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Summary. Modelling of spatiotemporal processes has received considerable attention in recent
statistical research. However, owing to the high dimensionality of the data, the joint modelling
of spatial and temporal processes presents a great computational challenge, in both likelihood-
based and Bayesian approaches. We propose a joint composite estimating function approach
to estimating spatiotemporal covariance structures. This substantially reduces the computa-
tional complexity and is more efficient than existing composite likelihood methods. The novelty
of the proposed joint composite estimating function is rooted in the construction of three sets
of estimating functions from spatial, temporal and spatiotemporal cross-pairs, which results in
overidentified estimating functions. Thus, we form a joint inference function in a spirit that is
similar to Hansen’s generalized method of moments. We show that under practical scenarios
the estimator proposed is consistent and asymptotically normal. Simulation studies prove that
our method performs well in finite samples. Finally, we illustrate the joint composite estimating
function method by estimating the spatiotemporal dependence structure of airborne particulates
(PM10) in the north-eastern USA over a 32-month period.

Keywords: Asymptotics; Correlated data; Dimension reduction; Generalized method of
moments; Quadratic inference function

1. Introduction

Spatiotemporal data arise from many scientific disciplines such as environmental sciences, clima-
tology, geology and epidemiology among others. Through data analysis, scientists are interested
in understanding important factors that are associated with the underlying process and in pre-
dicting the process at unobserved locations and time points. Both of these tasks require modelling
the intrinsic dependence structure of the data, which is usually depicted by the spatiotemporal
covariance structure. During recent decades, much effort has been made in developing valid yet
flexible spatiotemporal covariance models. For example, Cressie and Huang (1999) introduced
a class of non-separable, stationary covariance functions that address space–time interactions.
Gneiting (2002) later expanded their work to larger classes of space–time covariance structures
that do not depend on closed form Fourier inversions. Stein (2005) derived space–time covari-
ance functions that are spatially isotropic and not fully symmetric. Porcu et al. (2007) proposed
another class of non-separable space–time covariance structures that are spatially anisotropic;
these allow us to formulate temporally asymmetric covariance functions. Unfortunately, most
of these useful covariance models are seldom applied in practical studies collecting large-scale
data sets. This is largely because of the tremendous computational burden in handling high
dimensional covariance matrices for either likelihood-based or Bayesian approaches.

Address for correspondence: Peter X.-K. Song, Department of Biostatistics, University of Michigan, Ann Arbor,
MI 48109, USA.
E-mail: pxsong@umich.edu



2 Y. Bai, P. X.-K. Song and T. E. Raghunathan

This difficulty has long been recognized in spatial statistics, where two types of approaches
have been developed to speed computation. The first approach is based on simplifying covari-
ance structures. For stationary spatial processes on regular grids, Zimmerman (1989) showed
that covariance structures have patterns that can be used to reduce the computational bur-
den. Cressie and Johannesson (2008) proposed fixed rank kriging for very large spatial data
sets, where the covariance matrices were specially designed so that the matrix manipulations
were of a fixed magnitude. A similar idea was exploited in Banerjee et al. (2008). However,
these approaches either require the spatial process to be stationary or impose oversimplified
structures for the covariance matrices. Thus they may not work well with real data analysis.

Another approach is based on likelihood approximations, where simplified versions of the
full likelihood are considered. For example, composite likelihood (CL) methods (Lindsay, 1988)
have been proposed to model spatial data. As a general class of pseudolikelihoods, CL is
based on valid marginal or conditional likelihood functions. Curriero and Lele (1999), Heag-
erty and Lele (1998) and Li and Lin (2006) all used pairwise marginal densities to build CL
estimation functions, whereas Vecchia (1988) and Stein et al. (2004) suggested approximating
the likelihood by a product of conditional densities with truncated conditioning sets. Apart
from CL approaches, Furrer et al. (2006) and Kaufman et al. (2008) used covariance taper-
ing to shrink small values of covariance entries to 0 so that sparse matrix algorithms could be
used to speed up computation. Fuentes (2007) proposed an approximation by modelling the
covariance structures in the spectral domain. This appears to be quite involved and hence less
useful.

Additional challenges arise in spatiotemporal settings. With the addition of time, the data
scale becomes much larger. Also, the distinct, yet intricately involved, nature of space and time
further complicates the data analysis. To simplify covariance structures, people usually sepa-
rately model spatial and temporal dependences (Sahu et al., 2007; Smith and Kolenikov, 2003)
or apply a separable spatiotemporal covariance function for ease of computation (Haas, 1995;
Genton, 2007). Although these approaches have many desirable properties, they all ignore a cru-
cial model component: the spatiotemporal interaction effect. Paciorek et al. (2009) attempted
to capture the spatiotemporal interaction of PM10- and PM2.5-particles by using monthly
varying spatial surfaces. However, to reduce computational difficulty, they assumed indepen-
dence across spatial residual surfaces at each time point. This hampered their ability to quantify
spatiotemporal interaction.

The objective of this paper is to develop an efficient CL approach for the joint analysis of
spatiotemporal processes. We propose to use pairwise marginal densities as the building blocks
of our estimating function, for the following reasons.

(a) Pairwise CL is both analytically and numerically simple to work with.
(b) It requires only the correct specification of bivariate densities; hence the resulting estima-

tion and inference are robust to misspecification of higher dimensional moment structures
(Varin et al., 2011). In contrast, conditional CL approaches (e.g. Vecchia (1988) and Stein
et al. (2004)) are usually vulnerable to model misspecification, because they require the
formulation of higher dimensional distributions. In addition, it is easier to check assump-
tions on bivariate distributions than on higher dimensional distributions.

(c) The pairwise CL approach does not require a distance metric accommodating both
space and time, in contrast with the unified distance norm that is needed by the taper-
ing approach (Kaufman et al., 2008). As we shall see in the simulation experiments (see
Section 4.2), tapering expedites computing time only when the number of non-zero
covariance elements is small.
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Pairwise CL does seem appealing in modelling large-scale spatiotemporal data, owing to its
simplicity, flexibility and feasibility for numerical computation.

Another contribution of our proposed method is that it overcomes a major shortcoming of
the conventional CL estimation method, which treats pairwise observations as independent.
We propose to account for correlations between these composite pairs in a computationally
feasible manner, leading to significant gains in efficiency. Nott and Rydén (1999) and Kuk and
Nott (2000) are among those researchers who have advocated the incorporation of correla-
tions between composite pairs into the estimation. However, their methods appear difficult to
implement in spatiotemporal settings, owing to the enormous number of possible pairs.

Our idea is to take advantage of the distinct characteristics of space and time by dividing all
pairs into spatial, temporal and spatiotemporal cross-groups, and then to form group-based
estimating functions. After that we construct a joint inference function with different weights for
the groups to improve efficiency. This approach is similar to the generalized method of moments
(GMM) (Hansen, 1982) and the quadratic inference function (Qu et al., 2000). The weighting
scheme is designed to give larger weights to more informative pairs and to downweight noisy
pairs, leading to gains in efficiency.

The rest of the paper is structured as follows. In Section 2, we present the joint composite esti-
mating function approach for spatiotemporal processes. In Section 3, we discuss large sample
properties of the estimator proposed. In Section 4, we detail simulation studies comparing our
method with some of the popular likelihood approximation methods. In Section 5, we illustrate
an application of our method to study the spatiotemporal dependence structure of airborne
PM10-particles in the north-eastern USA. A discussion follows in Section 6. Some technical
details are listed in Appendix A.

2. Methodology

2.1. Model
Consider a realization of a spatiotemporal process {Y.s, t/ : s∈S, t ∈T , S ⊂R2, T ⊂R+}, where
S denotes the set of spatial locations and T stands for the collection of time points. Assume that
Y.s, t/ can be decomposed into a deterministic mean function μ.s, t/ and a random component
X.s, t/ as follows:

Y.s, t/=μ.s, t/+X.s, t/, s∈S, t ∈T :

Suppose that X.s, t/ can be further modelled as

X.s, t/=α.s, t/+ ".s, t/, s∈S, t ∈T ,

where the process α.s, t/ characterizes the spatiotemporal variations, and ".s, t/ is a normally
distributed measurement error with mean 0 and variance σ2

" , independent of each other and
independent of α.s, t/. In geostatistics, the variance σ2

" is called the ‘nugget effect’. Assume
that {α.s, t/: s∈S, t ∈T } follows a multivariate Gaussian process with mean 0 and covariance
function C which, for any two observations at spatiotemporal co-ordinates .s1, t1/ and .s2, t2/,
is given by

cov{α.s1, t1/, α.s2, t2/}=C.s1, s2, t1, t2;θ′/:

Let θ= .θ′, σ2
" / be an r-element vector of parameters of interest. We shall focus on estimating the

covariance structure of X.s, t/ in the rest of this paper, provided that the observed process has
first been properly detrended; otherwise, it is relatively straightforward to extend the method
proposed by including a mean model for μ.s, t/ (Cressie, 1993).
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2.2. Composite estimating functions
To apply the CL method, we consider pairwise differences following Curriero and Lele (1999).
Let

d.k/≡d.s1, t1, s2, t2/=X.s1, t1/−X.s2, t2/, k ∈Dn.p, q/, .1/

where

Dn.p, q/=

⎧⎪⎨
⎪⎩

s2 � s1, ‖s1 − s2‖�p,

.s1, t1, s2, t2/ :
t2 � t1, |t1 − t2|�q,
t1 �= t2 if s1 = s2,
s1 �= s2 if t1 = t2

⊂S ×T ×S ×T ⊆R2 ×R+ ×R2 ×R+:

Here n is the length of the realized process X.s, t/, and ‖·‖ is the Euclidean distance between
two points in a d-dimensional space with d �2. The ordering of spatial locations is defined as
follows: for two locations s1 = .a1, b1/ and s2 = .a2, b2/, we say that s1 >s2 if a1 >a2 or if a1 =a2
and b2 > b1, where .a, b/ are the co-ordinates for a location. The set Dn.p, q/ contains all pairs
of observations within p units of space and q units of time lags in the co-ordinate space S ×T .
When both p and q are infinite, the set includes all possible pairs of observations. For simplicity
of exposition, we drop the two indices and write Dn.p, q/ as Dn.

The values of p and q may be determined according to different criteria. They can be chosen
by practical considerations, such as sample size or boundary limits. They can also be deter-
mined by some preliminary evaluations (e.g. empirical variograms) of the spatial and temporal
dependence decay rate and set to ranges that sustain a fairly high level of correlation. Or we may
choose such p and q as to maximize the Godambe information (Godambe and Heyde, 1987)
of the corresponding composite estimating functions, so that the resulting estimator will have
minimum variance estimates (Bevilacqua et al., 2011). Clearly, the latter approach requires the
evaluation of the sandwich information matrix for different combinations of cut-off lags, which
is computationally demanding. Many simulation results reported in the literature (e.g. Varin
et al. (2005), Bevilacqua et al. (2011) and Davis and Yau (2011)) have suggested choosing p and
q to include only pairs that are within some short distance, for better estimation efficiency. If
we do that, we can exclude a substantial number of pairs from Dn that are far apart in either
space or time to reduce the computational burden.

It is easy to see that the difference process d.k/ in equation (1) follows a univariate normal
distribution with mean 0 and variance given by

var{d.k/}=C.s1, s1, t1, t1;θ/+C.s2, s2, t2, t2;θ/+2σ2
" −2C.s1, s2, t1, t2;θ/

≡2γk.θ/:

Denote the composite score function for the observed d.k/ as fk{d.k/;θ}. Then

fk{d.k/;θ}= γ̇k.θ/

2 γk.θ/

{
1− d2.k/

2 γk.θ/

}
,

where, for any function f , ḟ denotes the vector of gradients of f with respect to the parameter
vector θ. It is clear that fk{d.k/;θ} is an unbiased estimating function for θ since it is derived
from a valid density function.

According to the CL literature (Reid and Cox, 2004; Varin et al., 2011), a common version
of composite estimating functions is
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ΨCL.θ/= ∑
k∈Dn

fk{d.k/;θ},

where d.k/ are implicitly treated as being independent.
Alternatively, one may stack the individual composite score function terms into a column

vector ν.θ/={fk{d.k/;θ}}k∈Dn , from which the estimating function is given by

E{ν̇.θ/}T cov{ν.θ/}−1ν.θ/=0:

As pointed out by Kuk (2007), this version of composite estimating equations effectively ac-
counts for the correlations between the differences. However, the calculation of cov{ν.θ/}
and its inverse is computationally prohibitive when the number of pairs (or differences) is
large.

To improve on the existing CL methods and to incorporate correlations between the pairs in
the estimation, we propose a new approach, i.e. we construct three sets of estimating functions by
using the spatiotemporal characteristics of the data. Specifically, we first partition Dn into three
subsets, namely DS,n, with pairs differing only in locations, DT ,n, with pairs differing only in
time and DC,n, with pairs differing in both locations and time. Hence Dn =DS,n ∪DT ,n ∪DC,n.
Fig. 1 displays such a partition with the three types of pairs,

(a) for a spatial pair,
(b) for a temporal pair and
(c) for a spatiotemporal cross-pair, in a typical spatiotemporal setting with four locations

observed at two time points.

Summing over all pairwise differences of spatial pairs across all time points, we obtain the
following spatial composite estimating function (CEF):

ΨS,n.θ/= 1
|DS,n|

∑
i∈DS,n

fi {d.i/;θ},

where, for any set A, |A| denotes the number of elements in A. In a similar fashion, we construct
the temporal CEF:

Time 1

Time 2

(a)

(c)

(b)

Fig. 1. Configurations of spatiotemporal pairs: the upper plane represents four locations observed at time
1, and the lower plane represents the same four locations observed at time 2; (a) is the spatial pair, (b) the
temporal pair and (c) the spatiotemporal cross-pair
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ΨT ,n.θ/= 1
|DT ,n|

∑
j∈DT ,n

fj{d.j/;θ}:

Likewise, the third CEF is formed by using spatiotemporal cross-pairs:

ΨC,n.θ/= 1
|DC,n|

∑
l∈DC,n

fl{d.l/;θ}:

Note that the resulting estimating functions constructed by using the group-specific pairs
characterize different profiles of the spatiotemporal process. The spatial piece ΨS,n.θ/ provides
paramount information about the spatial dependence; the temporal piece ΨT ,n.θ/ contains key
information about the temporal dependence; and the spatiotemporal cross-piece ΨC,n.θ/ is
more relevant for information about the spatiotemporal interaction. The total number of equa-
tions, when the three pieces are combined as .ΨT

S,n.θ/, ΨT
T ,n.θ/, ΨT

C,n.θ//T, is larger than the
number of parameters. As a result, owing to overidentification, parameters cannot be estimated
by directly solving these equations. Thus, we form a weighted quadratic objective function in
a spirit similar to the GMM (Hansen, 1982), so that estimates can be obtained by minimizing
this objective function.

More precisely, let W be a positive definite matrix, and let

Γn.θ/= .ΨT
S,n.θ/, ΨT

T ,n.θ/, ΨT
C,n.θ//T:

A quadratic inference function takes the form

Qn.θ/=ΓT
n .θ/W−1 Γn.θ/,

and the estimator is given by

θ̂n =arg min
θ∈Θ

Qn.θ/: .2/

We call this θ̂n the joint composite estimating function (JCEF) estimator.
Classical GMM theory indicates that the optimal weight matrix is the asymptotic covariance

matrix of CEFs, namely cov{nΓn.θ/}. However, this result cannot be directly applied here,
because our objective function Qn.θ/ is special in two aspects. First, the three estimating func-
tions ΨS,n.θ/, ΨT ,n.θ/ and ΨC,n.θ/ are constructed from different sets of observations, whereas,
in the standard GMM, different moment conditions are based on the same set of observations.
Second, the numbers of terms in the three CEFs are different, because the numbers of spatial,
temporal and cross-pairs are different. When one CEF consists of significantly more pairs, it will
attain a higher weight in the objective function due to its larger stratum size. So it is necessary
to adjust for such stratum effects by using a normalized weight matrix, in a spirit similar to
stratified sampling.

To proceed, let Ir be the r × r identity matrix. Write
√N = diag.

√|DS,n|, √|DT ,n|, √|DC,n|/⊗ Ir,

where ‘⊗’ denotes the Kronecker product of two matrices. This defines a block diagonal matrix
with the first r diagonals being

√|DS,n|, the next r diagonals
√|DT ,n| and the last r diagonals√|DC,n|. The normalized weight matrix is given by

W =√N cov{Γn.θ/}√N :

When |DS,n|, |DT ,n| and |DC,n| are approximately the same, W and cov{nΓn.θ/} will play
the same role in weighting. However, when one of |DS,n|, |DT ,n| or |DC,n| is considerably larger
than the rest, W will help to adjust for the unbalanced stratum sizes, so the smaller stratum
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will make a comparable contribution to the estimation. Zhao and Joe (2005) used a similar
approach to account for different cluster sizes in their CL formulation for familial data. See
also Joe and Lee (2009) for a more detailed discussion.

2.3. Estimation of the weight matrix
Although cov{Γn.θ/} can be derived analytically by using multivariate Gaussian quadrant prob-
abilities, given the large number of possible pairs, computing it on the basis of analytic formulae
is not practically feasible. Alternatively, in spatial data analysis, estimation of this covariance
matrix is typically achieved by subsampling techniques as done in Heagerty and Lele (1998),
Heagerty and Lumley (2000), Lee and Lahiri (2002) and Li and Lin (2006). Specifically, let
the sampling region An = S × T , where |An| = n. Under the assumption that asymptotically
|An|E{Γn.θ/ΓT

n .θ/}→Σ, we can estimate Σ by using the sample covariance matrix of statis-
tics computed on subshapes of the sampling region An, i.e.

Σ̂n =k−1
n

kn∑
i=1

|Ai
l.n/|{Γi

n.θ/− Γ̄n.θ/}2, .3/

with Γ̄n.θ/=Σkn

i=1 Γi
n.θ/=kn, where Γi

n.θ/ is vector Γn.θ/ evaluated in Ai
l.n/, i=1, . . . , kn, a col-

lection of (non-)overlapping subshapes of An and kn is the number of subshapes.
This subsampling method was first introduced by Carlstein (1987) for strictly stationary time

series. Sherman (1996) later showed that it could be used to estimate the moments of a general
statistic for random fields on a lattice. Moreover, Kunsch (1989) demonstrated that the use of
overlapping replicates led to a more stable variance estimate than non-overlapping replicates.
The optimal subsample size was given by Politis and Romano (1994) for a stationary random
field on a d-dimensional lattice as Mnd=.d+2/, where M is a certain tuning constant. Heagerty
and Lumley (2000) studied the effect of various choices of M for regression models. Sherman
(1996) pointed out that it was useful to gather some empirical evidence about the range of corre-
lation in determining M. If the correlation decays fast, small subsamples can be used; otherwise
large subsamples should be considered.

Weshallapply this subsamplingtechniquetoestimateourweightmatrixandlater investigate its
performance in the standard error calculation. Other and more sophisticated resampling schemes
for spatial data analysis can be found in Lele (1991), Lahiri et al. (1999) and Zhu and Morgan
(2004) among others. To calculate cov{Γn.θ/} for each subsample, parameter values must be
given. We propose to generate some simple consistent estimates either by setting the weight matrix
to the identity matrix in the JCEF method or by using estimates from the empirical variogram.

Many established numerical optimization methods can be used to obtain parameter estimates
that minimize Qn.θ/. However, given the complex nature of the parametric covariance struc-
ture C.·;θ/, algorithms that do not require calculations of the Hessian matrix are desirable.
Quasi-Newton, Nelder–Mead and conjugate gradient methods are possible choices. These opti-
mization routines are offered by many mathematical and statistical software packages, includ-
ing MATLAB and R. To ensure that the true minimum of the target function is found, a set of
good starting values is very important. In our case, this can be found by fitting the corresponding
parametric variogram to the empirical variogram (Cressie, 1993). Details are illustrated in
Section 5.

3. Large sample properties

The asymptotic properties of the JCEF estimator that is defined in equation (2) are mainly
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governed by the asymptotic behaviour of Γn.θ/. Once we establish a uniform law of large num-
bers and a central limit theorem for Γn.θ/, the consistency and asymptotic normality of θ̂n will
follow from standard GMM arguments. We derive these large sample results for fixed spatial
and temporal lags p and q under increasing domain asymptotics, i.e. the increase in sample
size is achieved by the expansion of the sampling domain in space or time or simultaneously.
As a result of fixing p and q, the numbers of pairs in the spatial, temporal and spatiotemporal
cross-groups are proportional to the total number of data points n for the observed random
process, i.e. |DS,n|, |DT ,n| and |DC,n| are of the same order O.n/. For simplicity, we assume that
the weight matrix W is known. Otherwise, a root-n-consistent Ŵ would be sufficient for us to
modify our justifications.

3.1. Assumptions
Jenish and Prucha (2009) developed a set of limit theorems for random processes under rather
general conditions of non-stationarity, unevenly spaced locations and general forms of sample
regions. We tailor the relevant regularity conditions to establish large sample properties for our
JCEF estimator as follows.

Assumption 1. The (possibly unevenly spaced) lattice D ⊂ R2 × R+ × R2 × R+ is infinitely
countable. All elements in D are at distances of at least d0 > 0 from each other, i.e. ρ.i, j/�d0,
for all i, j ∈ D, where ρ.i, j/ is a distance metric for any two points i, j ∈ D. See a detailed
definition of the distance metric in Appendix A.

Assumption 2. {DA,n :n∈N} is a sequence of arbitrary finite subsets of D, satisfying |DA,n|→
∞ as n→∞, for A∈{S, T , C}.

Assumption 3. .Θ, υ/ is a totally bounded parameter space with metric υ.

Assumption 4 (uniform L2+δ integrability). Let qk = supθ∈Θ‖fk{d.k/;θ}‖. Then, for some
δ > 0, lime→∞ E{q2+δ

k 1.‖qk‖>e/}=0, for all k ∈Dn.

Assumption 5. E supθ∈Θ‖ḟk{d.k/;θ}‖<∞, for all k ∈Dn.

Assumption 1 ensures that the increase in sample size is achieved by an expanding domain;
thus, it rules out the infill asymptotics. Assumption 2 guarantees that sequences of subsets DS,n,
DT ,n and DC,n, on which the process is generated, increases in cardinality. Assumption 3 regu-
lates the parameter space. Assumptions 4 and 5 are regularity conditions for score functions. The
uniform integrability condition in assumption 4 is a standard moment assumption postulated
in central limit theorems for one-dimensional processes. A sufficient condition for the uniform
L2+δ integrability of fk is its uniform Lγ-boundedness for some γ >2+δ. A weaker assumption
of L1 integrability is sufficient for a law of large numbers for fk. Assumption 5 is a Lipschitz-
type condition, implying that the score functions are L0 stochastically equicontinuous, so that
a uniform law of large numbers can be obtained.

The difference process d.k/ is usually not stationary. To regulate its dependence structure,
we impose some α-mixing conditions on d.k/. Let U and V be two subsets of Dn, and let
σ.U/=σ {d.k/; k ∈U} be the σ-algebra generated by random variables d.k/, k ∈U. Define

α.U, V/= sup{|P.A∩B/−P.A/P.B/|; A∈σ.U/, B∈σ.V/}:

Then the α-mixing coefficient for the random field {d.k/, k ∈Dn} is defined as

α.k, l, m/= sup{α.U, V/, |U|<k, |V |<l, ρ.U, V/�m},
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with k, l, m∈ N and ρ.U, V/ the distance between sets U and V ; see Appendix A for the defin-
ition of ρ. In addition, we need the following conditions which are similar to those stated in
assumption 3 (Jenish and Prucha, 2009).

Assumption 6. The process {d.k/, k ∈ Dn} satisfies the following mixing conditions in an
a-dimensional space:

(a) Σ∞
m=1 ma−1α.1, 1, m/δ=.2+δ/ <∞, for some δ > 0;

(b) Σ∞
m=1ma−1α.k, l, m/<∞ for k + l�4;

(c) α.1, ∞, m/=O.m−a−"/ for some "> 0.

Assumption 6 requires a polynomial decay of the α-mixing coefficient, which can be shown
to hold for Gaussian processes, a special case of a Gibbs field (Winkler, 1995; Doukhan, 1994).

3.2. Consistency
Consider a generic case of

ΨA,n.θ/= 1
|DA,n|

∑
k∈DA,n

fk{d.k/;θ},

where A∈{S, T , C}.
On the basis of theorems 2 and 3 in Jenish and Prucha (2009), assumptions 1, 2, 4 and 6

ensure a pointwise law of large numbers for fk based on subseries {d.k/, k ∈DA,n}; with addi-
tional assumption 5 on stochastic equicontinuity of fk, a uniform version of the law of large
numbers is warranted. Thus, we have the following lemma.

Lemma 1. Given assumptions 1–6,

sup
θ∈Θ

‖ΨA,n.θ/−E{ΨA,n.θ/}‖ p→0, as n→∞:

Lemma 1 holds for ΨS,n.θ/, ΨT ,n.θ/ and ΨC,n.θ/, so we can show easily that, for any given
positive definite weight matrix W ,

sup
θ∈Θ

|Qn.θ/−E{Qn.θ/}| p→0, as n→∞:

Consequently, we establish the consistency of the JCEF estimator in theorem 1.

Theorem 1. Under the same conditions stated in lemma 1, if the true parameter value θ0 is
the unique minimizer of E{Qn.θ/}, and θ̂n minimizes Qn.θ/, then θ̂n→p θ0, as n→∞:

3.3. Asymptotic normality
To derive the asymptotic distribution of the JCEF estimator, the following additional regularity
conditions are needed.

Assumption 7. Let Σn.θ/=var{Γn.θ/}, limn→∞ nΣn.θ/=Σ.θ/, where Σ.θ/ is a positive defi-
nite matrix.

Assumption 8. supθ∈Θ ‖Γ̇n.θ/−E{Γ̇n.θ/}‖→p 0. Write limn→∞ E{Γ̇n.θ/}= I.θ/, where I.θ/

is a positive definite matrix.

Assumption 7 assumes that the variance of Γn.θ/ is of order O.n−1/, which is also a standard
assumption for the subsampling estimation of the covariance. Assumption 8 is a uniform law
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of large numbers for Γ̇n.θ/, which regulates the asymptotic variance of the estimator and can
be obtained with the same regularity conditions on Γ̇n.θ/ as those in lemma 1.

Lemma 2. Given assumptions 1–4, 6 and 7, we have

Γn.θ/
√

n
d→N{0, Σ.θ/}, as n→∞:

A sketch of the proof for lemma 2 is given in Appendix A. Then, on the basis of standard
GMM arguments (Hansen, 1982), we establish the following theorem.

Theorem 2. Given assumptions 1–4 and 6–8, we have

.θ̂n −θ0/
√

n
d→N{0, Ω.θ0/Σ.θ0/ΩT.θ0/}, as n→∞,

where Ω.θ0/=−{IT.θ0/W−1 I.θ0/}−1IT.θ0/W−1.

The above results are applicable to more general settings than those considered in Heagerty
and Lele (1998), who derived their asymptotic results for spatial data on the basis of the theory
in Guyon (1995), which requires that the sample regions form a strictly increasing sequence on
evenly spaced lattices. In contrast, we do not impose any restrictions on the geometry or growth
behaviour of the sample regions and allow for unevenly spaced locations, which is a situation
that is frequently encountered in real data analysis. Moreover, our results accommodate sam-
pling domain expansions both in space and time, whereas results in Li et al. (2007) deal only with
the expansion in time. In fact, our results even apply to processes with unbounded moments,
which arise in many real world applications. For more discussion, refer to Jenish and Prucha
(2009). It is also worth pointing out that asymptotic results for infinite spatial or/and tempo-
ral lags are slightly different, because the convergence rates of ΨS,n.θ/, ΨT ,n.θ/ and ΨC,n.θ/

may be of different orders, owing to the differences on expansion rates in space and time. In
addition, Davis and Yau (2011) have pointed out that using all possible pairs may even destroy
the consistency of the maximum CL estimators, which corresponds to infinite spatial and/or
temporal lags in our situation.

4. Simulation experiments

To assess the performance of the JCEF method proposed we conduct simulation experiments
to compare it with some of the other available methods in the literature, including

(a) weighted composite likelihood (WCL), the current available CL approach (Bevilacqua
et al., 2011),

(b) the tapering method (taper) based on covariance regularization (Kaufman et al., 2008),
(c) conditional pseudolikelihood methods (Stein) proposed in Stein et al. (2004) and Vecchia

(1988), which are variants of the CL formulation based on conditional density functions,
(d) a weighted least square (WLS) approach, which is the method that is used most often by

practitioners in spatial statistics (Cressie 1993), and
(e) maximum likelihood estimation (MLE), which is the gold standard.

We compare their performances in terms of the mean-squared error (MSE) of parameter
estimates. We also scale parameter-specific MSEs by their corresponding parameter values and
sum them to obtain an overall efficiency measure, called the total scaled MSE. This scaling
balances different scales of parameter values, so that a fair comparison can be made. The rela-
tive efficiency (RE) is then computed as the ratio of the total scaled MSEs between two methods
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under comparison. All simulations are coded in R 2.11.1 (R Development Core Team, 2010) and
executed on a LINUX cluster with Intel Xeon X5680 processors (3.33 GHz central processor
unit and 1.5 Gbytes memory for each of 16 nodes).

The spatiotemporal covariance function that was used in the data generation is a non-sepa-
rable spatiotemporal covariance structure proposed in Cressie and Huang (1999):

C.h, u;θ/=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ2.2β/

.a2u2 +1/ν.a2u2 +β/Γ.ν/

⎧⎨
⎩b

2

(
a2u2 +1
a2u2 +β

)1=2

h

⎫⎬
⎭

ν

Kν

⎧⎨
⎩b

(
a2u2 +1
a2u2 +β

)1=2

h

⎫⎬
⎭,

if h> 0,

σ2.2β/

.a2u2 +1/ν.a2u2 +β/
,

if h=0, (4)

where u=|t1 − t2| is the time lag and h=‖s1 − s2‖ is the Euclidean distance between two loca-
tions. Kν is the modified Bessel function of the second kind of order ν (Abramowitz and Stegun
(1972), page 374), where ν > 0 is a smoothness parameter characterizing the behaviour of the
correlation function near the origin. If u=0, C.h, 0;θ/ degenerates into a purely spatial covari-
ance, which is the popular Matérn class that is used in spatial statistics. When ν =0:5, this spatial
correlation is an exponential function of h; when ν →∞, the Gaussian correlation function.
In practice, ν is difficult to estimate, because it requires dense space data and may run into
identifiability problems (Stein, 1999). We shall discuss a profile quadratic inference function
approach for estimating ν in Section 6.

For the rest of the parameters, a � 0 is the scaling parameter of time, b � 0 is the scaling
parameter of space, β > 0 is a space–time interaction parameter and σ2 = 1

2 C.0, 0/ > 0. Note
that a separable covariance function is obtained when β = 1. We also study the presence of a
nugget effect in our simulation comparison, and we denote its variance by σ2

" . As a result, the
parameter vector of interest is θ≡ .a, b, β, σ2, σ2

" /.

4.1. Comparison with weighted composite likelihood
We first compare the JCEF with WCL. We form our CEFs on the basis of neighbouring pairs
for both WCL and the JCEF, following the suggestion given in Bevilacqua et al. (2011). We
note that tuning the distance lag according to a certain optimality criterion (e.g. minimizing
the trace of the inverse of the Godambe information) for each specific case can result in better
efficiency. However, using a common distance lag in the simulation study serves the purpose of
comparison and keeps the computational burden manageable.

We generate X.s, t/ on a regular grid of 7 × 7 × 30 space–time points, with spatial co-ordi-
nates being set at .1, 1:5, . . . , 4/ × .1, 1:5, . . . , 4/ and T = .1, 2, . . . , 30/. Table 1 includes three
simulation set-ups. We vary β-values as 0.5, 1 and 5, corresponding to negative, none and
positive spatiotemporal interaction effects respectively. Each columnwise plot in Fig. 2 shows
the marginal spatial and temporal correlation patterns. It is clear that the decay rate of spatial
or temporal correlation given different temporal or spatial lags changes with different β-values.
Parameter ν is fixed at 0.5 in the simulation.

Estimation of the weight matrix is achieved by subgroup sampling on overlapping sub-blocks
of size 4 × 4 × 15, following the rule that was suggested in Politis and Romano (1994). We use
estimates from WCL to evaluate individual score functions in each sub-block. A total of 200
simulated data sets are generated for each set-up.
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Table 1. (With nugget) MSEs of parameter estimates†

Scenario Method MSEs Total RE
scaled
MSE

a b β σ2 σ2
"

Set-up 1 1 3 0.5 1 0.5
WCL 0.0122 0.2915 0.0060 0.0060 0.0039 0.0901
JCEF 0.0122 0.2651 0.0039 0.0051 0.0025 0.0724 1.25

Set-up 2 1 3 1 1 0.5
WCL 0.0086 0.1492 0.0186 0.0047 0.0027 0.0594
JCEF 0.0070 0.1376 0.0107 0.0051 0.0016 0.0447 1.33

Set-up 3 1 3 5 1 0.5
WCL 0.0078 0.1593 0.3855 0.0133 0.0014 0.0599
JCEF 0.0074 0.1065 0.2576 0.0125 0.0013 0.0471 1.27

Average MSE reduction (%) 12.24 9.09 11.04 3.76 10.59

†The results are from 200 rounds of simulations based on the covariance structure in equation (4) and a nugget
effect σ2

" . Total scaled MSE is the sum of MSEs for four parameters scaled by parameter means. RE is the RE
defined as the total scaled MSE of WCL over that of the JCEF.

We first compare JCEF and WCL in the presence of a nugget effect σ2
" . The results, which

are summarized in Table 1, show that the JCEF method clearly outperforms WCL in all three
simulation set-ups in terms of the total scaled MSE. The resulting REs show that, for all three
scenarios, the JCEF clearly reaches 25% or higher efficiency improvement compared with WCL.
Unscaled parameter-specific MSEs indicate that, on average, an approximately 10% reduction
in MSE is achieved for parameters a, b, β and σ2

" .
We then compare the two methods without the nugget effect in the covariance structures.

Similar summary statistics are listed in Table 2. It appears that, in this case, the JCEF gains
even more efficiency for a, b and β. On average, the reduction in MSE is 40.5% for β, followed by
26.1% for a (the temporal scaling parameter), and then 13.5% for b (the spatial scaling parame-
ter). The estimates for the variance parameter σ2 are comparable between the two methods. The
significant improvement in efficiency for β, a and b is very desirable, since these are important
parameters pertaining to the dependence structure. In addition, for the interaction parameter
β, valid parameter and standard error estimates will help researchers to make inferences about
whether a simpler and separable spatiotemporal covariance is supported by the data.

4.2. Comparison with tapering
Tapering (Furrer et al., 2006; Kaufman et al., 2008) is becoming increasingly popular in spatial
statistics because of its simplicity both in concept and in implementation. The idea is to set
certain elements of the covariance matrix to 0, such that the resulting matrix is positive definite
and retains the original properties for proximate locations. Specifically, let C.h;θ/ be the covari-
ance function for two observations with distance h in space, and Ktaper.h;η/ be the tapering
function that is identically 0 whenever h�η, where η is a prespecified cut-off. Then the tapered
covariance function is given by

Ctaper.h;θ/=C.h;θ/Ktaper.h;η/:

In our spatiotemporal setting, applying the tapering technique requires the specification of a
joint distance metric that will accommodate both space and time co-ordinates. This is generally
difficult, as space and time are distinct with respect to distance. Nevertheless, for simulation
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Fig. 2. Plot of C.h, uIθ/ in equation (4) (the parameter ν is fixed at 0.5): (a) set-up 1, β D 0:5; (b) set-up 2,
β D1; (c) set-up 3, β D5

Table 2. (Without nugget) MSEs of parameter estimates†

Scenario Method MSEs Total RE
scaled
MSE

a b β σ2

Set-up 1 1 3 0.5 1
WCL 0.0047 0.1046 0.0030 0.0018 0.11
JCEF 0.0037 0.0703 0.0023 0.0019 0.08 1.46

Set-up 2 1 3 1 1
WCL 0.0029 0.0599 0.0073 0.0028 0.07
JCEF 0.0022 0.0527 0.0037 0.0027 0.06 1.19

Set-up 3 1 3 5 1
WCL 0.0031 0.1157 0.2439 0.0073 0.37
JCEF 0.0025 0.1080 0.1288 0.0072 0.25 1.50

Average MSE reduction (%) 22.38 17.17 40.18 −1.08

†The results are from 200 rounds of simulations based on the covariance structure in equation (4). Total scaled
MSE is the sum of MSEs for four parameters scaled by parameter means. RE is the RE defined as the total scaled
MSE of WCL over that of the JCEF.

purposes, we use the Euclidean norm on standardized spatial and temporal co-ordinates. Note
that MLE is a special case of the tapering method when the taper range η is set at ∞.

We compare the tapering method and JCEF with varying distance lags and taper ranges.
For each combination of the spatial and temporal lags .p, q/ used for the JCEF, we select an
appropriate taper range, so that the same pairs of observations are included in the latter method.
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Given that each pair of observations corresponds to two entries in the full covariance matrix,
we quantify the shared amount of information by both methods in terms of the percentage of
covariance elements utilized in estimation for each set of spatial and temporal lags .p, q/ and the
respective taper range η. These percentages are marked below the horizontal axis label in Fig.
3, where boxplots of estimates of log.β/ and the averaged computing times (the dots for MLE
and the full line for the method used) are presented. Results are based on simulation set-up 3
presented in Table 2.

In terms of parameter estimates, boxplots in Fig. 3(b) show that, for the JCEF, increasing
spatial and temporal lags do not improve the estimates, which is consistent with findings in the
current literature (e.g. Varin et al. (2005) and Davis and Yau (2011)). This is because pairs that are
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Fig. 3. Boxplots of log.β/ estimates from (a) tapering and (b) the JCEF for set-up 3 considered in Table 2
with a spatial grid of 7 � 7 and 30 time points (five sets of spatial and temporal lag combinations (p,q) with
increasing values are considered for the JCEF, corresponding to JCEF 1–JCEF 5; the percentage of infor-
mation utilized by each (p,q) is marked below the horizontal axis label ranging from 1% to 75%; five taper
ranges η are chosen with respect to each (p,q), and are labelled as Taper 1–Taper 5; the same percentages
are marked for tapering accordingly; MLE is the special case when p D q D 1 for the JCEF and η D 1 for
tapering): - - - - - - - , mean computing time; – – –, mean time used by MLE; . . . . . . ., true log.β/ value
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farther apart are less likely to be correlated and will contain little information about dependence.
Including them in the estimation will add more noise in the estimation of covariance structures.

In contrast, boxplots in Fig. 3(a) show that increasing the taper range from nearest neighbours
(1%) to the maximum distance (100%) leads to improved estimation. This is because tapering
works on the covariance matrix. Including pairs farther apart increases the non-zero covariance
elements that are used in estimation. This in turn brings in high order correlations between
the covariance elements included and leads to a gain in efficiency. This explanation does not
apply to pairwise CL methods, since no high order correlations are contained in pairs. However,
this weakness is overcome, to some extent, by the JCEF, because the weight matrix effectively
accounts for some of the correlations beyond pairwise dependences. Obviously, WCL does not
incorporate such high order correlation information, so it is less efficient than the JCEF as
shown in Section 4.1.

In terms of computing time needed for the optimization to converge, the full curve in
Fig. 3(a) shows that, as the taper range increases, tapering requires a much longer time than MLE
(the dots). Tapering is faster when only 1% of the covariance elements (nearing neighbours) are
used in estimation. Note that we use the R code at http://www.image.ucar.edu/Data/
precip tapering/ for executing the tapering method (with minor changes), which is the
same code as used by Kaufman et al. (2008). So the comparison of computing time is based on
the same sparse matrix algorithm. What makes tapering run slowly is the time spent in indexing
and retrieving non-zero entries; this can be a substantial workload for a larger taper range. Fig. 3
clearly indicates that tapering is only competitive when the taper range is small. However, in
this case, the JCEF is superior to tapering in both estimation and computational efficiency.

4.3. Comparison with weighted least squares and maximum likelihood estimation
We now consider WLS and MLE in the comparison. WLS is probably the most commonly used
method in spatial data analysis. It estimates dependence parameters by fitting a parametric
covariance function to the computed empirical spatiotemporal variogram. As already shown in
Lele and Taper (2002), WLS is less efficient than WCL which, as we have shown, is less efficient
than the JCEF.

We use set-up 3, considered in Table 2, for comparing the five methods. Table 3 lists results
of β-estimates from three increasing grids. In particular, we choose the taper range so that it is
computationally competitive with MLE. Then the spatial and temporal lags in the JCEF are
set at values that are comparable with the tapering method.

As the gold standard, MLE is the most accurate and has the smallest MSEs, but the price is
high in computing time. By contrast, WLS is the fastest, at the cost of being least accurate. It is
clear that the JCEF achieves a good balance between time and MSE, and is the best among all
methods in this simulation set-up.

4.4. Comparison with conditional pseudolikelihood
As an alternative to the marginal bivariate distributions that are used in the JCEF, estimations
based on conditional density functions are also extensively considered in the literature. See
Vecchia (1988) and Stein et al. (2004) among others.

Given innumerable ways of constructing the conditioning sets, in the simulation study, we
follow Stein (2005) and select half of the conditioning set from the nearest neighbours, and the
other half from observations farther apart. We vary the number of conditioning observations as
1, 2, 4, 6 and 8, and term them Stein 1, Stein 2, Stein 4, Stein 6 and Stein 8 respectively. Results
shown in Fig. 4 are obtained on the basis of set-up 3 considered in Table 2: the same setting as
used in Table 3 and Fig. 3. Fig. 4 displays boxplots of log.β/ estimates and mean computing
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Table 3. Comparison of MSEs and computing time for the MLE, JCEF,
WCL, tapering and WLS methods for set-up 3 considered in Table 2†

Method Results for the following grids:

5×5×15 6×6×20 7×7×30

MSE Time (s) MSE Time (s) MSE Time (s)

MLE 0.04 2.61 0.02 4.11 0.01 15.66
JCEF 0.55 0.03 0.33 0.06 0.20 0.12
WCL 2.02 0.03 0.87 0.05 0.43 0.10
Taper 1.30 3.40 0.65 3.94 0.31 8.45
WLS 6.02 0.00 3.49 0.00 2.03 0.01

†Data are generated from three increasing grids of 5×5×15, 6×6×20 and
7×7×30.
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Fig. 4. Boxplots for estimates of log.β/ by Stein’s method with varying lengths of conditioning sets (Stein
1 refers to Stein’s method with one conditioning observation etc.; estimates by using the JCEF based on
neighbouring pairs and by MLE are also plotted for comparison): , mean computing time; – – –, mean
time used by MLE; . . . . . . ., true log.β/ value

time for five versions of Stein’s method and for our JCEF based on neighbouring pairs. Results
from MLE are included as the gold standard. From Fig. 4, we learn the following results.

(a) As the size of the conditioning sets increases, Stein’s method yields improved efficiency
as a result of including high order conditional dependence.

(b) When the size of the conditioning set is 1, the Stein 1 method uses bivariate density func-
tions and, hence, similar pairs are used in both the Stein 1 and the JCEF methods. Clearly,
the JCEF performs much better in estimation efficiency. Interestingly, the JCEF is shown
to be comparable with Stein’s method, up to the size of four conditioning observations.
This suggests that the weight matrix that is used in the JCEF incorporates additional
information beyond pairwise correlation and is comparable with the four-dimensional
conditional density functions.

(c) Although Stein’s method is always faster than MLE, it is clearly slower than the JCEF
method. Thus, as far as computing time is concerned, the JCEF will be advantageous for
large-size data problems and for analyses on ordinary personal computers.
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In summary, we conclude that, compared with Stein’s method, the JCEF is a desirable com-
promise between estimation and computational efficiency. In addition, unlike Stein’s method,
the JCEF does not require an explicit specification and evaluation of multivariate density func-
tions. It can be a considerable challenge to generalize the conditional pseudolikelihood approach
for non-normal data, such as binary and Poisson data.

4.5. Standard error estimation
We now evaluate the standard error estimation for the JCEF. The key to obtaining valid standard
error estimates is to create proper replicates of the data. As we did in the step of weight matrix
estimation, we invoke the subsampling method to calculate standard errors for data generated
on regular grids. A similar formula to that in equation (3) is used with θi

n replacing Γi
n.θ/. The

subsample size is determined by Mnd=.d+2/, where d = 3 in the spatiotemporal setting. Following
Heagerty and Lumley (2000), we vary the tuning constant M from 2 to 4 to assess the effects
of different subsample sizes on the standard error estimation, resulting in three subsampling
schemes: 3×3×15, 4×4×15 and 4×4×20. The same weight matrix as used for the JCEF on
the entire grid is used in each subsample evaluation.

Another popular approach to creating data replicates is the parametric bootstrap, i.e. after
obtaining JCEF estimates, we generate data on the basis of the estimated model. The square
root of the sample variance of the JCEF estimates across replicates is obtained as the estimate.
This method involves more computation but is less prone to bias than subsampling, which is
likely in finite samples to introduce extra bias with artificially created subsamples. Bevilacqua
et al. (2010) adopted the parametric bootstrap approach for constructing tests of separability of
space–time covariance functions. We also consider a comparison of subsampling with the para-
metric bootstrap with bootstrap sample size 200. Given the importance of the spatiotemporal
interaction parameter β, we devote our attention to parameter β in the evaluation.

Table 4 lists results from 300 rounds of simulation for set-ups 1–3 that were considered in
Table 2 with β equal to 0.5, 1 and 5 respectively. We can see that different subsample sizes do
have an effect on standard error estimation. Smaller subsamples yield standard error estimates
that are closer to the empirical standard deviations, whereas larger subsamples tend to underes-
timate the variations. The reason may be that we use all overlapping sub-blocks and that larger
sub-blocks share more common observations, leading to less variation between blocks. How-
ever, truncation bias can occur if the subsamples are too small, because they may fail to account
for correlations at longer distances. Parametric bootstrapped standard error estimates perform
very well in all three settings, giving estimates that are very close to the empirical standard devi-
ations. This is because, with consistent parameter estimates, each bootstrap procedure will yield
a standard error estimate of the same distribution as the empirical distribution. In summary,
if the parametric bootstrap is feasible computationally, it is recommended, especially for data
that are collected on irregular grids; for data on regular grids, subsampling is recommended.
Nevertheless, further investigation is needed to choose the tuning constant M.

To assess the validity of statistical inference, we computed the 95% coverage probabilities
across replicates for the three set-ups. In Table 4, the parametric bootstrap and subsampling
with a 3×3×15 partition scheme yield coverage probabilities that are close to the nominal 95%.
The other two subsampling schemes have smaller coverage probabilities due to underestimated
standard errors. As a by-product of this simulation, WCL estimates as inputs for the weight
estimation are also recorded. The calculated MSE in Table 4 again shows that the JCEF method
considerably lowers the MSE, leading to a gain in efficiency. The reduction in MSE is mainly
due to the reduction in standard deviations. In other words, both methods produce consistent
estimates, but those from the JCEF have smaller variances, which again corroborates the theory.
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Table 4. Standard errors of parameter estimates for β†

Results for JCEF Results for WCL

Method SE CP (%) SEe Mean MSE SEe Mean MSE

Set-up 1 Subsampling 4×4×20 0.0569 80.12 0.0797 0.4916 0.0064 0.1387 0.5031 0.0191
β =0:5 4×4×15 0.0695 89.76

3×3×15 0.0732 92.17
Parametric bootstrap 0.0748 94.67

Set-up 2 Subsampling 4×4×20 0.0728 87.67 0.0937 0.9998 0.0088 0.2126 1.0282 0.0458
β =1 4×4×15 0.0814 93.33

3×3×15 0.0929 95.67
Parametric bootstrap 0.0997 96.67

Set-up 3 Subsampling 4×4×20 0.4034 79.67 0.6125 5.0254 0.3746 1.1050 5.2141 1.2627
β =5 4×4×15 0.4696 86.00

3×3×15 0.6053 94.00
Parametric bootstrap 0.6221 94.67

†The results are from 300 simulations based on the covariance structure in equation (4). SE is the mean standard
error. CP is the mean 95% coverage probability. Subsampling and the parametric bootstrap are used to calculate
SE for β. SEe is the empirical standard deviation of β̂.

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−2

−
2

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−2

−
2

Observed Quantiles

T
he

or
et

ic
al

 Q
ua

nt
ile

s

−20 2 0 2 0 2

−
2

0
2

0
2

0
2

(a) (b) (c)

Fig. 5. Normal QQ-plots of the standardized estimates of β̂ by using the JCEF, fixing other parameters
(observed quantiles are ordered .β̂ � ¯̂β/=SE.β̂/, where ¯̂β is the mean of β̂ across simulation replicates
and SE.β̂/ is based on standard error estimates from the parametric bootstrap): (a) set-up 1; (b) set-up 2;
(c) set-up 3
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To assess the finite distribution of the β-estimates further, we plotted the QQ-plots with
95% confidence bands by using the R package fBasics (function qqnormPlot). To reflect
common practical situations, we standardized the estimate by the sample mean and the cor-
responding bootstrap standard error estimates and plotted them against a standard normal
random variable. From the QQ-plots in Fig. 5, we see a reasonable coverage of the 95% con-
fidence bands over the 45◦ diagonal line, which means that the estimates can be regarded as
(approximately) normally distributed. Scenarios from set-up 1 to set-up 3, representing fast,
median and slow rates of spatial–temporal correlation decay respectively (see Fig. 2), show a
slight deviating tendency. The 95% confidence band coverage deteriorates when the dependence
decay rate becomes slower. This means that a larger sample size may be required to achieve the
asymptotic normality for long memory processes.

5. Analysis of particulate matter data

To illustrate the JCEF method, we analyse 20-year airborne particulate matter data (PM10-
data) across the north-eastern USA from August 1982 to August 2002. PM10-particles amount
to fine soot that enters the atmosphere from fuel combustion sources, industrial processes and
transportation sources. The goal is to study their spatiotemporal dependence, so that predictions
can be made at specific locations and time points. Monthly mean PM10-measures are obtained
by averaging all available readings for a given month and are log-transformed. Because not
all monitors are observed all the time, the final data come from readings at 108 air pollution
stations between Maine and Virginia during the months from January 2000 to August 2002. The
layout of the monitor locations is displayed in Fig. 6. The distance between any two monitor
locations ranges from 0.45 to 956 miles.

We first remove location and month effects by an analysis-of-variance model, treating each
month and location as class variables (Diez Roux et al., 2008). Separate spatial and temporal
models can be developed for the estimated mean location and month effects. Our focus is on

Fig. 6. Layout of PM10 monitoring stations in the north-eastern USA from January 2000 to August 2002
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Fig. 7. (a) Empirical and (b) fitted spatiotemporal variograms for PM10-residuals: observation pairs are
grouped by distance lags of 20–500 miles with a unit increase of 20 miles and temporal lags of 1–20 months,
with a unit increase of 1 month

studying the spatiotemporal dependence structure of the resulting residuals. To visualize the
spatiotemporal pattern, we plot the estimated spatiotemporal empirical variogram in Fig. 7(a).
Observation pairs are grouped by distance lags of 20–500 miles with the unit of increase being
20 miles. Temporal pairs are grouped by time lags of 1–20 months, with the unit of increase
being 1 month.

We fit the non-separable covariance structure in equation (4) with a nugget effect of variance
σ2

" to the data. A set of initial parameter values is obtained by using WLS, by minimizing the
weighted difference between the empirical variogram and the parametric variogram at prespec-
ified lags.

As pointed out previously, subsampling may not be appropriate because the spatial mon-
itor grid is irregular, so we use the parametric bootstrap to create sample replicates for the
subsequent determination of the optimal distance lag, the weight matrix estimation and stan-
dard error estimation.

We follow the method that was proposed in Bevilacqua et al. (2011) to determine the optimal
distance lags. It is computationally prohibitive in practice to compute the Godambe informa-
tion for all possible combinations of spatial and temporal lags. We use the grid search method
to find the optimal lags from a pool of spatial and temporal lags with time ranging from 1 to
6 months with a 1-month increment and spatial distances ranging from 20 to 260 miles with a
20-mile increment. The optimal combination is 6 months in time and 100 miles in space, which
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Table 5. Parameter and standard error estimates of the spatiotemporal
covariance structure in equation (4) fitted to the PM10 data set†

Parameter Results for WCL Results for JCEF

Estimate 95% confidence Estimate 95% confidence
interval interval

a 1.0112 0.6213 1.5048 1.1636 0.7833 1.7285
b 0.0382 0.0148 0.0981 0.0403 0.0173 0.0939
β 4.1129 0.9423 20.7327 6.4341 1.7373 23.8292
σ2 0.0219 0.0173 0.0265 0.0224 0.0180 0.0277
σ2

" 0.0194 0.0167 0.0231 0.0199 0.0173 0.0229

†The standard error estimates were obtained by subsampling.

means that we shall include pairs that are within p = 100 miles in distance and q = 6 months
in time to specify our composite estimating functions. Then WCL is carried out for estimation
and its estimates are used for weight matrix calculation. Finally, the JCEF method is applied
to estimate the model parameters.

Parameter estimates, standard errors and 95% confidence intervals from the JCEF and WCL
are listed in Table 5. Point estimates from the two methods are similar, but the JCEF yields
smaller standard error estimates, especially for the interaction parameter β, which is consistent
with the simulation results. For the JCEF method, given β̂ = 6:4341, â = 1:1636 means that
the marginal temporal correlation decays by around 40% with a 1-month increase in time, and
b̂= 0:0403 indicates that the marginal spatial correlation decays by approximately 15% with a
10-mile increase in space. β̂ = 6:4341 indicates that the temporal correlation decays approxi-
mately 1.5% faster with 10 miles farther away in space, whereas the spatial correlation decays
about 2.5% faster with 1 month further apart in time. The confidence interval for β̂ does not
cover 1, indicating that there is a significant spatiotemporal interaction effect. As a result, a
separable covariance structure is not applicable to this data set if the covariance function in
equation (4) is used to model the dependence structure.

We also compare the sums of squared differences between the fitted parametric variograms
obtained by the JCEF (Fig. 7(b)) and WCL with the empirical variogram. The sum of squared
differences ratio of the JCEF over WCL is 0.67, indicating that the surface fitted by the JCEF is
33% closer to the empirical surface than that fitted by WCL. In summary, the proposed JCEF
outperforms WCL in point estimates and standard error estimates, as well as the goodness of fit.
Some additional analysis of the data may be carried out. For example, one could use the tests
that were proposed in Li et al. (2007) to test the symmetry and isotropy of the data dependence,
and to fit the corresponding parametric covariance function to the data, to improve the fit of
the overall model.

6. Discussion

In this paper, we have proposed a statistically efficient and computationally feasible approach
to estimating spatiotemporal covariance models for large data sets. The JCEF method proposed
constructs separate CLs based on spatial, temporal and spatiotemporal cross-pairs, and then
joins them into a quadratic inference function. Through such GMM formulation, our method
accounts for correlations between the pairs via the weight matrix and allocates higher weights
to groups of pairs with more information, and hence it substantially improves the estimation
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efficiency over existing WCL methods. The JCEF estimator has also proven to be consistent
and asymptotically Gaussian under the increasing domain asymptotics. Comprehensive simu-
lation studies have shown that the JCEF is advantageous over MLE, tapering, Stein’s method,
WCL and WLS in terms of balancing estimation and computational efficiency for large data
sets.

Another advantage of the JCEF method is the possibility of deriving a goodness-of-fit sta-
tistic to test the zero-mean model assumption, H0 : E{Γn.θ/}= 0. This can be used for testing
the separability structure of the covariance matrix. Since θ̂n is obtained by an overidentified
estimating function Γn.θ/, Qn.θ̂n/ falls in the ‘overidentifying restriction’ test by Hansen (1982),
who proved that the asymptotic distribution of Qn

ˆ.θn/ is χ2 with degrees of freedom equal to
the number of estimating functions minus the number of parameters, which in our case is 2r.
However, many researchers have pointed out that the first-order asymptotic theory often pro-
vides inadequate approximations to the distributions of the test statistics that are obtained from
GMM estimators; see, for example, the special issue of the Journal of Business and Economics
Statistics in July 1996. To improve inference, various alternative estimators have been suggested.
These include empirical likelihood (Qin and Lawless, 1994; Owen, 1988, Imbens, 1997), mod-
ified bootstrap procedures (Hall and Horowitz, 1996) and the continuous updating estimator
(Hansen et al., 1996). Qu et al. (2000) used the last approach to construct the quadratic infer-
ence function and showed that the finite sample distribution of the objective function agrees well
with the asymptotic counterpart. The performances of these goodness-of-fit methods under the
JCEF framework for spatiotemporal data are worth further exploration.

As noted previously, the smoothness parameter ν is usually difficult to estimate. However,
the quadratic objective function in the JCEF is analogous to profile likelihood and could be
used as a tool to determine its value. Specifically, given a range of ν-values, we perform the
JCEF estimation procedure for each ν and record the parameter values and the target func-
tion value. Then ν is estimated to be the one with the smallest target function value, and the
corresponding parameter estimates are used as the final estimates. We plot log{Q.θ/} and
ν in Fig. 8 for simulation set-up 3 considered in Table 2. The true value for ν is 0.5. We
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Fig. 8. Estimated log-quadratic objective function Q.θ̂/ versus smoothness parameter ν, evaluated in set-up
3 in Table 2: the true value for ν is 0.5
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can see that this profile approach provides an accurate estimate of ν. Hence it seems a very
promising method for estimating the parameter ν. Further detailed work is needed to develop
this.

We have considered covariance estimation from a detrended process. As is known, detrending
may introduce artificial correlation into the residuals, which may distort the intrinsic correlation
of the data. In fact, this is a common concern when a two-stage procedure is used to estimate
covariance structures. A simple solution would be to estimate the mean and covariance param-
eters jointly. From a large sample point of view, as long as the mean parameter is consistently
estimated, covariance estimates can be consistently estimated under some mild conditions. How-
ever, in actual applications, finite sample performances matter more. Our experiments in both
theory and computation suggested that two factors are crucial to ensure similar performances
between the two-stage approach and the joint estimation method:

(a) the strength of the intrinsic spatiotemporal dependence and
(b) the sample size.

For large data sets, the two-stage procedure is usually favoured.
It is worth noting that variance estimates of the JCEF estimator do not account for uncer-

tainty in the weight matrix estimation. This uncertainty results from the plugged-in parameter
estimates in the evaluation of the weight matrix. According to Windmeijer (2005), such varia-
tion is known to be of order O.n−1/, which is a lower order term than O.n−1=2/ and thus may
be ignorable when n is large. In addition, this issue concerning the finite sample performance
has been well studied in the GMM literature. Several methods have been proposed to correct
for the downward bias that occurs in parameter standard error estimates when the sample size
is inadequate. They include adding a variance correction term (Windmeijer, 2005) or using a
parametric bootstrap procedure (Hall and Horowitz, 1996).

We have focused our attention in this paper on evaluating the gain in efficiency of the JCEF
over the existing methods of covariance estimation. Kriging, which is one of the popular
approaches that are used for prediction in geostatistics, relies heavily on covariance functions,
as the kriging predictor is the best linear unbiased estimator on the basis of the covariance
model that is specified for the process. It may also be interesting to study whether more efficient
covariance estimators will yield more efficient predictors.
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Appendix A: Definition of the distance metric ρ

The distance between two pairwise differences d.k1/ and d.k2/ defined in equation (1) depends on config-
urations of four points in the spatiotemporal domain R2 × R+. Denote the co-ordinates of one point by
.s, t/. The distance between two points p1 = .s1, t1/ and p2 = .s2, t2/ in R2 × R+ is defined as τ .p1, p2/ =
max{‖s1 − s2‖, |t1 − t2|}. Let k1 = .p1, p′

1/ and k2 = .p2, p′
2/. Then the distance between two points in

D⊂R2 ×R+ ×R2 ×R+ is defined as ρ.k1, k2/=min{τ .p1, p2/, τ .p1, p′
2/, τ .p′

1, p2/, τ .p′
1, p′

2/}, i.e. the min-
imum distance of two points in sets .p1, p′

1/ and .p2, p′
2/. The distance between any subsets U, V ⊂ D is

defined as ρ.U, V/=min{ρ.i, j/ : i∈U, j ∈V}.
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Appendix B: Proof of lemma 2

Lemma 2 states a central limit theorem for Γn.θ/, which is comprised of three estimating functions based
on different groups of pairwise differences with varying numbers of terms. The three groups of pairwise
differences are subseries of d.k/ and hence satisfy the same mixing conditions in assumption 6 imposed on
d.k/. In addition, |DS,n|, |DT ,n| and |DC,n| are of the same order O.n/, making it possible to use a common
scaling factor to unify the convergence rates.

We prove the asymptotic normality of Γn.θ/ through the Cramer–Wold device. For ease of argument, we
work on sums of component score functions instead of means. Define ΓÅ

n .θ/= .ΨÅT
s,n .θ/, ΨÅT

T ,n.θ/, ΨÅT
C,n.θ//T,

where ΨÅ
A,n.θ/=|DA,n|ΨA,n.θ/ for A∈{S, T , C}. The aim is to prove that, for arbitrary constants c1, c2

and c3, the linear combination

c1ΨÅ
S,n.θ/+ c2 ΨÅ

T ,n.θ/+ c3 ΨÅ
C,n.θ/

is asymptotically Gaussian. Define

Gn.θ/≡ c1 ΨÅ
S,n.θ/+ c2 ΨÅ

T ,n.θ/+ c3 ΨÅ
C,n.θ/= cT ΓÅ

n .θ/,

where c = .c1; c2; c3/
T, which is a 3r × r matrix with ci = ciIr, i = 1, 2, 3, and Ir is the r × r identity matrix.

Let var{ΓÅ
n .θ/}=ΣÅ

n .θ/, ΣG,n.θ/≡var{Gn.θ/}= cTΣÅ
n .θ/c.

Write

Gn.θ/= ∑
i∈DS, n

c1 fi{d.i/;θ}+ ∑
j∈DT , n

c2 fj{d.j/;θ}+ ∑
l∈DC, n

c3 fl{d.l/;θ} .5/

≡ ∑
k∈Dn

hk{d.k/;θ},

where

hk{d.k/;θ}=
{

c1 fk{d.k/;θ}, if k ∈DS,n,
c2 fk{d.k/;θ}, if k ∈DT ,n,
c3 fk{d.k/;θ}, if k ∈DC,n.

Equation (5) simply multiplies each set of estimating functions by a constant and sums them together.
Then, given assumptions 1–4 and 6 and 7, according to theorem 1 in Jenish and Prucha (2009),

Σ−1=2
G,n .θ/Gn.θ/∼N.0, Ir/, as n→∞:

Note that assumption 4 is imposed on fk, which also applies to hk, since hk differs from fk by a multipli-
cative constant. Assumption 7 implies the convergence of n−1 ΣÅ

n .θ/ to a positive definite constant matrix,
provided that |DS,n|, |DT ,n| and |DC,n| are of order O.n/.

Since c1, c2 and c3 are arbitrary constants, by the Cramer–Wold device, we obtain

ΣÅ
n .θ/−1=2 ΓÅ

n .θ/∼N.0, I3r/, as n→∞:

Let B=diag{.1=|DS,n|/Ir, .1=|DT ,n|/Ir, .1=|DC,n|/Ir}. Then Γn.θ/=BΓÅ
n .θ/, whose asymptotic normal-

ity follows immediately.
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