consider a collection
of index subsets A = {A : A ⊆ �}, where each element A is a
subset of � = {(i, j), j = 1, . . . ,mi, i = 1, . . . ,n}. For a given
unit i, we similarly denote Ai = {A : A ⊆ �i} by �i = {(i, j), j =
1, . . . ,mi}. This implies that � = ⋃n

i=1 �i. Clearly, the cardi-
nality of set �, card(�), escalates as the sample size n in-
creases. Let YA denote the subset of the data with respect
to set A, namely YA = {yij, (i, j) ∈ A}. According to Lindsay
(1988), a composite likelihood function is defined as

CL(θ;Y) =
∏
A∈A

LA(θ;Y)wA =
n∏

i=1

∏
A∈Ai

LA(θ;Y)wA , (1)

where LA(θ;Y) = f (YA; θ) is the marginal likelihood with re-
spect to composite set A, and {wA} is a set of suitable weights.
It is easy to see that a singleton Ai = {�i} corresponds to
the full likelihood, and that Ai = {{1}, . . . , {mi}} gives rise to

a composite likelihood of univariate margins. The composite
log-likelihood is cl(θ;Y) = ∑n

i=1
∑

A∈Ai
wA�A(θ;Y), where

cl(θ;Y) = log CL(θ;Y) and �A(θ;Y) = log LA(θ;Y).
Let c̃l(1)

r (θ) denote ∂ cl(θ;Y)/∂θ[r], with θ[r] correspond-
ing to the rth element in θ . Let the composite score vector
U(θ;Y) = c̃l(1)(θ) correspond to the vector of first derivatives.
The maximum CLE is given by

θ̂c = arg max
θ∈�

cl(θ;Y).

Because each term in (1) is a likelihood object, the resulting
composite score equation U(θ;Y) = 0 is unbiased under the as-
sumption that these likelihood objects are valid marginal densi-
ties of the underlying joint parametric model f (y;ψ). As usual,
the composite likelihood estimate is obtained as a solution to
this composite score equation. From the classical theory of es-
timating functions (e.g., Song 2007, chapter 3), the associated
CLE is consistent and asymptotically normally distributed un-
der some mild regularity conditions.

2.2 Bayes Information Criterion

Denote the true full parameter by ψT = (θT ,ηT) ∈ int(�)

and the true marginal parameter by θT ∈ int(�). Conse-
quently, the true full model is f (y;ψT) and the true marginal
model constitutes a set of true composite marginal densities
{f (yA; θT),A ∈ A}.

To derive BIC in the composite likelihood framework, we
need some additional notations. Let P = dim(�), and let s
be a subset of {1, . . . ,P}. Denote by θ s the parameter θ with
those elements outside s being pre-specified as 0 or some
known values. Because set s and a candidate marginal submodel
{f (yA; θ s),A ∈ A} correspond to each other uniquely, this sub-
model is simply denoted by s for convenience. Consequently,
set T ⊆ {1, . . . ,P} denotes the true marginal model.

Let ds be the number of parameters under a marginal sub-
model s. Let S denote the model space of all possible submod-
els being considered. Associated with each submodel s, let p(s)
be the prior probability of the occurrence of the submodel de-
fined on space S .

In the conventional setting where the number of parameters P
is fixed (or not dependent on the sample size n), it is com-
monly assumed that each submodel s has an equal probability
of being selected, namely a uniform prior over the model space,
p(s) = 1/ card(S), where card(S) is the cardinality of S . Under
the full likelihood framework, assuming equal priors for dif-
ferent submodels, Schwarz (1978) proposed the BIC criterion
to select the best model among all the candidate models. The
first term in BIC is minus twice the log-likelihood evaluated at
the maximum likelihood estimate and the second term is log(n)

times the number the parameters in the model.
A much more challenging task of model selection in high-

dimensional data analysis is that P is not fixed but increases as
the sample size rises. Suppose that P = O(nκ), with κ > 0. In
this case, the equal probability prior will actually favor models
with more parameters; see for example Chen and Chen (2008).
In many practical studies, important attributes are typically only
a handful, in spite of a large P. This naturally necessitates the
imposition of lower preferences on models with a large number
of parameters; in other words, an additional penalty is required
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in BIC to ensure an increasing chance of selecting models with
sparsity. This can be done by assigning priors through a strati-
fied sampling scheme proposed by Chen and Chen (2008). To
proceed, first partition the model space into submodel spaces
S = ⋃P

k=1 Sk, where each Sk contains models with k parame-
ters. For example, S1 is a collection of all the models containing
one parameter. Let τ(Sk) = card(Sk) be the size of Sk. Obvi-
ously, τ(S1) = P. Within a given subspace Sk, an equal proba-
bility prior is imposed as p(s|Sk) = 1/τ(Sk), s ∈ Sk. Moreover,
specifying prior probabilities for these subspaces proportional
to their sizes, say p(Sk) ∝ {τ(Sk)}ξ for some ξ ≤ 1, we obtain
that the prior probability of a submodel s being selected via this
stratified sampling procedure is proportional to τ(Sk)

−γ , with
γ = 1 − ξ > 0. Using such prior probabilities, Chen and Chen
(2008) have proposed an extended BIC criterion which has an
extra penalty term 2γ log τ(Sk) for s ∈ Sk on the model space
complexity.

When the full likelihood is numerically prohibitive to com-
pute, we aim to develop an analogue of extended BIC criterion
based on the composite likelihood. It is natural to generalize
the approach of BIC and select the model with the highest com-
posite posterior probability. In this spirit, for any model s, we
define the composite posterior probability as follows:

Pc(s|Y) = p(s)
∫

CL(Y|θ s)πs(θ s)dθ s∑
s∈S p(s)

∫
CL(Y|θ s)πs(θ s)dθ s

,

with πs(θ s) denoting the prior density of θ s. It is assumed that
logπs(θ s) = O(1), and πs(θ s) is sufficiently flat in the neigh-
borhood of θ̂c

s . Using the Laplace approximation (Tierney and
Kadane 1986; Tierney, Kass, and Kadane 1989), and ignoring
Op(1) terms, we have the resulting criterion simplified as:

−2 log CL(θ̂ c
s;Y) + ds log(n) + 2γ log

{
τ
(

Sds

)}
. (2)

Extra consideration is needed regarding the measure of
model complexity in the context of composite likelihood
methodology. The asymptotic distribution of composite log-
likelihood ratio statistic is a weighted sum of χ2

1 distribution,
with the total weights equal to the effective degrees of freedom
d∗

s = trace(H−1
s Vs), where

Hs = EψT,0

{−c̃l(2)(θ s)
}

and
(3)

Vs = varψT,0

{
c̃l(1)(θ s)

}
.

Here c̃l(2)(θ) denotes the matrix of second order derivatives
c̃l(2)

rt (θ) = ∂2 cl(θ;Y)/∂θ[r] ∂θ[t]. The expected value and the
variance of the composite log-likelihood ratio statistic are d∗

s
and 2d∗

s , respectively. The d∗
s has been accepted as a measure

of model complexity in composite likelihood setting (Varin and
Vidoni 2005). Such modification is necessary to ensure the se-
lection consistency as shown in a subsequent section. Thus we
propose to replace ds in (2) by d∗

s . The proposed CL-BIC for
model selection is given as follows:

CL-BIC(s) = −2 log CL(θ̂c
s;Y) + d∗

s log(n)

+ 2γ log
{
τ
(

Sd∗
s

)}
, (4)

with the cardinality term τ(Sd∗
s
) = Pd∗

s . In (4), the first term is
minus twice of the composite log-likelihood that reflects the
goodness-of-fit for a given model s, the second term is the

penalty for the model complexity; and the third term is the
penalty on the model space complexity that enforces sparsity
on any model selected. The coefficient γ tunes the degree of
preference for large sized models. The larger the γ , the more
favorable a sparse model becomes.

Now we briefly discuss an efficient estimation of d∗
s . Let a

consistent estimator of d∗
s be denoted as d̂∗

s = trace(Ĥ−1
s V̂s).

For matrix Hs, under standard regularity conditions, a consis-
tent estimator is the negative Hessian matrix evaluated at the
maximum composite likelihood estimator:

Ĥs = −c̃l(2)(θ s)
∣∣
θ̂c

s
.

If the Hessian is difficult to compute, an alternative estimator is

Ĥs = −
n∑

i=1

∑
A∈Ai

wA

(
∂�A(θ s,Y)

∂θ s

∣∣∣∣
θ̂c

s

)(
∂�A(θ s,Y)

∂θ s

∣∣∣∣
θ̂c

s

)′
,

as the second Bartlett identity remains true for each subset.
The estimation of Vs poses more difficulties, since the corre-

sponding naive estimator

V̂s =
(

n∑
i=1

∑
A∈Ai

wA
∂�A(θ s,Y)

∂θ s

∣∣∣∣
θ̂c

s

)

×
(

n∑
i=1

∑
A∈Ai

wA
∂�A(θ s,Y)

∂θ s

∣∣∣∣
θ̂c

s

)′

vanishes when evaluated at the maximum composite likelihood
estimator. If all the Y1, . . . ,Yn are independent, Vs can be es-
timated by the sample variances of the individual contributions
to the composite score function. An interesting alternative is to
perform jackknife (Zhao and Joe 2005) for the evaluation of the
variance matrix. For non-independent samples, one might parti-
tion the sample Y so that the corresponding contributions to the
composite score function are approximately uncorrelated. Then
the empirical and jackknife estimation can be derived based on
these contributions. A more detailed discussion on the estima-
tion of Vs, especially for time series and spatial data, may be
found in Varin (2008).

3. MODEL SELECTION CONSISTENCY

Given all the competing models in model space, the notion
of consistent model selection is about identifying the small-
est correct model with probability tending to one as the sample
size increases. We further assume that under the data generat-
ing mechanism, the number of parameters in the true model is
bounded by a constant K. In what follows, the model space S
is restricted to {s : ds ≤ K}. Given an arbitrary model s, it may
be one of the following three scenarios: (i) the true marginal
model T , with the parameter vector θT containing dT compo-
nents; (ii) an under-fitting marginal model s− with θ s− � θT ;
(iii) an over-fitting marginal model s+ with θT ⊂ θ s+ and
θ s+ 	= θT . The corresponding sets of under-fitting models and
over-fitting models are denoted as S− and S+, respectively.
Let CL-BIC(s), s = T, s−, s+, denote the composite likelihood
BIC criteria obtained under the true (T), under-fitting (s−), and
over-fitting marginal models (s+). It is also worthy to empha-
size that throughout this article, we focus on composite likeli-
hood, thus we are only dealing with marginal models that are
parameterized in composite likelihood formulation.
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In this paper, we assume the conventional regularity condi-
tions required for consistency and asymptotic normality of the
maximum likelihood estimator (Cox and Hinkley 1974). Fur-
thermore, we assume several additional regularity conditions
needed by composite likelihood estimation in connection to
model misspecification (White 1982; Varin and Vidoni 2005),
detailed as follows.

Assumption 1 (A1). For each submodel s, the parameter
space �s is a compact subset of Rds , and for fixed Y, cl(θ s;Y)

is twice continuously differentiable with respect to θ s.

Assumption 2 (A2). (a) For each submodel s, | cl(θ s;Y)|,
|c̃l(1)

i (θ s;Y) · c̃l(1)
j (θ s;Y)|, |c̃l(2)

ij (θ s;Y)|, i, j = 1, . . . ,ds, are
dominated by functions integrable with respect to the proba-
bility measure of the true full model for all θ s ∈ �s. (b) Denote
the composite log-likelihood ratio (CLR) between two marginal
submodels s and s′ by

λs′|s(Y; θ s′, θ s) = log

{
CL(θ s′ ;Y)

CL(θ s;Y)

}
= cl(θ s′ ;Y) − cl(θ s;Y). (5)

Assume EψT,0
{λT|s(Y; θT,0, θ s)} exists for all θ s, and has a

unique minimum at θ s,0 ∈ int(�s). Here ψT,0 is the true value
of the parameter ψT under the true full model f (y;ψ).

It is easy to see that this θ s,0 effectively defines the pseudo
true value of parameter θ s in �s under a misspecified model s,
which minimizes the expected composite KL distance (Varin
and Vidoni 2005) between the true marginal model and a mar-
ginal submodel s. That is, θ s,0 = arg minθ s∈�s EψT,0

{λT|s(Y;
θT,0, θ s)}.

Assumption 3 (A3). The random vectors Y1, . . . ,Yn are all
independently and identically distributed. The composite like-

lihood estimator θ̂c
s is consistent, θ̂c

s
p→ θ s,0, and asymptoti-

cally normally distributed,
√

n(θ̂c
s − θ s,0)

d→ Nds(0,G−1
s ), with

Gs = H−1
s VsH−1

s .

Next we provide the assumption to ensure model identifia-
bility. Between the true model and a competing model s, we
examine the standardized expected composite KL distance:

EψT,0
{λT|s(Y; θT,0, θ s,0)}/

[
varψT,0

{
λT|s(Y; θT,0, θ s,0)

}]1/2
.

In the traditional setting of P being fixed, the space of all pos-
sible candidate models is also fixed. The model at which the
minimum of such distance is attained remains the same as sam-
ple size increases. Therefore the minimum of such distance
between the true model and other competing models is of or-
der O(

√
n). When P increases with the sample size n, the true

model is still fixed but the potential candidate model space in-
creases with the sample size. This imposes the problem that the
model at which the minimum distance is attained will change
as the model space changes. The minimum distance between
the true model and any other competing model may be growing
at a rate slower than

√
n. In order to ensure the identifiability

of the true model, a necessary lower bound is needed for such
minimum distance.

Assumption 4 (A4). Both of the following conditions are as-
sumed to hold:

lim
n→∞ min

s∈S−

{
(log n)−1/2

EψT,0
{λT|s(Y; θT,0, θ s,0)}

[varψT,0
{λT|s(Y; θT,0, θ s,0)}]1/2

}
= ∞, (6)

lim inf
n→∞ min

s∈S−

{
(log n)−1/2[varψT,0

{
λT|s(Y; θT,0, θ s,0)

}]1/2}
≥ C1 (7)

for a positive constant C1.

In effect, Equation (6) in Assumption 4 implies that as n
increases, the minimum standardized expected KL distance
should increase at a rate greater than

√
log n. Equation (7) in

Assumption 4 requires that the minimum variance of KL dis-
tance should increase at least at a rate of log n. It is a generaliza-
tion of the asymptotical identifiability condition given by Chen
and Chen (2008) in the linear model setting. Consider a model
Y = Xθ + ε, where ε ∼ Nn(0, σ 2I). Let XT and Xs denote the
design matrices of the true model and a candidate model with
respective vectors of the regression coefficients θT and θ s. De-
note the true null value as θT,0 under the true model and the
pseudo null value as θ s,0 under the candidate model. Then As-
sumption 4 given in (6) and (7) reduces to the condition in Chen
and Chen (2008):

lim
n→∞ min

s∈S−
{(log n)−1�n(s)} = ∞, (8)

with �n(s) = ‖XTθT − Xs(X′
sXs)

−1X′
sXTθT,0‖2

2.

To establish the consistency result, we need a set of addi-
tional regularity assumptions regarding the uniform bounded-
ness of the moments of the derivatives of the composite log-
likelihood. This set of Assumptions A.1–A.2 are listed in the
Appendix. Next we state the main results.

Theorem 1. Under the regularity conditions (Assumptions 1–
4, A.1, A.2),

PψT,0

{
min
s∈S−

CL-BIC(s) > CL-BIC(T)
}

→ 1,

as n → ∞.

Next we consider the over-fitting scenario. Define the model
space S+(m) ⊂ S+, with S+(m) = {s : s ∈ S+,ds − dT = m},
m = 1, . . . ,K −dT . For any over-fitting model s, define a matrix
Ds = (IdT ,0dT ,ds−dT ), with IdT being an identity matrix of di-
mension dT ×dT , and 0dT ,ds−dT denoting a matrix of zeros with
dimension dT × (ds − dT). Let Ms/T denote the difference ma-
trix (Hs(θ s,0)

−1 − D′
sH

−1
T (θT,0)Ds). Let λs[1], . . . , λs[m] denote

the nonzero eigenvalues of M1/2
s/TVs(θ s,0)M

1/2
s/T in ascending or-

der and λs = ∑m
j=1 λs[j]/m. Define

� = lim sup
n→∞

max
s∈S+

(
λs[m]/λs

)
.

When all the eigenvalues are equal, the ratio of the maximum
eigenvalue over the mean eigenvalue, λs[m]/λs, is one. On the
other hand, λs[m]/λs < m. Thus � resides in interval [1,K −
dT).



Gao and Song: Composite Likelihood Bayesian Information Criteria 1535

Theorem 2. Under the regularity conditions (Assumptions 1–
4, A.1, A.2), when γ > � − 1/(2κ),

PψT,0

{
min
s∈S+

CL − BIC(s) > CL − BIC(T)
}

→ 1,

as n → ∞.

4. SIMULATION

To examine the performance of the proposed CL-BIC, we
conduct three Monte Carlo simulation experiments to select sig-
nificant parameters in the setting of high-dimensional data.

4.1 Multivariate Normal Model

We consider the multivariate familial data analysis discussed
in Zhao and Joe (2005). The sample is drawn from families
with inter-correlations among individuals in a family. Denote
the numbers of families and members in each family by n
and m. The response vector of measurements for the ith fam-
ily is denoted by Yi = (yi1, . . . , yim)′. Associated is a set of
covariates at the individual level, Xi = (xi1, . . . ,xim)′, with
xik = (xik1, . . . ,xikP)′, representing the P covariates observed
for the kth individual in the ith family. The first simulation
is focused on a multivariate normal model, in which Yi fol-
lows a multivariate normal distribution, Nm(μi,�), where the
mean vector is governed by a linear model, μi = Xiβ, with
β = (β1, . . . , βP)′. The covariance matrix � is specified ac-
cording to an exchangeable dependence structure, σk,k′ = ρ. In
addition, among all the covariate coefficients, most of them are
zero while a small subset are nonzero. We wish to select the
significant covariates among the P candidates.

We consider two different scenarios. In the first scenario,
we set P = 30, n = 200 and m = 4. The covariates are gen-
erated from a multivariate normal with the standard normal
N(0,1) marginals and inter-correlation Cov(xikp, xikp′) = 0.2.

The within-family correlation ρ is set to either 0.3 or 0.6.

The regression coefficients of the true marginal model are set
to two cases β1(T) = (0.1,0.2,0.4,0.1,0.4,0.2,0.3,0.4,0.5,

0.3)′, or β2(T) = (0.5,0.1,0.4,0.3,0.5,0.1,0.004,0.04,0.03,
0.003)′, with the other 20 coefficients set to zero. The second
case contains 10 nonzero coefficients, while four of them are
too small and considered to be not useful and not be used to
compute the positive selection rates. This setup can help us
evaluate the performance of the model selection criteria when
the covariates have different levels of effect. In the second sce-
nario, we set P = 1000, n = 200, and m = 4. The covariates

are partitioned into 20 blocks of 50 each. Within each block,
the covariates are generated from a multivariate normal with
univariate standard normal marginals and equal inter-covariate
correlation 0.2, and covariates from different blocks have zero
correlations. Similarly, the within-family correlation ρ is set to
either 0.3 or 0.6. The regression coefficients of the true mar-
ginal model are set to the same values as those in scenario I
with the other 990 coefficients set to zero.

We impose penalization on the composite likelihood with
L1 penalty. We gradually increase the tuning parameter in the
penalty term and obtain a sequence of nested models. Under
scenario II with P � n, we randomly partition the 1000 covari-
ates into 8 disjoint subsets of 125 covariates each and apply the
penalized composite likelihood on each subset. We then pool
the reduced subsets of covariates together and perform the same
procedure to obtain the sequence of nested models, at which the
CL-BIC is computed to determine the optimal tuning.

For each candidate model, the CL-BIC is evaluated under ei-
ther the univariate composite likelihood

∑n
i=1

∑m
k=1 cl(yik;β),

or the pairwise composite log-likelihood
∑n

i=1
∑

k<k′ cl(yik,

yik′ ;β). The resulting two CL-BIC criteria are denoted as CLU-
BIC or CLB-BIC, respectively. For the purpose of comparison,
we also include Varin and Vidoni’s CLU-AIC based on the uni-
variate composite likelihood, and Chen and Chen’s EBIC based
on the full likelihood that serves as the gold standard. The two
versions of CL-BIC and the EBIC are calculated with γ = 0,

and 0.5 for scenario I and with γ = 0, 0.5 1.0 for scenario II.
For each setting, 100 simulated data sets are generated. Ta-

bles 1 and 2 summarize the performance of the different infor-
mation criteria. The positive selection rate (PSR) is defined as
the ratio of identified significant predictors among all the sig-
nificant predictors. The false discovery rate (FDR) is defined as
the ratio of falsely identified predictors among all the identified
predictors. In a multiple testing framework, the positive selec-
tion rates reflect the power or sensitivity of the test, and the false
discovery rate reflects the error rate or selectivity of the test.

Table 1 provides the performance of different methods when
n = 200, and P = 30. we observe that the strength of correla-
tion does mildly affect the performance of different methods.
But the relative comparison among different methods exhibits
the same pattern at different correlation levels. As CLU-AIC
has less penalty on the model complexity, it always achieves
higher PSR than CLU-BIC and CLB-BIC. Under such a mod-
est sample size and small P setting, all the information criteria
have satisfactory FDR control. With regard to the size of γ for

Table 1. Positive selection rates (PSR) and false discovery rates (FDR) on multivariate normal model with P = 30 and N = 200

β ρy Rate CL-AIC CLU-BIC0 CLU-BIC0.5 CLB-BIC0 CLB-BIC0.5 EBIC0 EBIC0.5

β1 0.3 PSR 0.878 0.739 0.655 0.911 0.875 0.914 0.877
FDR 0.035 0.003 0.002 0.037 0.011 0.034 0.008

0.6 PSR 0.873 0.727 0.668 0.946 0.903 0.949 0.913
FDR 0.026 0.002 0.002 0.053 0.014 0.055 0.017

β2 0.3 PSR 0.852 0.697 0.667 0.892 0.818 0.892 0.825
FDR 0.108 0.005 0.004 0.116 0.045 0.128 0.041

0.6 PSR 0.845 0.695 0.663 0.938 0.890 0.940 0.888
FDR 0.095 0.014 0.006 0.142 0.065 0.135 0.060
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Table 2. Positive selection rates (PSR) and false discovery rates (FDR) on multivariate normal model with P = 1000 and n = 200

β ρy Rate CL-AIC CLU-BIC0 CLU-BIC0.5 CLU-BIC1.0 CLB-BIC0 CLB-BIC0.5 CLB-BIC1.0 EBIC0 EBIC0.5 EBIC1.0

β1 0.3 PSR 0.896 0.758 0.611 0.505 0.893 0.819 0.789 0.889 0.818 0.789
FDR 0.472 0.035 0.002 0.000 0.439 0.039 0.012 0.378 0.037 0.011

0.6 PSR 0.894 0.766 0.601 0.508 0.894 0.837 0.814 0.881 0.838 0.809
FDR 0.456 0.046 0.004 0.000 0.346 0.052 0.026 0.211 0.052 0.023

β2 0.3 PSR 0.868 0.687 0.622 0.582 0.850 0.717 0.693 0.842 0.710 0.692
FDR 0.780 0.025 0.009 0.002 0.641 0.044 0.014 0.545 0.032 0.014

0.6 PSR 0.873 0.688 0.612 0.575 0.847 0.728 0.703 0.815 0.722 0.702
FDR 0.783 0.033 0.009 0.006 0.535 0.064 0.020 0.316 0.053 0.020

the CL-BIC criteria, γ = 0.5 or higher seems unnecessary, and
it attenuates the power. Therefore, using γ = 0 is recommended
here by both CL-BIC and EBIC. The CLB-BIC always achieve
higher PSR than CLU-BIC, demonstrating the power gain by
using the pairwise likelihoods rather than the univariate likeli-
hoods. Compared to the full likelihood based EBIC, CLB-BIC
has shown PSR and FDR very close to those of EBIC. This
demonstrates that under the exchangeable correlation structure,
the discrepancy between the pairwise likelihood and the full
likelihood is very little.

Table 2 provides the performance of different methods when
n = 200, and P = 1000. With such a large number of covari-
ates, the CLU-AIC does not adequately control the FDR rate. It
seems that CLB-BIC0.5 has a satisfactory performance and con-
trols the FDR rate very well. The penalty with γ = 1 seems too
harsh, and it attenuates the power. Therefore, when P = 1000
and n = 200, CLB-BIC0.5 is recommended. The CLB-BIC al-
ways achieves higher PSR than does CLU-BIC, suggesting the
importance of incorporating correlation in the composite like-
lihood. The performance of CLB-BIC is very close to that of
EBIC.

4.2 Multivariate Probit Model

The second simulation study is based on a multivariate pro-
bit model, in which the binary response vector arises from a
dichotomization of an underlying multivariate normally distrib-
uted random vector. Under the same setup in Section 4.1, binary
correlated responses are obtained by dichotomizing the contin-
uous multivariate normal measurements. Also, the two scenar-
ios of P < n and P � n are considered. For a multivariate probit
model with many covariates, the full likelihood involves high

dimensional integration and is computationally prohibitive. We
thus compare the performance of the different information cri-
teria under only composite likelihood methodology, including
CLU-AIC, CLU-BIC, and CLB-BIC. For each setting, 100 sim-
ulated data sets are generated. Results are summarized in Ta-
bles 3 and 4. It is noted that even with P = 30, and n = 100, the
over-fitting effect of CLU-AIC is exhibited. When P = 1000,

the FDR of CLU-AIC is about 50 to 70 percent, indicating an
inadequate control of the error rate. The CLB-BIC always has
higher PSR than does CLU-BIC because of the advantage of
using pairwise likelihoods over univariate likelihoods. When
P = 30, the penalty term with γ = 0 is sufficient to maintain
a good FDR for CLB-BIC. When P = 1000, the penalty term
with γ = 0.5 is needed to control the error rate. Thus for the
multivariate probit model, the CLB-BIC is recommended for its
computational feasibility and simplicity compared to the full
likelihood approach, and also it clearly provides a satisfactory
performance in terms of sensitivity and selectivity.

4.3 Quadratic Exponential Model

In the above two simulations, we examine the performance of
CL-BIC when univariate and pairwise likelihoods are involved
in the composite likelihood formulation. In the third simula-
tion, we will consider a less simple formulation involving con-
ditional likelihoods which has been discussed by Geys, Molen-
berghs, and Ryan (1997, 1999) and Hanfelt (2004), among oth-
ers.

Consider an experiment involving n clusters, the ith of which
contains ni binary measurements. Suppose yij = 1 when the out-
come is success and yij = −1 when the outcome is failure. Let
Yi represent the vector of outcomes for the ith cluster. Geys,

Table 3. Positive selection rates (PSR) and false discovery rates (FDR) on multivariate probit
model with P = 30 and n = 100

β ρy Rate CL-AIC CLU-BIC0 CLU-BIC0.5 CLB-BIC0 CLB-BIC0.5

β1 0.3 PSR 0.846 0.710 0.670 0.768 0.682
FDR 0.248 0.068 0.060 0.111 0.063

0.6 PSR 0.850 0.713 0.675 0.769 0.707
FDR 0.233 0.067 0.052 0.104 0.063

β2 0.3 PSR 0.812 0.693 0.687 0.707 0.692
FDR 0.394 0.079 0.071 0.111 0.078

0.6 PSR 0.813 0.703 0.695 0.735 0.693
FDR 0.363 0.089 0.065 0.130 0.069
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Table 4. Positive selection rates (PSR) and false discovery rates (FDR) on multivariate probit model with P = 1000 and n = 100

β ρy Rate CL-AIC CLU-BIC0 CLU-BIC0.5 CLU-BIC1.0 CLB-BIC0 CLB-BIC0.5 CLB-BIC1.0

β1 0.3 PSR 0.790 0.766 0.593 0.393 0.782 0.647 0.475
FDR 0.522 0.431 0.118 0.029 0.494 0.169 0.055

0.6 PSR 0.778 0.756 0.571 0.398 0.775 0.640 0.500
FDR 0.540 0.448 0.095 0.024 0.516 0.181 0.058

β2 0.3 PSR 0.865 0.840 0.635 0.540 0.863 0.692 0.588
FDR 0.703 0.587 0.092 0.012 0.696 0.163 0.031

0.3 PSR 0.868 0.828 0.637 0.518 0.858 0.718 0.592
FDR 0.711 0.590 0.087 0.012 0.678 0.167 0.036

Molenberghs, and Ryan (1997) used the following model for
the joint distribution of clustered binary data:

fYi(yi) ∝ exp

{ ni∑
j=1

μijyij +
∑
j≤j′

wijj′yijyij′

}
, (9)

which belongs to the quadratic exponential family discussed in
Zhao and Prentice (1990).

It is more convenient to express the joint distribution in terms
of zi, the number of successes for the ith cluster. Assuming
μij ≡ μi and wi ≡ w, and through reparametrization μ∗

i = 2μi,

and w∗ = 2w, model (9) is transformed into:

fYi(yi) = exp
{
μ∗

i zi + w∗(−zi(ni − zi)) − C(μ∗
i ,w∗)

}
,

with C(μ∗
i ,w∗) being the normalizing constant. A positive

interaction effect w∗ corresponds to classical clustering or
over-dispersion, while a negative value corresponds to under-
dispersion.

Using traditional likelihood approach to analyze such data
will inevitably involve highly intensive calculation of the nor-
malizing constant C(μ∗

i ,w∗), which varies across clusters of
different sizes. As an appealing alternative method, we formu-
late the composite likelihood in the form of conditional likeli-
hoods.

cl =
n∑

i=1

ni∑
j=1

log f (yij|{yij′ }, j′ 	= j).

To agree with the general form in Equation (1), this formu-
lation can be viewed as having weight ni for the index sub-
set (1,2, . . . ,ni), and having weight −1 for all the index sub-
sets containing ni − 1 distinct indices, and having weight 0 for
any other subsets. Within each cluster, there are ni conditional
probabilities of observing the outcome for the jth measurement,
given the outcome for the other ni − 1 measurements. Under
the assumption of the exchangeable nature of the measurement,
there are two types of contributions: (i) the conditional prob-
ability of an additional success result, given there are zi − 1
successes and ni − zi failures:

pis = exp{μ∗
i − w∗(ni − zi + 1)}

1 + exp{μ∗
i − w∗(ni − zi + 1)} ,

(ii) the conditional probability of an additional failure, given
there are zi successes and ni − zi − 1 failures:

pif = exp{−μ∗
i + w∗(ni − zi − 1)}

1 + exp{−μ∗
i + w∗(ni − zi − 1)} .

Thus, the composite likelihood can be expressed as cl =∑n
i=1{zi log pis + (n − zi) log pif }.
Modelling in terms of covariate effect can be achieved us-

ing the linear model μ∗
i = Xiβ, where Xi is a 1 × P vec-

tor containing the covariate values and β is a P × 1 vec-
tor of regression coefficients. Under this conditional likeli-
hood framework, we conduct the following simulation to se-
lect the true covariates that affect the parameters μ∗

i . Within
each simulated data set, n clusters are generated. Within
each cluster, ni binary measurements are simulated, where
ni ranges from 4 to 8. The binary measurements are simu-
lated according to the quadratic exponential model (9), with
μ∗

i = Xiβ. The design matrix entry xijs are randomly drawn
from N(0,1). The vector β contains 1000 regression coeffi-
cients, in which only ten coefficients are nonzero and equal to
0.2,0.2,0.4,0.3,0.4,0.2,0.3,0.4,0.5,0.3; the remaining 990
covariates effects are set to zero. We impose penalization on the
composite likelihood with L1 penalty. We gradually increase the
tuning parameter in the penalty term and obtain a sequence of
models. For each candidate model s, we compute the ratio of
the maximum eigenvalue over the mean eigenvalue of the ma-

trix Ĥ−1/2
s V̂sĤ

−1/2
s . The maximum ratio over all the models

being examined offers an ad-hoc estimator �̂ of the quantity
�. The CL-BIC is evaluated with γ = �̂ − 0.5. The CL-AIC
is evaluated for comparison.

Table 5 summarizes the performance of the two different in-
formation criteria based on 100 simulated data sets under each

Table 5. Positive selection rates (PSR) and false discovery rates
(FDR) on quadratic exponential model with P = 1000

n w Rate CL-AIC CL-BIC

500 0.2 PSR 0.937 0.933
FDR 0.777 0.218

0.3 PSR 0.921 0.915
FDR 0.742 0.250

0.4 PSR 0.923 0.914
FDR 0.728 0.394

1000 0.2 PSR 0.936 0.936
FDR 0.809 0.016

0.3 PSR 0.923 0.923
FDR 0.783 0.032

0.4 PSR 0.914 0.914
FDR 0.757 0.139
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setting. The number of clusters are set to be 500 or 1000, and
the interaction effects are set to be 0.2, 0.3, and 0.4. Across dif-
ferent settings, both methods can achieve PSR about 90 percent.
However, the over-fitting effect of CL-AIC is exhibited. The
FDR of CL-AIC is about 70 to 80 percent, indicating an inade-
quate control of the error rate. In contrast, when n = 1000, the
FDR of CL-BIC is well under 5 percent with w = 0.2 or 0.3,
and about 13.9 percent with w = 0.4, demonstrating a good
control of error rate. It is also shown that the performance of
CL-BIC greatly improves when the cluster size n increases from
500 to 1000. When the interaction effect increases from 0.2 to
0.4, the CL-BIC will have lower PSR and higher FDR, showing
the influence of the interaction effect on the performance of the
proposed method. Overall, for quadratic exponential model, the
CL-BIC criterion has been shown to perform very well with the
formulation of conditional likelihoods.

4.4 Some Practical Guidelines

Here we provide a remark regarding the selection of γ in the
penalty term. We implemented two approaches in three simu-
lations above. One varies the magnitude of γ and selects the
optimum value that offers the best balance between sensitivity
and selectivity as shown in Sections 4.1 and 4.2. The other ap-
proach uses γ = �̂ −1/(2κ), as shown in Section 4.3 under the
circumstances that the sample size is fairly sufficient to obtain
a good estimate of �.

The estimation of d∗
s is needed in the implementation of the

methods, which has been outlined in Section 2. To demonstrate
the relationship between ds and d∗

s , we follow the setup in Sec-
tion 4.2 and consider a sequence of models under the setting of
multivariate probit model with P = 1000, and the inter-family
correlation equal to 0.3. Similarly, we use the setup in Sec-
tion 4.3 and examine a sequence of models under the quadratic
exponential model with P = 1000, and w = 0.2. The degrees
of freedom ds of the models being examined range from 1 to
80. The estimated d̂∗

s is obtained from n = 1000 data points
to ensure reliability of estimation. It is observed from the sim-
ulations that d̂∗

s increases in an approximately linear pattern
with ds. For instance, in the setting of multivariate probit model
using composite univariate likelihood, when ds takes the val-
ues of 5,6,9,11,79, the corresponding d̂∗

s takes the values
of 3.94,4.85,7.92,10.02,77.87, respectively. In the setting of
quadratic exponential model using composite conditional like-
lihood, when ds takes the values of 5,8,10,14,78, the cor-
responding d̂∗

s takes the values 3.44,6.19,8.08,10.69,60.85.

The difference d̂∗
s − ds is plotted versus ds in Figure 1. When ds

is below 20, the difference is below 2 for composite univariate
likelihood and below 5 for composite conditional likelihood.
Thus, as an empirical guideline, if the sample size is not large
enough to give a reliable estimate of d̂∗

s , ds may be used as a
convenient replacement of d∗

s , when ds is not too large.

5. REAL DATA ANALYSIS

To examine the empirical performance of the proposed
method, we analyze a data from a diabetic nephropathy (DN)
study at University of Michigan. In this data set, 35 DN abnor-
mal patients were followed for a period of time ranging from
6.91 to 10.89 years. During the period, their renal functions

Figure 1. Comparison of estimated effective degrees of freedom d∗
s

versus the degrees of freedom ds. The online version of this figure is
in color.

were measured at multiple time points and the treatment re-
sults were classified into binary outcomes as either successful
or failure. Each of the patients’ renal tissue had undergone a mi-
croarray analysis to obtain gene expression data. The purpose
of the study is to determine if there are any biomarkers among
the 500 candidate genes that have important influence on the
risk of exacerbation through a certain therapeutic program. The
challenge imposed by this data analysis is the presence of corre-
lation among repeated measurements within each patient. Fur-
thermore, the number of repeated measurements varies across
the 35 patients. The total number of measurements is 402, while
the total number of candidate covariates is 500. This data set is
a practical example containing a large number of covariates
and strong dependency among the clustered binary outcomes.
We analyze the data using the composite conditional likelihood
(Geys, Molenberghs, and Ryan 1997, 1999; Hanfelt 2004).

In order to perform the model selection, we impose penaliza-
tion on the composite likelihood with L1 penalty. We gradually
increase the tuning parameter in the penalty term and obtain a
sequence of models, at which both CL-AIC and CL-BIC are
computed. We choose γ = 1 − 1/(2κ) = 0.75, setting κ = 2,

and �̂ = 1, the lower bound of �. When the tuning parame-
ter increases from 0.04 to 0.26, the number of parameters in
the sequence of selected models are 3,4,5,8,9,11, respec-
tively. Under the assumption that only a handful of gene co-
variates really influence the renal function, we do not further
increase the bound to obtain more complicated models. For the
sequence of selected models, the CL-BIC takes the values of
557.85,551.21,559.21,578.96,585.45,567.32, whereas the
CL-AIC takes the value of 536.09,518.5732,515.7058,

502.8211,498.4278,458.5472. As shown, CL-BIC is mini-
mized at an intermediate model with 4 parameters including in-
tercept, interaction and 2 gene covariates. Among all the models
being examined, CL-AIC is minimized at the most complicated
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model with 11 parameters. The CL-BIC shows its advantage of
balancing the model fitting and model complexity when dealing
with a large model space.

6. CONCLUDING REMARKS

Model selection is difficult when the number of parameters
in the model increases with the sample size. Recently, EBIC
(Chen and Chen 2008) has been advocated to address the diffi-
culty through adding an extra penalization term on the dimen-
sionality of the model space. The selection consistency of the
EBIC has been established in the linear regression and gener-
alized linear model settings. The proposed CL-BIC may be re-
garded as an extension of EBIC, but it is applicable to a much
broader range of likelihood or quasi-likelihood methods. The
model selection consistency of CL-BIC remains true under mild
regularity conditions. This is illustrated numerically via three
important statistical models. Obviously, a key advantage of the
CL-BIC is that it makes the variable selection possible even if
the full likelihood is not feasible to compute.

APPENDIX

Additional Regularity Assumptions

Throughout the rest of the appendices, let ‖ ·‖ denote the supremum

norm. Let c̃l(3)
rtu (θ) denote the mixed partial derivative ∂3 cl(θ;Y)/

∂θ[r] ∂θ[t] ∂θ[u], with the subscripts [r], [t], and [u] denoting the
elements in the parameter vector θ . Let R = r1, . . . , rm denote

a set of coordinate indices with m ≤ 3. Then c̃l(m)
R (θ) denotes

∂m cl(θ;Y)/∂θ[r1] · · · ∂θ[rm]. For instance, when R = r1, r2, c̃l(2)
R (θ)

denotes ∂2 cl(θ;Y)/∂θ[r1] θ[r2]. The following assumptions mainly re-
quire the moments (up to the third moments) of the derivatives (up to
the third order) of the composite likelihood functions are uniformly
bounded in the model space.

Assumption A.1 (A5). (a) Let R = r1, . . . , rm denote a set of coor-
dinate indices with m ≤ 3. It is assumed that for all s ∈ S with ds ≤ K,

n−1EψT,0

[{
c̃l(m)

R (θs,0)
}2] ≤ C2.

(b) It is assumed that for all s ∈ S with ds ≤ K,

0 < C3 ≤ λmin(n−1Hs(θ s,0)); 0 < C4 ≤ λmin(n−1Vs(θs,0)),

with λmin denoting the smallest eigenvalue. Furthermore, for all s ∈
S+, 0 < C5 ≤ λs[1], where λs[1] denotes the smallest nonzero eigen-

values of the matrix M1/2
s/T VsM1/2

s/T .

(c) Let R = r1, . . . , rm denote a set of coordinate indices with m =
2, or 3. It is assumed that, for any given ε > 0, there exists a constant
η > 0, such that

(1 − ε)
∣∣EψT,0

[
n−1c̃l(m)

R (θ s,0)
]∣∣ ≤ ∣∣EψT,0

[
n−1c̃l(m)

R (θ∗)
]∣∣

≤ (1 + ε)
∣∣EψT,0

[
n−1c̃l(m)

R (θ s,0)
]∣∣

for all s ∈ S with ds ≤ K, and ‖θ∗ − θ s,0‖ ≤ η.

Assumption A.2 (A6). (a) Let R = r1, . . . , rm denote a set of coor-

dinate indices with m ≤ 3. Let J(R)
s (Yi; θ∗) = (

∂m cl(θ s,Yi)
∂θ[R] |θ s=θ∗ −

E[ ∂m cl(θ s,Yi)
∂θ[R] |θ s=θ∗ ])/var( ∂m cl(θ s,Yi)

∂θ[R] |θ s=θ∗ )1/2. There exist con-

stants ζ and δ, such that the absolute value of the third derivative of

the cumulant generating function |g(3)(t)| of J(R)
s (Yi; θ∗) is bounded

by constant C6, for all the ‖θ∗ − θ s,0‖ ≤ ζ, 0 ≤ |t| ≤ δ, and all the
s ∈ S,ds ≤ K.

(b) Let

Ws(Yi) =
λT|s(Yi; θT,0, θ s,0) − EψT,0

{λT|s(Yi; θT,0, θ s,0)}
[varψT,0

{λT|s−(Yi; θT,0, θ s−,0)}]1/2
.

There exists constant δ, such that the absolute value of the third deriva-
tive of the cumulant generating function |g(3)(t)| of Ws(Yi) is bounded
by constant C7, for all 0 ≤ |t| ≤ δ, and all the s ∈ S,ds ≤ K.

SUPPLEMENTAL MATERIALS

Technical details: The web appendix provides technical proofs
for all of our theoretical results. (CLBICJuly2010supp.pdf)

[Received July 2009. Revised July 2010.]
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