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a b s t r a c t

This paper presents a unified framework of stationary ARMA processes for discrete-valued
time series based on Pegram’s [Pegram, G.G.S., 1980. An autoregressive model for multilag
markov chains. J. Appl. Probab. 17, 350–362] mixing operator. Such a stochastic operator
appears to be more flexible than the currently popular thinning operator to construct Box
and Jenkins’ type stationary ARMAprocesseswith arbitrary discretemarginal distributions.
This flexibility allows us to yield an ARMAmodel for time series of binomial or categorical
observations as a special case, which was unavailable with the extended thinning operator
[Joe, H., 1996. Time series models with univariate margins in the convolution-closed
infinitely divisible class. J. Appl. Probab. 33, 664–677] because the binomial/categorical
distribution is not infinitely divisible. We also study parameter estimation and comparison
with the thinning operator based method, whenever applicable. Real data examples are
used to examine and illustrate the proposed method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The theory of ARMAmodels (Box and Jenkins, 1976) has been playing a central role inmodeling of continuous time series
data arising in many practical fields. When the time series data are non-Gaussian, the ARMAmodels are no longer suitable.
For example, a stationary AR(1)model for time series of counts is constructed via the so-called thinning operator (e.g. Steutel
and van Harn (1979)).
Joe (1996) extended the thinning operator to a family of infinitely divisible distributions, including the Gaussian ARMA

model as a special case. Also see Jørgensen and Song (1998). It is very unfortunate that the important cases of binomial and
categorical processes are excluded from this class of models.
Discrete-valued stationary processes have been studied by Jacobs and Lewis (1978, 1983)). However, their representation

of discrete-valued ARMA processes differs from that of Box and Jenkins’. Kanter’s (1975) binary stationary process is defined
through a stochastic operator of ‘‘addition mod 2’’, and the operation ofmodulo can only bemanipulated arithmetically, and
hence not applicable for categorical-valued stochastic processes. In contrast, Pegram (1980) defined a class of discrete-
valued AR(p) processes that resembles Box and Jenkins’ ARMA processes and allows some of the serial correlations to be
negative. Moreover, the resulting autocorrelation function is independent of the marginal mean parameters. It is evident
that Pegram’s AR models are more flexible in terms of the range of correlation and the ease of interpretation.
One main contribution of this paper is to demonstrate that Pegram’s operator, originally proposed only for AR processes,

can be effectively extended to define discrete-valued ARMA processes with arbitrary discrete margins, where related
arithmetic manipulation takes place in marginal or conditional probabilities, rather than directly in the values of Yt . Hence,
a unified framework of discrete-valued stationary processes is established.
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2. Pegram’s ARMA processes

Pegram’s operator ∗ is defined as follows. For two independent discrete random variables U and V , and for a given
coefficient φ ∈ (0, 1), Pegram’s operator ‘‘mix’’ them to produce a random variable Z: Z = (U, φ) ∗ (V , 1 − φ), with
the marginal probability function given by

P(Z = j) = φP(U = j)+ (1− φ)P(V = j), j = 0, 1, . . . . (1)

Clearly, this operation works for any discrete distribution D(p0, p1, . . .), where X ∼ D(p0, p1, . . .) means that the domain
of X is {0, 1, . . .} and P(X = i) = pi, i = 0, 1, . . .. This operator ∗ indicates a mixture of two discrete distributions, with the
respective mixing weights φ and 1− φ. Therefore, we call ∗ the mixing operator in the rest of this paper.

2.1. AR(p) processes

Suppose that time series Yt is discrete and its marginal probability mass function is time-independent. Let Yt ∼
D(p0, p1, . . .). Suppose εt ’s are also independently and identically distributed as the same D(p0, p1, . . .). Denote µ = E(Yt)
and σ 2 = var(εt).

Definition 1. Let {Yt} be a discrete-valued stochastic process such that

Yt = (I[Yt−1], φ1) ∗ (I[Yt−2], φ2) ∗ · · · ∗ (I[Yt−p], φp) ∗ (εt , 1− φ1 − · · · − φp), (2)

which is a mixture of (p+ 1) discrete distributions, where I[Yt−1], . . . , I[Yt−p] are p point masses, I[.] being indicator variable,
and εt ∼ D(p0, p1, . . .), with respective mixing weights being φ1, φ2, . . . , φp and 1− φ1 − · · · − φp, φj ∈ (0, 1), j = 1, . . . , p
and

∑p
j=1 φj ∈ (0, 1). This implies that for every t ∈ 0,±1,±2, . . . , the conditional probability function takes the form

P(Yt = j|Yt−1, Yt−2, . . .) = P(Yt = j|Yt−1, Yt−2, . . . , Yt−p)

= (1− φ1 − · · · − φp)pj + φ1I[Yt−1 = j] + · · · + φpI[Yt−p = j], (3)

where φj, j = 1, . . . , p, are chosen such that the polynomial equation 1 − φ1z − · · · − φpzp = 0 has roots lying outside of the
unit disc.

Marginal stationarity of {Yt} is immediate, and the conditional expectation of Yt given Yt−h’s is E(Yt |Yt−1, . . . , Yt−p) =
(1− φ1 − · · · − φp)µ+ φ1Yt−1 + · · · + φpYt−p. It is easy to show that the ACVF of Yt is

γ (h) = cov(Yt , Yt−h) = φ1γ (h− 1)+ · · · + φpγ (h− p).

It follows that the autocorrelation function (ACF) is given by

ρ(h) = φ1ρ(h− 1)+ · · · + φpρ(h− p), for all h. (4)

Note that the ρ(h) has the same expression as in the Box–Jenkins’ AR(p) model, and hence the ACF of the AR(1) process is
ρ(h) = corr(Yt , Yt−h) = φ|h|.
As aMarkov process, the AR(1)model characterizes the transition probabilities described as follows. First, the probability

transition equation can be expressed as of the form pt = Tpt−1 where marginal probabilities pt = pt−1 = (p1, . . . , pK )>,
and the K× (K+1) transitionmatrix Tt|t−1 = [tij] = [P(Yt = j|Yt−1 = i)]. It is easy to see that T = φIK+1+ (1−φ)P , where
IK+1 is the (K + 1)-dimensional identity matrix and P = (p01K+1, . . . , pK1K+1) = p⊗ 1K+1, with 1K+1 being the (K + 1)-
element vector of all 1’s. Here ⊗ represents the Kronecker product. Also, by some simple algebra, we find the following
recursive relation for the transition matrices, T t = φtT + (1− φt)P, t = 0, 1, . . . .

2.2. Auto-odds-ratio function

As pointed out by Jacobs and Lewis (1983), the numerical measures of autocorrelations have no meaningful
interpretation, unless the categories are ordinal. Instead, we may use the odds ratio association in the case of categorical
time series for the serial dependence (Agresti, 2002). This naturally gives rise to the auto-odds-ratio function (AORF) that
measures the serial association of a categorical process at two different time points. The lag-h odds ratio takes the form

θ(h) =
P(Yt = 1, Yt−h = 1)P(Yt = 0, Yt−h = 0)
P(Yt = 1, Yt−h = 0)P(Yt = 0, Yt−h = 1)

, h ≥ 1. (5)

This describes the ratio of odds that Yt = 1 when Yt−h = 1 compared to when Yt−h = 0. We illustrate the relation between
the regular ACF and the proposed AORF. This relation allows us to estimate the sample AORF by using the sample ACF and to
establish the large sample properties of the sample AORF by applying the existing results of the sample ACF in the literature.
In the case of stationary binary AR(1) processes, with the following joint probabilities,

P(Yt = j0, Yt−1 = j1) = P(Yt = j0|Yt−1 = j1)P(Yt−1 = j1) =
{
(1− φ)pj0 + φI[j1 = j0]

}
pj1 ,
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we can calculate the lag-1 odds ratio as θ(1) = 1 + φ

(1−φ)2σ 2
, where pj = P(Yt = j), j = 0, 1, and σ 2 = var(Yt) = p1p0.

Furthermore, by induction,

P(Yt = j0|Yt−h = jh) =
(
1− φh

)
pj0 + φ

hI[jh = j0], (6)

implies P(Yt = j0|Yt−h−1 = jh+1) =
(
1− φh+1

)
pj0 + φ

h+1I[jh+1 = j0]. Hence we have the following theorem:

Theorem 1. If {Yt} is a stationary binary AR(1) process with the ACF ρ(h), then the AORF θ(h) is given by

θ(h) = 1+
ρ(h)

{1− ρ(h)}2σ 2
, h ≥ 1.

Generalizing it to the case with a finite number of categories (three or larger), we define the generalized lagged odds ratio
function (GAORF) as follows: For a pair of categories indexed by (j1, j2), j1 6= j2,

θj1,j2(h) =
P(Yt = j1, Yt−h = j1)P(Yt = j2, Yt−h = j2)
P(Yt = j1, Yt−h = j2)P(Yt = j2, Yt−h = j1)

, h ≥ 1.

This describes the ratio of odds that Yt = j1 when Yt−h = j1 compared to when Yt−h = j2. By a similar argument, we obtain
the following result.

Corollary 1. Suppose {Yt} is a stationary AR(1) process with marginal distribution D(p0, p1, . . . , pK ). Then the GAORF is

θj1,j2(h) = 1+
ρ(h)

[1− ρ(h)]2pj1pj2
, h ≥ 1, j1, j2 = 0, 1, . . . , K .

The above results also hold for AR(p) processes with h ≥ p. The related proofs are similar. For AR(1) process, the coefficient
φ determines patterns of ACF and AORF functions, both functions decay to zero in an exponential rate. For AR(p), ACF and
AORF behave similarly.
In addition, to ensure the positivity of the AORF, parameter φ has to satisfy φ/(1− φ)2 > −σ 2 = −p1(1− p1) ≥ −1/4.

This lower bound is achieved when p0 = p1 = 1/2. This leads to φ > −1, which is always true.
The partial autocorrelation function (PACF), denoted by α(h), of an AR(p) process can be defined similarly to that in

Box and Jenkins’ ARMA processes. First α(1) = corr(Y2, Y1) = ρ(1), and α(h) = 0 when |h| > p, and α(h) =
γ (h)− φ1γ (h− 1)− · · · − φh−1γ (1)when |h| ≤ p.
Similar to the ACF, the PACF may lose its interpretability in the case of nominal categorical observations. One solution is

to ‘‘transfer’’ the PACF to the AORF through the relation between the AORF θ(h) and the ACVF γ (h). For example, in the case
of the AR(1) process, such a relation leads to θ(h) = 1+ γ (h)

[σ 2−γ (h−1)]2
, h ≥ 1.

2.3. MA(q) and ARMA(p, q) processes

A discretemoving average (MA) process of order q, denoted byMA(q), for an integer q > 0, is defined by Pegram’smixing
operator as follows:

Yt = (εt , θ0) ∗ (I[εt−1], θ1) ∗ · · · ∗ (I[εt−q], θq), (7)

where θi ≥ 0 and
∑q
i=0 θi = 1. It is easy to see that themarginal stationarity, and subsequently the ACF of theMA(q) process

is ρ(h) =
∑q−h
i=0 θi+hθi or 0 according to |h| ≤ q or |h| > q, which is the same as the Box–Jenkins’ form, where the θi’s may

be interpreted as the variance standardized coefficients.
Likewise, a moving average process of infinite order, MA(∞), takes the form Yt = (εt , θ0)∗{∗∞i=1(I[εt−i], θi)}, with θi ≥ 0

and
∑
∞

i=0 θi = 1. The limit of the process exists because its conditional probability satisfies

P(Yt = j|εt , εt−1, . . .) = θ0I[εt = j] +
∞∑
i=1

θiI[εt−i = j] ≤
∞∑
j=0

θi = 1.

Moreover, the conditional expectation of MA(∞) is given as follows. For Yt ∼ D(p0, p1, . . .) for all t , E(Yt |εt , εt−1, . . .) =∑
∞

i=0 θ0εt−i. It is worth pointing out that discrete-valued AR process Yt in (2) can be written as an MA(∞). To elucidate, let
us consider an AR(1) process first. That is, the Definition 1 implies that

P(Yt = j) = φ1P(Yt−1 = j)+ (1− φ1)P(εt = j)
= φ21P(Yt−2 = j)+ φ1(1− φ1)P(εt−1 = j)+ (1− φ1)P(εt = j),

and hence by the argument of induction, we can write for a positive integerm,

Yt = (I[Yt−m], φm1 ) ∗ (I[εt−m+1], φ
m−1
1 (1− φ1)) ∗ · · · ∗ (I[εt−1], φ1(1− φ1)) ∗ (εt , 1− φ1).
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Let m → ∞. Because the reminder series |
∑
∞

i=m+1 φ
i
1(1 − φ1)P(εt−i = j)| ≤ |φ1|

m
→ 0, AR(1) can be written as an

MA(∞), Yt = (εt , θ0) ∗ {∗
∞

i=1(I[εt−i], θi)}, with θi = φi1(1 − φ1), i ≥ 0. For an AR(p) process, note that the polynomial
φ(z) = 1− φ1z − · · · − φpzp = (1− ξ1z) · · · (1− ξpz), where ξ−1i , i = 1, . . . , p are the roots. To convert an AR(p) into an
MA(∞), we recursively execute the operation p times, where each operation deals with (1−ξiz), which effectively converts
an AR(1) process into an MA(∞).
Finally, an ARMA(p, q) process can be constructed by combining the AR(p) and MA(q) processes as follows:

Yt = (I[Yt−1], φ1) ∗ (I[Yt−2], φ2) ∗ · · · ∗ (I[Yt−p], φp) ∗ (εt , θ0) ∗ (I[εt−1], θ1) ∗ · · · ∗ (I[εt−q], θq), (8)

where φi ≥ 0 and θj ≥ 0 for all i and j, and
∑p
i=1 φi +

∑q
j=0 θj = 1.

3. Parameter estimation

3.1. Yule–Walker equation approach

Here we focus on the AR(p) process. Note that Γ φ = γp, where Γ = [γ (i − j)], φ = (φ1, . . . , φp)
>, and γp =

(γ (1), . . . , γ (p))>. Obviously, this equation is also valid with the ACF, where γ (h) is replaced by the ACF ρ(h). Given a time
series data estimate the γ (h) by its sample ACVF, γ̂ (h). As the γ̂ (h) consistently estimates the true ACVF γ (h) (Brockwell
and Davis, 1991), the resultant estimator φ̂ = Γ̂ −1γ̂p is consistent provided that the matrix Γ̂ is invertible. As pointed out
by Brockwell and Davis (1991), the invertibility is guaranteed if the ACF ρ(h)→ 0 as h→∞.
For the case of AR(1), the Yule–Walker equation estimator of the autocorrelation coefficient φ is given by

φ̂n =
γ̂ (1)
γ̂ (0)

=

n∑
i=2
(Yi − Ȳn)(Yi−1 − Ȳn)

n∑
i=1
(Yi − Ȳ )2

, (9)

where Ȳn is the sample mean of the time series. This is the well-known Durbin–Waston estimator. Following Brockwell
and Davis (1991, Chapter 7) and Billingsley (1961), it is easy to show that under some mild moment conditions both the
marginal mean estimator Ȳn and the Durbin–Waston estimator φ̂n are asymptotically normally distributed. In particular,
Ȳn ∼ AN(µ, n−1v)with v = σ 2(1+ φ)/(1− φ), and φ̂n ∼ AN(φ, n−1w)withw = 1− φ2, obtained by Bartlett’s formula.

3.2. Maximum likelihood estimation

We illustrate the procedure of maximum likelihood estimation categorical AR(1) processes. Given a time series data
{Y1, Y2, . . . , Yn} from an AR(1) process where pj = 0 for j > K , we have P(Yi = ji, i = 1, . . . , n) = P(Y1 = j1)

∏n
i=2 P(Yi =

ji|Yi−1 = ji−1). So, the likelihood is L = pj1
[∏n

i=2

{
(1− φ)pji + φI(ji−1 = ji)

}]
.

We did some simulation experiments to compare the MLE and Y–W estimates. The details are presented as a web-only
material. It is interesting to note that the Yule–Walker equationmethodworks aswell as theMLEmethod, and in some cases,
it performs even better than the MLE. One reason might be that the Yule–Walker method is based on sufficient statistics.
Similar results were found in the other simulations we ran. Detailed study on estimation is carried out by Song, Freeland
and Biswas, in an unpublished article.

3.3. Comparison: Thinning model versus proposed model for Poisson AR(1)

A second simulation study was run to compare the fit of AR(1) Poisson process, between the thinning operator based
model and Pegram’s operator based model. The details are presented as a web-only material. We found that neither of the
thinning or Pegram’s model is uniformly better than the other. Our simulation study suggests that the AIC seems to make a
trustful indication as to which approach works more appropriately for the data.

4. Data analyses

4.1. Modeling of worker compensation claims

In this section, we apply the proposedmodels to analyze a count data time series. The data set contains monthly number
of claims of short-term disability benefits made by the logging workers who had cut injury to the British ColumbiaWorkers’
Compensation Board (WCB) during January, 1985 to December, 1994. The data were previously analyzed by Freeland (1998)
and Zhu and Joe (2006) using the thinning operator based model. A difference between Pegram’s model and the thinning
model for integer-valued time series lies on the modeling of transition properties. The former attempts to model transition
probabilities of the process, while the latter directly models the outcome of the process. We may interpret the AR(1) model
in light of conditional expectations. Given the number of injuries in the previous month, Yt−1, the expected number of
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injuries in the current month is predicted by a convex combination of Yt−1 and the average number of injuries µ within
a month. Here, parameter φ indicates the weight for the prediction associated with the number of the previous injuries,
and (1 − φ) is then the weight for the new injuries. The figures are available in the web-only material. The top panel of
Figure 1 displays the time series plot of the data, from which a weak seasonal trend – more claims in the summer session
– seems present. However, the sample PACF plot of Figure 1, as well as the ACF plot (not shown), do not indicate the
significance of the season effect. To compare with the previous analyses, we here fit the data to an AR(1) model with a
Poisson margin. Note that the Poisson AR(1) process we use in the analysis is different from the thinning operator based
model. The choice of the first-order autoregressive model is based on the sample PACF plot shown in the bottom panel of
Figure 1. There is only the first lag significant in this plot, which means that AR(1) model is appropriate. Our Yule–Walker
equation estimation for both autocorrelation coefficient φ̂YW = 0.558 with the asymptotic standard error (s.e. = 0.076)
and mean parameter µ̂YW = 6.133 (s.e. = 0.42), comparing to the maximum likelihood estimates of these parameters,
respectively, φ̂MLE = 0.431 (s.e. = 0.051) and mean parameter µ̂MLE = 6.130 (s.e. = 0.36), obtained in the previous
analyses. Essentially, our results are in great agreement with those of the previous analyses. The reason that both models
yield similar results is that they have the same marginal distribution and ACF. Again, the resulting AR(1) model may be
utilized for forecasting. That is, given the number of injuries in the current month, say Yt , the expected number of injuries
to occur in the next month would be 0.56Yt + 2.71.

4.2. Hardware failure data

This is a data set obtained from the computer hardware defect data of the Indian Statistical Institute, Kolkata. The service
provider in the Institute is supposed to take care of all the defects and problems occurred in the Institute in a day by day
basis. In this data set, we consider the number of hardware defects for the 260 working days in 2005. The data is given in
Figure 2. Here we observe that the frequency of cases where Yt−1 = Yt is considerable. It intuitively suggests that a Pegram
type model might work better than the thinning model. If we consider an AR(1) model, the AIC of the thinning model is
489.398 and that of Pegram’s model is 489.239. Pegram’s model works slightly better.

4.3. Infant sleep data

Stoffer et al. (1988) reported a collection of 24 categorical time series of infant sleep status in an EEG study, from which
we select one observed in 119 min for our analysis. During minute t , the baby’s sleep status was recorded in 6 ordered
categories, namely, 1 being ‘quiet sleep’ with trace alternant, 2 being ‘quiet sleep’ with high voltage, 3 being ‘indeterminate
sleep’, 4 being ‘active sleep’ with low voltage, 5 being ‘active sleep’ withmixed voltage, and 6 being ‘awake’. Figure 3 consists
two panels of plots: the top one is the time series plot of the raw data and the bottom one displays the sample PACF, inwhich
only the first lag appears to be significant. To further judge the stationarity of the series, we first compare the sample ACF
and the theoretical ACF of the AR(1) process with φ = 0.873 estimated from the data. Figure 4 shows that the sample ACF
decays to zero faster than the AR(1)’s ACF, implying that among all AR(p) models with p = 1, 2, . . . , the AR(1) model seems
most appropriate. This is because the AR(p) models, p ≥ 2, have longer memory than the AR(1), so their decay rates will
become even slower than that of the AR(1).
We apply the Yule–Walker equation approach to estimating the parameters of the autocorrelation coefficient φ and the

marginal probabilities pj, j = 1, . . . , 6. It follows immediately that φ̂ = 0.873 (s.e. = 0.045) and p̂j, j = 1, . . . , 6 are,
respectively, 0.403, 0.017, 0.092, 0.387, 0.101, and 0.000 (the baby was never in status 6). Clearly, the baby was not in status
6 over the whole period of the study and was more likely in status 1 and status 4 than any other status, both cases having
marginal probability approximately equal to 0.4 with a total probability 0.8 for the two. Also, the estimated 95% confidence
interval of the autocorrelation φ is (0.784, 0.960), indicating that the sleep status at the previous minute has a very strong
and positive impact on the status at the current minute.

5. Concluding remarks

In this paper we presented a unified framework of stationary discrete-valued ARMA processes that are useful to model
discrete-valued time series. This class of models is new and provides a valuable arsenal to enrich the theory and practice of
the popular Box and Jenkins’ ARMA models. As shown in the data analysis, the thinning operator based ARMA models are
unavailable to analyze categorical time series data.
For count data, our model is an alternative to the existing thinning based model. As is observed in Section 3.3, neither of

the thinning based model and Pegram’s model is uniformly better than the other. Pegram’s model outperform the thinning
model (with respect to AIC) if the data generation mechanism is close to Pegram’s mechanism. Intuitively if we have
considerable proportions of cases Yt−1 = Yt , Pegram’s model works better, as is observed in the Computer Hardware Failure
data example of Section 4.2.
But, the most important feature of our model and this article is that our model serves as an excellent tool to model and

analyze any type of discrete time series data. This is a new contribution to the time series community. Thus, we can now
provide some way out of handling data examples like the Infant Sleep Status Data in an elegant way. We can also handle
binomial time series in a similar way. This is the prime feature of our model and this paper.
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An important extension of the proposed models and methods is to incorporate covariates in the marginal probabilities
via, for example, the logistic model. There have been some recent developments in this direction, including Qaqish’s (2003)
transition model for binary nonstationary processes, Benjamin et al.’s (2003) generalized autoregressive moving average
models, regression theory for categorical time series by Fokianos and Kedem (2003), and also the regression models for
nonstationary categorical time series by Kaufmann (1987).
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