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a b s t r a c t

This paper concerns goodness-of-fit tests for semiparametric copulamodels. Our contribution is two-fold:
we first propose a new test constructed via the comparison between ‘‘in-sample’’ and ‘‘out-of-sample’’
pseudo-likelihoods. Under the null hypothesis that the copula model is correctly specified, we show that
the proposed test statistic converges in probability to a constant equal to the dimension of the parameter
space. We establish the asymptotic normality and investigate the local power of the test. We also extend
the proposed test to the specification test of a class of multivariate time series models, and propose a
new bootstrap procedure to establish the finite-sample null distribution, which is shown to have better
control of type I error than the commonly used bootstrap. Secondly, we introduce a Bonferroni-based
hybrid mechanism to combine several test statistics, which yields a useful test. This hybrid method is
particularly appealing when there exists no single dominant optimal test. We conduct comprehensive
simulation experiments to compare the proposed new test and hybrid approach with two of the best
‘‘blanket’’ tests in the literature. For illustration, we apply the proposed tests to analyze two real datasets.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Assessing dependency among multiple variables is a primary
task in business economics or financial applications. Copula is be-
coming increasingly popular in such fields due to its flexibility in
seamlessly integrating sophisticated dependence structures and
varying marginal distributions of multivariate random variables.
For example, in finance, copulas are widely applied to study de-
pendency in asset pricing, asset allocation and risk management;
see Klugman and Parsa (1999) and Cherubini et al. (2004, 2011),
among others. More examples in other fields can be found in Frees
and Valdez (1998),Wang andWells (2000), Song (2007) and Dana-
her and Smith (2011), just to name a few.

Essentially, a parametric copula is a cumulative distribution
function (CDF) specified by a certain known functional form up
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to some unknown dependence parameters. When a parametric
copula is used in applications, misspecification on any of its para-
metric structuremay cause erroneous statistical estimation and in-
ference. To check for the adequacy of a copula model, specification
tests have been extensively investigated in the literature. Wang
and Wells (2000) proposed a rank based test for bivariate copulas.
Malevergne and Sornette (2003) developed a test for the specifi-
cation of Gaussian copulas. Fermanian (2005) and Scaillet (2007)
established goodness-of-fit tests through kernel techniques. Other
types of specification tests include Panchenko’s (2005) V -statistic
type test, Prokhorov and Schmidt’s (2009) conditional moment
based test, Mesfioui et al.’s (2009) Spearman dependence based
test, and Genest et al.’s (2011) Pickands dependence based test.
Very recently, Huang and Prokhorov (2014) adopted White’s test
based on the information matrix test (White, 1982) to derive a test
for copula model specification. With the utility of either Kendall’s
or Rosenblat’s probability integral transformations, several other
versions of specification tests have been proposed in the literature,
including those proposed by Breymann et al. (2003), Dobrić and
Schmid (2007) and Genest and Favre (2007), among others.
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In a recent paper, Genest et al. (2009)made a thorough compar-
ison formost of the existing ‘‘blanket tests’’. A blanket test refers to
a test whose implementation does not require either an arbitrary
categorization of data or any strategic choice of smoothing pa-
rameter, weight function, kernel or bandwidth. It is demonstrated
by Genest et al. (2009) that none of these blanket tests perform
uniformly the best. It is interesting to note that almost all of them
had illustrated nearly no power in differentiating Gaussian copulas
from Student’s t copulas, both of which are very important sym-
metric copulas with different tail dependence properties. Another
challenge in the use of the blanket tests considered in Genest et al.
(2009) is that they rely on certain probability integral transforma-
tions, whichmay be difficult to derive analytically inmany popular
copula dependence models, e.g. Student’s t copulas and vine cop-
ulas (e.g. Kurowicka and Joe, 2011).

To overcome the difficulties above, we propose an alternative
specification test for semiparametric copulas in this paper. The
proposed test statistic takes a form of ratio constructed via two
types of pseudo-likelihoods: one is ‘‘in-sample’’ pseudo-likelihood
and the other is ‘‘out-of-sample’’ pseudo-likelihood. The idea be-
hind the construction of the new test is rooted in the fact that,
heuristically, a goodness-of-fit test is to examine how a model
fits the data. Thus, we vary data by the means of jackknife and
quantify how sensitive the pseudo likelihood is to the varying
data. Naturally, a comparison of pseudo likelihoods over different
datasets are utilized to characterize how well the model fits the
data. Inspired by Presnell and Boos’s (2004) likelihood based in-
and-out-of-sample test, we term our proposed test as the pseudo
in-and-out-of-sample (PIOS) test. In comparison to the blanket
tests in Genest et al. (2009), which are all indeed rank-based tests,
our PIOS test is a pseudo likelihood based test, which does not
require any probability integral transformation. Thus, as demon-
strated later in the paper, the PIOS test is computationally simple
and numerically stable.

Under the null hypothesis of the assumed copula model being
correctly specified, we show that under some mild regularity con-
ditions, the PIOS test statistic converges in probability to a con-
stant equal to the dimension of the parameter space of the null
copula model. Also, we establish both consistency and asymptotic
normality for the PIOS test statistic. Compared to the fully para-
metric in-and-out-of-sample test proposed by Presnell and Boos
(2004), our workmakes the following new contributions. First, the
PIOS test is applicable to a semiparametric copula model in which
themarginal CDFsmay be fully unspecified. Secondly, Presnell and
Boos’s (2004) test is based on a single point data in-and-out-of-
sample procedure. As a useful extension, the PIOS test is based on a
data block in-sample and out-of-sample procedure, where the size
of block is allowed to increase with the sample size. Such flexibil-
ity is useful to extend the original method to serially dependent
time series data. Thirdly, the development of asymptotic proper-
ties of the PIOS test involves the use of the theory of empirical pro-
cesses with varying block size, and therefore such theoretical work
is new and fundamentally different from that established in Pres-
nell and Boos (2004). Fourthly, we develop the asymptotic local
power theory in the Pitman sense. Finally, the PIOS test is extended
to the case of semi-parametric copula based multivariate dynamic
(SCOMDY) model. However, the commonly used bootstrap proce-
dure (Chen and Fan, 2006), based on resampling from estimated
innovation processes, may fail to attain the nominal test sizes. We
propose a new bootstrap procedure, which involves resampling
from the time series data and re-estimating the dynamic param-
eters of the SCOMDYmodel in each bootstrap path. The simulation
studies have shown that our proposed bootstrapwould better con-
trol type I error due to accounting for uncertainty in estimating the
dynamic parameters.

Another primary focus of the paper is the adoption of Bon-
ferroni correction in combining several test statistics and the
resulting test is termed as the hybrid test in this paper. As demon-
strated in Genest et al. (2009), there exists no single dominant
asymptotically optimal test against general alternatives; see also
Freedman (2009). The hybrid test offers a compromise of several
different tests, which is particularly appealing when there is no a
priori knowledge about the top performer in the hypothesis test.
We show that the hybrid test can control type I error, as long as
each of them does, and that it will be a consistent test as long as
there exists one consistent test among the involved tests, regard-
less of the performance of the remaining tests. The basic setup for
the hybrid test is different from that for multiple testing. The dif-
ference between these two settings is rooted in the number of null
hypotheses involved in the analysis. In our case of hybrid test, there
is only one null hypothesis versus one alternative hypothesis, to
which several different test statistics (e.g. Sn, Jn, Rn, Tn defined in the
following sections) are applied on the same data, so that the test
statistics are intrinsically correlated and thus Bonferroni procedure
is deemed to control the size of hybrid test. On contrary, in the
case of multiple testing, many different null hypotheses are con-
sidered and tested simultaneously for whether or not all these null
hypotheses hold together, in which only one test statistic is used
repeatedly in each hypothesis; see an example of goodness-of-fit
test proposed by Hofert and Mächler (2013). Although our setting
appears to be different from the multiple testing, the method of
Bonferroni procedure is applicable to the hybrid test for the type I
error control. Our simulation studies clearly illustrate that, in gen-
eral, the proposed hybrid test enjoys the desirable finite sample
performance.

This paper is organized as follows. Section 2 is devoted to the
details for the construction of the PIOS test. Section 3 discusses the
hybrid test. Section 4 presents the large sample properties of the
proposed PIOS test statistic. Section 5 presents an extension of the
PIOS test tomultivariate time series data. Section 6 concernsMonte
Carlo simulation studies to evaluate finite sample performances of
the proposed PIOS test and hybrid test. In Section 7, the proposed
tests are applied to two real datasets. The final section provides
some concluding remarks. All technical details are included in the
appendices.

2. Pseudo in-and-out-of-sample (PIOS) test

Suppose that X1 = (X11, . . . , X1d)
T , . . . , Xn = (Xn1, . . . , Xnd)

T

is a randomsample of size ndrawn fromamultivariate distribution
H(x) = H(x1, x2, . . . , xd) with continuous marginal CDF F(x) ∆

=

{F1(x1), . . . , Fd(xd)}. According to Sklar’s theorem (Sklar, 1959), we
suppose that the joint distribution H(·) can be expressed by the
following representation:

H(x1, x2, . . . , xd)
△
= C0{F(x)} = C0{F1(x1), . . . , Fd(xd)},

where C0(·) is the true copula function. The corresponding joint
density function of H(·), denoted by h(·), takes the form of

h(x1, x2, . . . , xd) = c0{F1(x1), . . . , Fd(xd)}
d

k=1

fk(xk),

where, c0(u), u = (u1, . . . , ud) ∈ (0, 1)d is the resulting copula
density function of copula C0(·) and fk(·) are the corresponding
marginal density functions of Fk(·), k = 1, . . . , d. Throughout this
paper, the marginal CDF F(·) is not specified by any parametric
forms.

In practice, we often assume that the underlying true copula C0
belongs to a parametric class, say,

C
∆
= {C(·; θ), θ ∈ Θ},

where Θ ⊂ Rp is a p-dimensional parameter space. It is well
known that misspecification on any of its parametric structure
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of C(·; θ) may ruin likelihood based statistical estimation and
inference. Hence, checking themodel specification is an important
task in model diagnosis. In the following, we are interested in the
development of a goodness-of-fit test on the hypotheses

H0 : C0 ∈ C = {C(·; θ) : θ ∈ Θ} vs.
H1 : C0 ∉ C = {C(·; θ) : θ ∈ Θ} .

To begin, we first apply the so-called two-step pseudo max-
imum likelihood estimation (PMLE) method (e.g. Oakes (1994),
Genest et al. (1995), Shih and Louis (1995) and Chen and Fan
(2005)) to estimate the dependence parameter θ . In order to avoid
the estimated copula function from blowing up at the boundary of
0 or 1, let F̃(x) = {F̃1(x1), . . . , F̃d(xd)} be the set of rescaled empir-
ical marginal distributions, where the kth component is given by

F̃k(xk) =
1

n + 1

n
t=1

I (Xtk ≤ xk) , k = 1, . . . , d, (1)

where I (·) is the indicator function. Let l{F̃(Xt); θ} = log c{F̃1(Xt1),

. . . , F̃d(Xtd); θ}, and let θ̂ be the two-step PMLE of θ given by

θ̂ = argmax
θ∈Θ

n
t=1

l

F̃(Xt); θ


. (2)

Genest et al. (1995) investigated large sample properties of
the above PMLE (2) under the assumption of the copula function
being correctly specified. Chen and Fan (2005) and Chen and
Fan (2006) have investigated the asymptotic properties of this
estimator θ̂ under a misspecified model and proposed a model
selection approach based on a pseudo likelihood ratio test for
possibly misspecified copulas for i.i.d. data and time series data,
respectively. In this paper, we beginwith our development first for
the i.i.d. data and later extend it to time series data.

To present our new test, let us randomly divide the original
i.i.d. data, {X1, . . . , Xn}, into B blocks and denote the bth block with
block size nb as Xb

= (Xb
1 , . . . , X

b
nb), b = 1, . . . , B. Without loss of

generality, suppose Xb
i = Xn1+···+nb−1+i and the kth element of Xb

i is
denoted by Xb

ik, k = 1, . . . , d, i = 1, . . . , nb, and n1 + · · · + nB = n.
For the simplicity of exposition, we assume that all the blocks have
an equal size, say, nb ≡ m, and hencemB = n. With little technical
effort, all arguments presented in the rest of this paper can be easily
extended to the case of unequal block sizes. In a similar spirit to
the ‘‘jackknife’’ resampling method (e.g. Efron, 1982), we can yield
a set of delete-one-block PLMEs θ̂−b, 1 ≤ b ≤ B, according to the
following procedure:

θ̂−b = argmax
θ∈Θ

B
b′≠b

m
i=1

l{F̃(Xb′

i ); θ}, b = 1, . . . , B. (3)

Note that the delete-one-block pseudo likelihood
m

i=1 l{F̃(X
b
i );

θ̂−b} measures how well the hypothesized model predicts the
bth block of observations, Xb

= (Xb
1 , . . . , X

b
m). If the full pseudo

likelihood (a.k.a. the in-sample likelihood),
m

i=1 l{F̃(X
b
i ); θ̂}, ap-

pears to be much larger than the out-of-sample counterpart,m
i=1 l{F̃(X

b
i ); θ̂−b}, then the fitted model is very sensitive to the

deleted bth block of observations, implying that the hypothesized
model may be inadequate to fit the data. Thus, we can estab-
lish a global measure for goodness-of-fit using a comparison be-
tween the ‘‘in-sample’’ pseudo-likelihood and the ‘‘out-of-sample’’
pseudo-likelihood. Precisely, we propose a test statistic of the fol-
lowing form:

Tn(m)
△
=

B
b=1

m
i=1


l{F̃(Xb

i ); θ̂} − l{F̃(Xb
i ); θ̂−b}


. (4)
The resulting test is termed as the pseudo in-and-out-of-sample
(PIOS) test. It is worth pointing out that, when the margins are
known and the block size is fixed atm ≡ 1, Tn(m) in (4) reduces to
the IOS test statistic proposed by Presnell and Boos (2004).

Under the null hypothesis of correct model specification, the
statistic Tn(m) in (4) is shown to converge in probability to p,
the dimension of the parameter vector θ . Here, we present in a
heuristic argument as to why its limiting value is p. First, we define
two types of Fisher information matrices (Song, 2007, Chapter 3),
negative sensitivity matrix and variability matrix as follows:

S(θ) ∆
= −E0 [lθθ {F(X1); θ}] ,

V (θ) ∆
= E0


lθ {F(X1); θ}lTθ {F(X1); θ}


,

where lθ (u; θ) =
∂
∂θ

log c(u; θ), lθθ (u; θ) =
∂2

∂θ∂θT
log c(u; θ),

and E0(·) represents the expectation under the true copula C0.
Throughout this paper, we assume we work on hypothetical mod-
els and, there exists a parameter value θ∗

∈ Θ such that θ̂ → θ∗

in probability and satisfies the central limit theorem under some
regularity conditions. Refer to Chen and Fan (2005) for the regu-
larity conditions required to establish such large sample proper-
ties under misspecified models. The point of interest is that, under
suitable regularity conditions given in Theorem2 in Section 4.2, we
can show that

Tn(m)
pr
→ E0


lTθ {F(X1); θ

∗
}S(θ∗)−1lθ {F(X1); θ

∗
}


= tr

S(θ∗)−1V (θ∗)


, as n → ∞,

where tr(A) denotes the trace of a matrix A. As a result of the
Bartlett’s identity (White, 1982), a correct model specification im-
plies V (θ∗) = S(θ∗), so tr


S(θ∗)−1V (θ∗)


= p, the trace of

the p-dimensional identity matrix. Given some further conditions,
Tn(m) − p is shown to be asymptotically normally distributed,
which is the theoretical basis to define our rejection rule for the
hypothesis test.

To implement the proposed test statistic Tn(m) in practice we
need to estimate parameter θ in [n/m] (the largest integer less than
n/m) times,whichmaybe computationally demanding. Indeed,we
can approximate Tn(m) by the following test statistic Rn, which is
shown to be asymptotically equivalent to Tn(m) in Theorem 2(ii):

Rn
∆
=

1
n

n
t=1

lTθ {F̃(Xt); θ̂}Ŝ−1(θ̂)lθ {F̃(Xt); θ̂}

= tr

Ŝ−1(θ̂)V̂ (θ̂)


, (5)

where Ŝ(θ̂) and V̂ (θ̂) are the sample counterparts of the negative
sensitivity matrix and variability matrix, respectively, defined by

Ŝ(θ̂) = −
1
n

n
t=1

lθθ {F̃(Xt); θ̂},

V̂ (θ̂) =
1
n

n
t=1

lθ {F̃(Xt); θ̂}lTθ {F̃(Xt); θ̂}.

The statisticRn given in (5) is similar to the information ratio (IR)
test statistic proposed by Zhou et al. (2012) for cross-sectional and
longitudinal data in the framework of estimating equations, which
was later extended to time series data usingmartingale estimating
equations in Zhang et al. (2012).

3. Hybrid test

In most scenarios of goodness-of-fit tests, including those
developed for copula models (e.g. Genest et al., 2009), there
exists no single dominate optimal test. It is often the case that at
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one occasion, one test is more powerful, but at other occasions,
other tests are more powerful. See also Freedman (2009). The
same phenomenon also occurs in our simulation studies. At some
occasions, PIOS outperforms others, but at other settings, other
tests (such as the one proposed by Genest et al., 2009) perform
better. Following the method of Bonferroni correction for multiple
testing, here we propose the following hybrid test that enables us
to combine several different tests to achieve certain compromise in
the test power. This approach has been studied in the linear model
by Zhou et al. (2015). This strategy is particularly appealing when
there is no a priori knowledge regarding the top performer at a
given occasion.

Consider q test statistics, denoted by T (1)n , T (2)n , . . . , T (q)n , where
the subscript n is the sample size. Suppose that all of them have
type I error controlled at a given significance level α under a
common null hypothesis involving the same parameter. In general
these test statistics may follow different types of distributions
(asymptotical), so it is imperative to convert them into comparable
quantities under a common probability measure. The p-value is
the choice of method used in this paper. Similar to the Bonferroni
procedure, a hybrid test is constructed as follows: Let p(i)n denote
the corresponding p-value obtained from the test statistic T (i)n ,
i = 1, . . . , q. A hybrid test, denoted by T hybrid

n , will make decision
according to a p-value, defined as

phybridn = min{q × min(p(1)n , . . . , p
(q)
n ), 1}.

Consequently, the rejection rule of the hybrid test is that if phybridn ≤

α, the null hypothesis is rejected. This is equivalent to the situation
where there is at least one test but not necessary all tests rejecting
the null at the level of α/q.

Under the null hypothesisH0 and a significance levelα, we have
the type I error for the hybrid test:

pr(phybridn ≤ α|H0) = pr(p(1)n ≤ α/q or · · · or p(q)n ≤ α/q|H0)

≤

q
i=1

pr(p(i)n ≤ α/q|H0)

≤ α.

The above inequality shows that, provided that all of the test
T (i)n , i = 1, . . . , q, have controlled type I errors, the hybrid test
T hybrid
n has its type I error controlled at α.
Let β(i)n (α) be the power function of test T (i)n at a given

significance level α and sample size n, i = 1, . . . , q. That is, under
the alternative hypothesis HA, β

(i)
n (α) = pr(p

(i)
n ≤ α|HA). The

power function of the hybrid test T hybrid
n has the following lower

bound:

βhybrid
n (α) = pr


phybridn ≤ α|HA


= pr


p(1)n ≤

α

q
or · · · or p(q)n ≤

α

q
|HA


≥ max


β(1)n


α

q


, . . . , β(q)n


α

q


.

The above inequality implies that if there is at least one test
that is consistent (namely, the power tends to 1 as the sample size
increases to ∞), then the hybrid test is consistent. Our simulation
studies also show that the hybrid test behave more desirably than
any of the individual tests.

4. Asymptotic properties of PIOS test

In this section, we establish several asymptotic properties of
the proposed PIOS test as well as the relationship between Tn(m)
in (4) and Rn in (5). Throughout this paper, we denote ∥x∥ as the
usual Euclidean metric of any vector x = (x1, . . . , xd) ∈ Rd,

namely, ∥x∥ =


x21 + · · · + x2d and for any d × d matrix A,

∥A∥ =

d
i,j=1 A

2
ij, where Aij is the (i, j)th element of A. Let N (θ∗)

denote an open neighborhood of θ∗. For simplicity of notations, we
denote lθ,j(u1, . . . , ud; θ) =

∂ lθ (u1,...,ud;θ)
∂uj

and lθθ,j(u1, . . . , ud; θ) =

∂ lθθ (u1,...,ud;θ)
∂uj

, j = 1, . . . , d.

4.1. Law of large numbers theorem

Firstly, we establish the law of large numbers theorem for the
test statistics Rn. To proceed, we need the following regularity
conditions.

(A1) The first-order and second-order derivatives, lθ (u; θ) and
lθθ (u; θ), are continuous with respective to θ for any u ∈

(0, 1)d; and there exist integrable functions G1(u) and G2(u)
such that ∥lθ (u; θ)lTθ (u; θ)∥ ≤ G1(u) and ∥lθθ (u; θ)∥ ≤ G2(u)
for all θ ∈ N (θ∗).

(A2) Matrix S(θ∗) = −E0 [lθθ {F(X1; θ
∗)}] is finite and nonsingu-

lar.

Assumption (A1) is the so-called dominating condition, which
is commonly imposed in order to establish the uniform law of
large numbers theorem (e.g.Wooldridge (1994)). Assumption (A2)
requires the sensitivity matrix S(θ∗) to be invertible, so that the
test statistic Rn in (5) will be well-defined.

Theorem 1. Under conditions (A1)–(A2), we have

Rn
pr
→ tr


S(θ∗)−1V (θ∗)


, as n → ∞,

where θ∗ is the limiting value of PMLE θ̂ given in (2).

4.2. Central limit theorem

The following regularity conditions are used to establish the
central limit theorem for both Rn and Tn(m).

(B1) Denote Ji(u) = const ×
d

k=1 {uk(1 − uk)}
−ξik , where ξik ≥ 0,

i = 1, 2, ξik are some constants. Suppose that for all θ ∈

N (θ∗), ∥lθ (u; θ)lTθ (u; θ)∥ ≤ J1(u), ∥lθθ (u; θ)∥ ≤ J2(u), and
E0

J2i {F(X1)}


< ∞.

(B2) Suppose that both lθ,k(u; θ) and lθθ,k(u; θ), k = 1, 2, . . . , d
exist and are continuous. Denote J̃ki (u) = const ×

{uk(1 − uk)}
−ξ̃ik

d
j=1,j≠k


uj(1 − uj)

−ξij , where ξ̃ij > ξij
are some constants, such that for all θ ∈ N (θ∗),
∥lθ,k(u; θ)∥ ≤ J̃k1(u) and ∥lθθ,k(u; θ)∥ ≤ J̃k2(u), and

furthermore, E0


J̃i{F(X1)}


< ∞, i = 1, 2 and k =

1, 2, . . . , d.
(B3) Suppose ∂ lθθ (u;θ)

∂θk
, k = 1, 2, . . . , p exist and are continuous

with θ ∈ N (θ∗), and there exists an integrable functionG3(u)
such that ∥

∂ lθθ (u;θ)
∂θk

∥

≤ G3(u) for all θ ∈ N (θ∗), k = 1, . . . , d.

Assumptions (B1) and (B2) are similar to the conditions in
Lemma 2 of Chen and Fan (2005). Obviously, assumption (B1)
implies assumption (A1). Assumption (B3) is commonly required
in the literature to establish the uniform law of large numbers
theorem.

(C1) The block sizem is of order o(na)with 0 ≤ a ≤
1
4 .
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Assumption (C1) is needed to bound the difference between
Rn and Tn(m), so that these two statistics have the same limiting
distribution. Under the above regularity conditions, we have the
following results.

Theorem 2. (i)Under the null hypothesis, if (A2) and (B1)–(B3)hold,
then we have
√
n {Rn − p}

d
→ N(0, σ 2

R ), as n → ∞,

where σ 2
R is the asymptotic variance given by Eq. (16) in the Ap-

pendix A, which can be consistently estimated by Eq. (17) in the Ap-
pendix A.
(ii) Under assumptions (A2), (B1)–B(3) and (C1), we have

Rn − Tn(m) = op(n−1/2).

Remark 1. One issue in the use of the above PIOS test is how to
select block-sizem to achieve better performance. OurMonte Carlo
simulations show that the choice of m depends on the underlying
data generating process, and in most cases the PIOS test with
blocksize m = 1 behaves satisfactorily for independent cross-
sectional data.

4.3. Local power of evaluation

To establish a theory of consistency for the proposed PIOS test,
we investigate the asymptotic power of the test statistic Rn against
a local alternative in the Pitman sense (Nikitin and Nikitin, 1995),
which takes the following mixture form, for a constant δ > 0,

H1,n : PC1,δ
n (x)

=


1 −

δ
√
n


C0{F(x); θ0} +

δ
√
n
C1{F(x)}

= C0{F(x); θ0} +
δ

√
n
[C1{F(x)} − C0{F(x); θ0}] , (6)

where both C0(·; ·) and C1(·) are copulas. To ensure that the
mixture in (6) is a copula for 0 < δ ≤ n1/2 and the departure
from the null C0(F(x); θ0) increases as δ increases, we consider the
concordance ordering given in Berg and Quessy (2009), namely
C1{F(x)} ≥ C0{F(x); θ0} for all x ∈ Rd; this suggests that
the dependence obtained from C1 is weakly stronger than that
obtained from C0 (Nelsen, 2006, page 39).

A size α test is defined as to reject H0 when Rn is larger than
a threshold value τα that satisfies limn→∞ Pr(Rn ≥ τα|H0) ≤ α.
For such a test, its asymptotic local power function (ALPF) is given
by van der Vaart (2000)

Π(α; C1, δ) = lim
n→∞

Pr

Rn ≥ τα|H1,n


.

In order to ensure that the probability law induced by mixture
PC1,δ
n under H1,n is contiguous with respect to that induced by

P0 ≡ C(·; θ0) under H0, in the sense that if for any sequence
of measurable sets An, P0(An) → 0 implies PC1,δ

n (An) → 0 as
n → ∞, following van der Vaart and Wellner (1996), we assume
the following condition:

(D1) Both the copulas C0(·; θ0) and C1(·) in (6) are absolutely
continuous with respect to square integrable densities
c0(·; θ0) and c1(·). Moreover

u∈[0,1]d


√
n


pc1,δn (u)−


p0(u)



−
1
2
δg(u)


p0(u)

2
du → 0, as n → ∞, (7)
where pc1,δn (u) = (1 −
δ

√
n )c0(u; θ0) +

δ
√
n c1(u), p0(u) =

c0(u; θ0) and g(u) =
c1(u)−c0(u;θ0)

c0(u;θ0)
.

Theorem 3. Suppose (D1) holds in addition to the assumptions (A2)
and (B1)–(B3). Then under H1,n, the test statistic

√
n (Rn − p)

converges to a normal distributionwithmean δm(c0, c1) and variance
σ̄ 2
R defined by (22) in the Appendix A, where

m(c0, c1) = Ec0 {W (Xt)g (F(Xt); θ0)} ,

andEc0(·) denotes the expectation under the null distribution c0 or P0,
and W (·) is defined in Eq. (21) in the Appendix A. That is, m(c0, c1) is
a weighted expectation of g (F(Xt); θ0) under P0.

This theorem implies that as long as m(c0, c1) ≠ 0, the pro-
posed test statistic Rn will yield power locally and the asymptotic
local power increases to 1 as δ increases to infinity. Thismeans that
Rn is a consistent test under the alternative hypothesis specified by
Berg and Quessy’s concordance ordering. Using Theorem 2(ii), we
can show that Tn has the same asymptotic local power function as
Rn and hence Tn is also a consistent test in the Pitman sense under
the concordance ordering assumption.

5. Extension of PIOS test

In this section, we extend the PIOS test to cases of time series
data. Following Chen and Fan (2006), we consider a class of
multivariate time series models constructed by a semi-parametric
copula of the following form,

Yt = µt(η
0
1)+Σ

1/2
t (η0)ϵt , (8)

where Yt = (Yt1, . . . , Ytd)
T is a d-dimensional vector, µt(η

0
1) =

µt1(η
0
1), . . . , µtd(η

0
1)
T

= E (Yt |Ft−1) is the true conditional
mean of Yt given the filtrationFt−1 up to time t−1, whereFt is the
sigma-field generated by {Yt−1, Yt−2, . . . ; Zt , Zt−1, . . .}, and Zt is a
vector of predetermined or exogenous variables. Assumeµt(η

0
1) is

parametrized by a finite-dimensional unknown parameter η01 ∈

Ψ1 ⊂ Rp1 , and Σt(η
0) = diag


Σt1(η

0), . . . ,Σtd(η
0)

, where

Σtj(η
0) = E


Ytj − µtj(η

0
1)
2

|Ft−1


, j = 1, . . . , d, are the

conditional variances of Ytj given Ft−1, and parametrized by a
finite-dimensional unknown parameter η0 =


(η01)

T , (η02)
T
T ,

with η01 and η02 being exclusive, η02 ∈ Ψ2 ⊂ Rp2 . The innovation
process ϵt = (ϵt1, . . . , ϵtd)

T , t = 1, . . . , n are i.i.d. d-dimensional
vectors with zeromean and unity variance according to a joint CDF
H(ϵ) = C0{F(ϵ)} = C0{F1(ϵ1), . . . , Fd(ϵd)}, where Fj(·) is the true
but unknown continuousmarginal CDF of ϵj, j = 1, . . . , d, and C0 is
the true but unknown copula function. Here we assume C0 belongs
to a certain parametric class of copulas, say, C

△
= {C(·; θ), θ ∈ Θ},

where Θ ⊂ Rp is a compact p-dimensional parameter space.
Being the same in the previous sections, fj(·) and c(·; θ) denote the
density function of Fj(·) and C(·; θ), respectively, j = 1, . . . , d.

Model (8) is called by Chen and Fan (2006) as the semi-
parametric copula based multivariate dynamic (SCOMDY) model,
which is flexible to capture a wide range of serial and contempora-
neous dependence patterns aswell asmarginal behaviors of amul-
tivariate time series. For example, vector autoregression models
(VAR), multivariate ARMA models and multivariate GARCH mod-
els are special cases of SCOMDY models.

We adopt a three-stage procedure proposed by Chen and Fan
(2006) to estimate the SCOMDY model parameters, and then
we use residuals to construct the PIOS test statistics to test the
specification of a parametric copula. The estimation steps are given
as follows. First, we use the univariate quasi-maximum likelihood
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to estimate the dynamic parameters η =

ηT1 , η

T
2

T under the
assumption of normality of the standardized innovations ϵtj, j =

1, . . . , d and t = 1, . . . , n. That is,

η̂1 = arg min
η1∈Ψ1


1
n

n
t=1

{Yt − µt(η1)}
T
{Yt − µt(η1)}


, (9)

and

η̂2 = arg min
η2∈Ψ2


1
n

n
t=1

d
j=1


Σ−1

tj (η̂1, η2)

Yt − µt(η̂1)

2
+ logΣtj(η̂1, η2)


. (10)

Secondly, given the consistent estimator η̂ = (η̂T1 , η̂
T
2 )

T , we
obtain standardized residuals ϵ̃tj = Σ

−1/2
tj (η̂)


ytj − µtj(η̂1)


, j =

1, . . . , d and t = 1, . . . , n. We estimate the marginal distribution
Fj(·) using the rescaled empirical distribution of the standardized
residuals ϵ̃tj, by

F̌j(x) =
1

n + 1

n
t=1

I

ϵ̃tj ≤ x


, x ∈ R, j = 1, . . . , d. (11)

Finally, the dependent parameter θ of a given copula is
estimated bymaximizing the corresponding pseudo log-likelihood
function, i.e., θ̂ = argmaxθ∈Θ 1

n

n
t=1 l{F̌(ϵ̃t); θ}. The PIOS test

statistics Tn and Rn are obtained by replacing F̃(Xb
i ) in (4) and (5)

for i.i.d datawith F̌(ϵ̃t). For convenience, the resulting statistics are
denoted by T̃n(m) and R̃n at the presentation of their large-sample
theory in this section and the presentation of their proofs in the
Appendix.

To establish the large-sample properties of T̃n(m) and R̃n for
time series, we need the following conditions:
(E1)


Y T
t , Z

T
t


, t = 1, . . . , n


is stationary β-mixing with a serial

decay rate of order O(t−ξ/(ξ−1)) for some ξ > 1;
(E2) η̂ is a root-n consistent estimator of η0;
(E3) for all t ≥ 1 and j = 1, . . . , d, ϵtj = Σ

−1/2
tj (η0)


Ytj − µtj(η

0
1)


is continuously differentiable in the neighborhood of η0,
and ω1 = E0


Σ

−1/2
tj (η0)µ̇tj(η

0
1)

< ∞ and ω2 = E0

Σ−1
tj (η

0)Σ̇tj(η
0)

< ∞, where µ̇tj(η

0
1) =

∂µtj(η
0
1)

∂η1
and

Σ̇tj(η
0) =

∂Σtj(η
0)

∂η
.

The conditions (E1)–(E3) are similar to the conditions (D1)–(D3)
in Chen and Fan (2006). Following Chen and Fan (2006), we have
F̃j(x) =

1
n+1

n
t=1 I


ϵtj ≤ x


, j = 1, . . . , d, and

F̌j(x)− F̃j(x) = fj(x)ω(x)T

η̂ − η0


+ op(n−1/2), (12)

whereω(x) = ω1+
x
2ω2, and Eq. (12) holds uniformly over x ∈ Rd.

In addition, we assume, that θ̂ satisfies the following condi-
tion (Chen and Fan, 2006):
(E4) The PMLE θ̂ has the following asymptotic expansion

θ̂ − θ∗
=

1
n

n
t=1

φθ

Ut; θ

∗

+ op(n−1/2), (13)

where Ut = (Ut1, . . . ,Utd)
T , Utj = Fj(ϵtj), j = 1, . . . , d, t =

1, . . . , n, and

φθ

Ut; θ

∗


= S(θ∗)−1


lθ

Ut; θ

∗


+

d
j=1

E0

lθ,j

Us; θ

∗


×

I(Utj ≤ Usj)− Usj


|Utj
 

.

Theorem 4. (i) Under conditions (A1)–(A2) and (E1)–(E4), we
have

R̃n
pr
→ tr


S(θ∗)−1V (θ∗)


, as n → ∞.

(ii) Under the null hypothesis, if (A2), (B1) − (B3) and condi-
tions (E1)–(E4) hold, we have
√
n

R̃n − p


d

→ N(0, σ̃ 2
R ), as n → ∞,

where σ̃ 2
R is the asymptotic variance defined in Eq. (25) in

the Appendix A.
(iii) Under assumptions (A2), (B1)–(B3), (C1) and (E1)–(E4), we

have

R̃n − T̃n(m) = op(n−1/2).

The proof of Theorem 4 is given in the Appendix A.

6. Simulation study

This section presents several simulation studies to demonstrate
the finite-sample behaviors of the proposed tests Tn(m) in (4) and
Rn in (5) in terms of type I error control, global power under fixed
alternatives and local power under drift alternatives.

We consider both cross-sectional data andmultivariate time se-
ries data. To implement our tests, the asymptotic varianceσ 2

R needs
to be estimated, which is very challenging analytically. For cross-
sectional data, semi-parametric bootstrap procedure was used to
numerically establish the null distribution of Rn. Similar bootstrap
approaches were considered in Genest et al. (2009) and Scaillet
(2007). For multivariate time series data, the bootstrap procedures
considered in the literature such as Chen and Fan (2006) is to
resample the estimated innovations ϵ̃t (see Section 5). The justi-
fication of this procedure is rooted in the fact that the estimation
error of η̂ has ignorable impact asymptotically on the estimation
of the dependence parameter of copula, and hence ϵ̃t would be re-
garded as if observed. We call it a residual-based bootstrap pro-
cedure in this paper. Even though ignoring the estimation error of
the dynamic parametersη is asymptotically valid according to The-
orem 4(ii) (see also Chen and Fan (2006)), in the finite-sample situ-
ation, the bootstrap method subject to the estimation errors could
lead to poor approximations to the true null distribution of the test
statistic, and therefore results in inadequate control of type I error.
This issue is shown in Table 4 in Section 6.3. To address this chal-
lenge, we proposed an alternative bootstrap procedure, termed as
the observation-based bootstrap for convenience, where bootstrap
resampling of time series data is undertaken directly from the as-
sumed SCOMDY time series model (8).

6.1. Two types of bootstrap procedures

We now describe the two types of bootstrap procedures,
observation-based bootstrap and residual-based bootstrap. For the
ease of exposition, in this section, we use a generic notation Tn(m)
and Rn to represent the PIOS test statistics in either the case of i.i.d.
data or in the case of time-series data, whichever case is applicable.
The residual-based bootstrap proceeds as follows:

Step 1 Generate a bootstrap sample

ϵ
(k)
t , t = 1, . . . , n


from the

copula C(u; θ̂ ) under the null hypothesis with the PMLE θ̂
and the estimated marginal distribution F̌ in (11) obtained
from the original data;

Step 2 Based on

ϵ
(k)
t , t = 1, . . . , n


from Step 1, estimate the

dependence parameter θ of the copula under the null
hypothesis by the two-step PMLEmethod, and compute the
test statistic Rn, denoted by Rk

n;
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Step 3 Repeat Steps 1–2 N times and obtain N statistics R(k)n , k =

1, . . . ,N;
Step 4 Compute empirical p-value aspe = 1

N

N
k=1 I


|R(k)n | ≥ |Rn|


.

The observation-based bootstrap procedure draws time series
data from the assumed SCOMDY model (8) and the parameter η is
estimated with each bootstrap path of the process. Specifically,

Step 1 Generate a time series {Y (k)t , t = 1, . . . , n} from the
SCOMDY model (8) with the parameter values η̂1 and η̂2
estimated from the original data, and with the innovation
process generated from the assumed copula under the
null hypothesis with the parameter value θ̂ and marginal
distribution F̌ .

Step 2 Based on {Y (k)t , t = 1, . . . , n}, estimate η̂(k)1 and η̂(k)2 by (9)
and (10). Estimate the residuals ϵ̃(k)tj = {y(k)tj − µtj(η̂

(k)
1 )}/

Σ
1/2
tj (η̂

(k)
2 ), t = 1, . . . , n, j = 1, . . . , d.

Step 3 Based on the {ϵ̃
(k)
t , t = 1, . . . , n}, estimate the parameter

θ of the copula under the null hypothesis by the two-step
PMLE method and compute the test statistic R(k)n .

Step 4 Repeat Steps 1–3 N times and obtain N statistics R(k)n , k =

1, . . . ,N .
Step 5 Compute empirical p-value aspe = 1

N

N
k=1 I


|R(k)n | ≥ |Rn|


.

Note that observation-based bootstrap without Steps 1 and 2
reduces to the residual-based bootstrap. Both of these two types
of bootstrap procedures can be also applied for the test Tn(m).

6.2. Simulation setup

For the first setting of cross-sectional data, we investigate the
performance of Rn and Tn(m) with two block sizes m = 1, 3.
For the purpose of comparison, we include two tests proposed re-
spectively by Genest et al. (2009) and Scaillet (2007), denoted in
short by Sn and Jn tests. The Sn test has been shown to be one of
the best performers on average among all the existing ‘‘blanket
tests’’. Being another top competitor, the Scaillet (2007)’s test Jn
is a kernel-based goodness-of-fit test with fixed smooth parame-
ter. The detailed descriptions of these two tests are provided in the
Appendix B. Tomake a fair comparisonwe use the same number of
bootstrap samples across different tests. All tests have been imple-
mented based on the residual-based bootstrap according to Genest
et al. (2009). In addition, whenever it is needed to estimate param-
eters in a parametric copula, we use the PLME instead of an inver-
sion of the Kendall’s τ proposed by Genest et al. (2009).

We consider several versions of hybrid tests by combining two
or three single tests in the comparison. For hybrids of pairs, we
include (i) a hybrid of Sn and Rn, denoted as SRn; (ii) a hybrid of
Sn and Tn(m), denoted as STn(m); (iii) a hybrid of Jn and Rn, denoted
as JRn; (iv) a hybrid of Jn and Tn(m), denoted as JTn(m). In addition,
we consider two hybrids of triplets: (i) a hybrid of Sn, Jn and Rn,
denoted as SJRn; and (ii) a hybrid of Sn, Jn and Tn(m), denoted as
SJTn(m). In these hybrid tests STn(m), JTn(m) and SJTn(m), for the
sake of brevity, we fixm = 1.

In the second setting of multivariate time series, we also run
simulation experiments to evaluate how the proposed PIOS tests
Rn and Tn(1) behave in the models discussed in Section 5. Because
both Sn and Jn are not established in the literature for the time series
data, we did not examine hybrid tests in this setting. In particular,
we hope to demonstrate and compare the performances of the two
types of bootstrap methods to establish the null distribution. We
generate bivariate time series data from the following GARCH(1,1)
process of the form:

xit = σitεit

σ 2
it = ω + αx2i,t−1 + βσ 2

i,t−1, i = 1, 2
where bivariate innovation vector (ε1t , ε2t)
i.i.d
∼ C{Φ(·),Φ(·); θ}

with Φ(·) being the CDF of the standard normal distribution
N(0, 1). We set ω = 10−6, α = 0.1 and β = 0.8 in the simulation
experiments.

For both scenarios of cross-sectional data and time series data,
we consider four most popular bivariate copula families, namely
Gaussian, Student’s t , Clayton and Gumbel. All of them have been
investigated extensively in a vast literature; see for example, Song
(2000), Chen and Fan (2005), Cossin and Schellhorn (2007), Song
et al. (2009) andGenest et al. (2009), just to name a few. The former
two copulas are prominent examples of the elliptical families and
the latter two are important Archimedean copulas. In the whole
simulation study all these copulamodels have just one dependence
parameter θ to estimate. For the t copula we fix the number of
degrees of freedom at ν = 4, following Genest et al. (2009). Thus,
Gaussian and t copulas are not nested in our settings.

To investigate the impact of dependence strength on the finite
performance of the tests, we set three values of dependence
parameters in terms of Kendall’s tau, τ = 0.25, 0.50 and 0.75,
for both scenarios of cross-sectional data and multivariate time
series. We set two sample sizes n = 100 and 300 for the case of
cross-sectional data, and one sample size n = 300 for the case
of multivariate time series data. In each experiment, we conduct
M = 1000 rounds of simulations, in which, N = 1000 bootstrap
sample paths are generated for each simulation replication to yield
the null distribution. All numerical calculations in the designed
simulation study have been undertaken simultaneously on the
high-performance servers of theHumboldtUniversity in Berlin and
the computing clusters of Simon Fraser University in Vancouver
over a period of three months.

6.3. Simulation results

6.3.1. Type I error control
Tables 1–3 report the empirical type I errors in the scenarios

of cross-sectional data at nominal level 5% for all four copulas
being true underH0 hypothesis. The three tables are evidential that
the proposed tests Rn, Tn(m) and all the hybrid tests SRn, STn(m),
JRn, JTn(m), SJRn, SJTn(m) perform well on type I error control. The
empirical type I error rates are marked with bold font for all cases
and are located on the top of each panel of the tables. Regardless
of the choice of the sample size, the choice of the dependence
strength or the choice of the copula family, the type I error is
satisfactorily controlled at the level close to the nominal level. In
this aspect, our new tests Rn and Tn(m) are clearly comparable to
the existing Sn and Jn tests.

In the scenarios of multivariate time series data, we implement
both residual-based bootstrap and observation-based bootstrap
procedures. Table 4 reports the empirical type I errors obtained
by these two types of bootstrap methods respectively. It is clear
that the type I error is not well controlled by the residual-
based bootstrap procedure, especially in the setting with strong
dependency, τ = 0.75. For example, under the null hypothesis
of the Clayton copula with τ = 0.75, the empirical type I errors
are 0.07 for both Rn and Tn(1), which is much higher than the
nominal level 0.05. It is worth noting that increasing sample size
or the number of bootstrap samples does not alleviate the problem
of inflated type I error based on some additional simulation
experiments that are not shown due to the space limitations. The
results clearly demonstrate that for cross-sectional multivariate
data, the residual-based bootstrap procedure works adequately,
whereas for multivariate time series data, the residual-based
bootstrap could perform poorly if the uncertainly of estimation
for the model parameters is not accounted for in the resampling
scheme. In contrast, when such uncertainty is incorporated in
the bootstrap procedure, the nominal type I error is satisfactorily
attained in all the settings.
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Table 1
Percentage of rejection of H0 by various tests with cross-sectional data of sizes n = 100 and n = 300 from different copula models with τ = 0.25. The number of bootstrap
samples M = 1000 and the number of replicates N = 1000.

True H0 Sn Jn Rn Tn(1) Tn(3) SRn STn(1) JRn JTn(1) SJRn SJTn(1)

n = 100

Ga. Ga. 4.5 4.2 6.1 6.0 5.1 5.6 5.9 4.2 4.6 5.0 4.8
t t 5.2 4.0 4.1 5.2 3.7 3.9 4.5 4.2 3.4 3.0 3.0
Cl. Cl. 4.9 4.2 4.5 4.0 4.7 4.1 3.8 3.8 4.0 5.2 5.6
Gu. Gu. 4.7 5.0 5.8 5.4 4.6 4.5 4.7 4.0 3.8 3.8 3.8
Ga. t 2.9 9.0 28.9 5.3 1.5 18.1 2.5 21.2 7.2 16.8 5.4
Ga. Cl. 14.7 11.6 5.4 4.3 4.8 10.3 10.0 10.0 9.4 12.8 12.2
Ga. Gu. 4.3 8.0 4.4 2.2 3.3 3.7 2.6 6.4 4.8 5.0 4.4
t Ga. 11.1 9.4 55.4 54.9 37.8 49.8 48.9 49.2 50.0 44.6 46.6
t Cl. 22.2 16.4 30.4 30.4 20.5 29.4 27.3 30.8 29.8 31.4 26.8
t Gu. 7.8 7.4 29.9 31.7 18.2 24.6 24.2 25.0 23.8 22.4 21.2
Cl. Ga. 22.9 11.6 10.5 9.3 9.1 18.3 18.1 14.6 13.4 18.8 18.4
Cl. t 7.4 14.0 12.6 1.5 1.2 10.8 3.8 12.8 6.8 10.0 6.2
Cl. Gu. 34.1 25.8 16.9 15.1 10.7 31.7 29.7 25.8 23 35.6 34.4
Gu. Ga. 6.4 7.0 15.0 14.2 12.3 12.9 13.0 14.6 15.6 12.6 13.4
Gu. t 8.6 9.4 10.8 0.9 1.5 8.6 4.1 9.0 5.2 9.2 7.2
Gu. Cl. 36.8 29.6 11 9.0 7.6 30.0 29.1 25.8 24.8 32.2 32.2

n = 300

Ga. Ga. 5.1 6.8 5.1 5.4 5.0 4.7 5.1 7.3 7.5 7.0 6.9
t t 4.5 5.7 5.0 6.0 5.1 5.5 5.1 4.9 5.7 5.1 4.5
Cl. Cl. 4.5 4.6 5.8 6.2 4.2 4.9 5.3 4.3 4.7 4.6 4.4
Gu. Gu. 6.7 4.0 5.3 5.5 4.1 5.3 5.5 3.3 3.2 3.7 3.7
Ga. t 9.7 16.9 80.8 69.8 21.2 70.3 51.6 71.6 53.6 64.3 55.3
Ga. Cl. 41.7 31.1 5.8 5.6 5.9 30.9 30.8 24.5 24.4 40.0 40.1
Ga. Gu. 19.8 15.3 6.0 4.7 3.8 15.7 14.9 12.5 11.3 17.6 17.1
t Ga. 21.5 21.1 90.9 92.9 77.3 87.8 89.9 87.7 89.5 86.0 87.5
t Cl. 63.6 44.4 61.9 64.9 44.2 71.8 72.9 63.7 64.8 72.9 73.2
t Gu. 22.2 17.6 64.5 67.0 40.9 61.3 63.4 59.1 60.1 57.9 59.1
Cl. Ga. 61.5 26.5 24.7 25.7 16.1 54.6 55.1 30.2 30.6 55.4 56.1
Cl. t 35.9 35.3 40.9 22.8 9.0 46.0 32.2 45.8 34.1 49.2 38.3
Cl. Gu. 96.3 70.2 50.3 53.2 29.0 94.6 94.6 72.4 73.4 94.9 94.9
Gu. Ga. 10.3 13.7 32.5 33.7 20.2 30.5 30.2 27.5 27.6 27.1 28.0
Gu. t 22.6 14.0 31.3 16.4 5.3 30.3 18.7 28.1 14.7 30.9 22.1
Gu. Cl. 92.5 69.6 18.8 20.8 13.6 87.0 87.0 62.7 62.8 91.5 91.5
Table 2
Percentage of rejection of H0 by various tests with cross-sectional data of sizes n = 100 and n = 300 from different copula models with τ = 0.50. The number of bootstrap
samples M = 1000 and the number of replicates N = 1000.

True H0 Sn Jn Rn Tn(1) Tn(3) SRn STn(1) JRn JTn(1) SJRn SJTn(1)

n = 100

Ga. Ga. 5.7 5.6 5.8 5.1 5.1 5.7 6.2 5.8 5.8 4.6 4.4
t t 4.7 4.2 4.6 5.1 3.9 3.5 4.1 3.8 4.4 5.8 6.0
Cl. Cl. 4.2 4.4 6.2 5.8 4.6 5.7 5.7 5.4 5.4 5.4 5.6
Gu. Gu. 4.3 4.6 5.3 4.7 4.8 3.2 3.4 5.0 5.2 4.8 4.6
Ga. t 2.9 9.8 26.3 10.8 2.4 16.3 3.8 19.2 7.8 16.2 8.6
Ga. Cl. 27.3 50.2 13.5 15.9 10.6 21.9 22.4 42.2 42.2 42.0 42.0
Ga. Gu. 10.0 13.0 5.0 3.1 2.0 6.6 6.5 10.0 9.4 10.4 10.2
t Ga. 20.0 9.6 62.7 64.3 47.5 55.0 55.8 48.8 49.4 45.0 46.6
t Cl. 38.1 56.8 44.8 46.4 33.9 45.7 46.2 61.4 61.8 59.8 59.8
t Gu. 18.8 9.8 30.8 32.1 20.7 29.3 30.0 28.2 29.0 25.0 25.6
Cl. Ga. 79.0 42.8 36.5 32.0 23.7 73.7 73.4 46.8 44.6 76.4 75.4
Cl. t 38.0 40.6 4.5 4.3 3.5 25.0 24.2 30.4 29.8 39.6 38.2
Cl. Gu. 92.5 85.2 44.8 48.0 27.4 90.6 90.6 85.0 85.4 97.2 97.2
Gu. Ga. 7.6 12.4 27.8 27.5 23.4 22.5 22.1 23.6 23.2 21.4 21.8
Gu. t 10.7 10.8 7.1 3.0 2.3 7.8 5.6 10.2 7.6 9.2 6.4
Gu. Cl. 68.1 85.2 30.5 35.3 27.2 62.5 62.8 82.8 83.0 88.0 88.0

n = 300

Ga. Ga. 4.3 4.3 5.2 5.3 5.3 4.9 4.8 3.9 3.5 4.5 3.9
t t 4.8 5.2 4.4 5.8 2.8 4.9 5.8 5.2 4.9 5.3 7.3
Cl. Cl. 5.1 4.7 4.1 4.4 3.7 3.8 3.9 4.7 4.5 3.6 3.9
Gu. Gu. 3.6 4.7 6.3 5.7 6.1 4.6 4.7 5.9 6.3 5.3 5.3
Ga. t 6.7 17.1 75.0 73.9 27.1 64.9 58.8 68.7 63.7 60.8 48.9
Ga. Cl. 88.3 91.7 31.8 33.9 21.2 81.3 81.4 88.9 89.3 95.2 95.3
Ga. Gu. 42.4 33.6 8.3 6.1 4.8 33.8 32.7 25.1 24.5 42.3 41.7
t Ga. 45.8 22.3 93.9 94.5 84.7 91.2 92.6 92.5 94.5 90.9 92.7
t Cl. 90.4 94.8 81.1 82.4 66.7 91.8 91.8 97.3 97.3 98.7 98.8
t Gu. 57.9 29.7 61.8 63.6 37.9 69.0 70.1 59.3 61.2 63.3 66.0
Cl. Ga. 99.9 92.7 78.8 72.4 55.4 99.9 99.9 95.3 95.2 100.0 100.0
Cl. t 96.0 89.9 4.6 4.1 3.3 93.2 92.5 84.1 84.0 98.4 98.4
Cl. Gu. 100.0 100.0 94.9 95.7 68.6 100.0 100.0 100.0 100.0 100.0 100.0
Gu. Ga. 16.1 30.7 63.8 63.0 45.2 57.8 57.6 60.5 61.7 55.9 55.6
Gu. t 36.8 25.2 15.5 5.5 3.4 29.7 26.0 21.5 18.4 36.8 35.2
Gu. Cl. 100.0 100.0 79.2 81.5 60.5 99.9 99.9 99.9 99.9 100.0 100.0
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Table 3
Percentage of rejection of H0 by various tests with cross-sectional data of sizes n = 100 and n = 300 from different copula models with τ = 0.75. The number of bootstrap
samplesM = 1000 and the number of replicates N = 1000.

True H0 Sn Jn Rn Tn(1) Tn(3) SRn STn(1) JRn JTn(1) SJRn SJTn(1)

n = 100

Ga. Ga. 4.7 6.2 4.1 4.0 4.3 4.4 4.5 5.0 4.8 4.8 4.8
t t 6.3 6.0 4.3 3.8 5.5 5.6 5.4 6.2 6.2 7.4 7.0
Cl. Cl. 5.3 6.0 6.3 6.0 4.3 5.5 5.2 6.0 6.0 4.2 4.0
Gu. Gu. 5.9 5.8 5.3 5.5 4.9 5.5 5.4 5.6 5.4 6.8 6.8
Ga. t 2.1 9.4 21.5 9.1 2.3 13.7 3.8 15.2 6.4 11.4 4.8
Ga. Cl. 35.9 87.0 36.4 36.7 26.6 39.3 39.5 83.4 83.4 80.4 80.4
Ga. Gu. 18.1 15.2 5.1 4.5 5.2 12.8 13.0 12.6 12.6 18.8 18.8
t Ga. 25.4 9.0 59.2 59.9 48.0 51.7 52.5 50.2 53.0 49.4 51.0
t Cl. 42.9 82.8 63.8 63.9 47.4 57.2 57.1 84.4 84.6 84.4 84.4
t Gu. 36.9 12.2 32.2 32.5 24.0 38.5 38.9 32.0 32.0 38.4 38.0
Cl. Ga. 99.9 75.4 84.9 72.5 55.9 99.2 99.2 87.6 84.6 99.2 99.2
Cl. t 87.9 56.2 19.1 58.2 29.7 80.4 81.9 52.8 66.6 83.0 84.2
Cl. Gu. 100.0 98.4 97.2 97.7 81.2 100.0 100.0 99.4 99.4 100.0 100.0
Gu. Ga. 10.1 11.6 45.4 42.4 31.7 35.7 35.0 35.2 35.6 31.4 27.6
Gu. t 8.9 12.2 4.7 4.4 5.0 6.5 6.8 9.6 8.2 8.8 8.8
Gu. Cl. 82.6 99.8 80.9 81.6 61.4 86.5 86.6 99.4 99.4 99.8 99.8

n = 300

Ga. Ga. 5.5 4.3 4.4 4.5 4.2 4.7 4.2 4.3 4.1 5.6 5.7
t t 4.3 5.1 5.5 4.6 6.2 5.6 4.5 4.7 5.1 5.1 4.7
Cl. Cl. 5.0 5.9 6.6 6.5 5.0 5.5 5.5 3.5 3.5 3.2 3.2
Gu. Gu. 4.5 3.3 5.2 5.2 5.2 4.4 4.3 4.5 4.3 5.1 5.1
Ga. t 5.1 12.4 66.0 61.7 22.4 55.3 46.4 58.3 50.3 51.2 42.9
Ga. Cl. 99.1 100.0 77.7 78.8 62.5 98.3 98.3 100.0 100.0 100.0 100.0
Ga. Gu. 60.2 36.3 7.3 6.9 6.3 49.5 49.1 26.8 26.9 57.9 57.9
t Ga. 65.7 12.3 95.6 96.3 88.1 92.9 93.7 93.2 94.0 91.9 92.5
t Cl. 98.3 100.0 98.0 98.0 86.5 99.6 99.6 100.0 100.0 100.0 100.0
t Gu. 88.3 24.7 71.4 72.6 52.7 88.3 88.3 67.9 68.1 83.1 83.1
Cl. Ga. 100.0 100.0 100 99.8 97.2 100.0 100.0 100.0 100.0 100.0 100.0
Cl. t 100.0 98.5 36.6 97.7 75.9 100.0 100.0 97.9 99.6 100.0 100.0
Cl. Gu. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Gu. Ga. 26.1 30.9 87.8 84.1 69.4 83.1 80.0 82.8 82.1 79.7 78.4
Gu. t 47.0 25.6 5.5 4.3 5.9 32.2 31.8 19.6 19.5 30.4 29.2
Gu. Cl. 100.0 100.0 100.0 100.0 97.5 100.0 100.0 100.0 100.0 100.0 100.0
Table 4
Percentages of rejection of H0 by various tests with time series data for different
copula models. Sample size n = 300, the number of bootstrap samples M = 1000,
and the number of replicatesN = 1000 frommarginal GARCH(1,1) dependent data.
The type I errors (upper panel), were obtained using both the residual-based (in
bold) and observation-based bootstrap procedures. Test power (lower panel) was
obtained using the observation-based bootstrap alone.

True H0 τ = 0.25 τ = 0.5 τ = 0.75
Rn Tn(1) Rn Tn(1) Rn Tn(1)

Ga Ga 3.4 3.8 5.2 5.3 5.4 4.4
5.4 5.5 3.9 3.3 3.7 4.7

Cl Cl 5.2 5.1 5.3 5.5 7.0 7.0
5.6 5.5 5.3 5.3 5.4 5.4

t t 5.7 6.8 5.5 3.9 5.4 5.1
4.7 3.9 4.1 4.1 5.4 4.9

Gu Gu 5.2 5.1 5.7 5.6 4.5 4.3
5.4 5.1 4.8 4.8 5.1 4.8

Ga Cl 7.1 6.5 30.2 32.4 66.7 66.6
Ga t 80.3 69.6 72.2 71.7 68.9 65.5
Ga Gu 7.9 5.6 6.8 4.6 7.3 7.3
Cl Ga 24.4 24.3 81.6 74.6 99.9 99.4
Cl t 42.2 21.8 3.6 3.4 29.7 95.6
Cl Gu 48.9 52.2 95.7 96.5 100.0 100.0
t Ga 93.5 94.3 94.9 96.2 94.5 95.5
t Cl 63.3 64.8 80.9 82.7 97.1 97.2
t Gu 65.6 68.3 62.9 64.1 67.8 68.0
Gu Ga 30.1 31.4 62.6 61.5 83.2 80.9
Gu Cl 18.3 20.2 79.3 81.0 99.9 99.9
Gu t 29.8 14.8 13.5 6.2 7.0 6.7

6.3.2. Global power
Wenowevaluate the global power of the proposed tests under a

fixed true model. The empirical test power is reported in Tables 1–
3.Wemaydraw the following conclusions for the scenario of cross-
sectional data:
(1) In general, Tn(m) and Rn exhibit similar global power in most
of the settings except a few ones, including the setting where
Student’s t is under the null hypothesis. When we increase
the sample sizes to n = 1000, the discrepancies between
these two tests disappear (the results are not shown due to
the space limitations), which confirms the theoretical results
(i.e., Theorem 2(ii)) of asymptotic equivalence between Tn(m)
and Rn. In addition, there are only marginal differences among
the two-element hybrid tests STn(m) and SRn, JTn(m) and JRn,
SJTn(m) and SJRn regardless of the choice of the dependence
strength, the choice of the sample size or the choice of the
copula family.

(2) The Tn(1) test has overall better or equal performance to the
Tn(3) test, because in the case of cross-sectional data using
block size of m = 3 may shrink the effective sample size.
Thus in the later discussion on the comparison with the other
methods we only focus on the test Tn(1). This numerical
evidence also serves as the basis for our use of the test Tn(1)
in two empirical studies in Section 7.

(3) As demonstrated clearly, the two-element hybrid tests, such
as STn(1), JTn(1), SRn and JRn show clearly on average the
advantage on global power. Moreover, the triplet hybrid tests
SJRn and SJTn(1) perform on average superior to the two-
element hybrid tests. The hybrid tests demonstrate superior
performances in all the settings, regardless of the choice of the
copula family, or the choice of the dependency strength, and
hence they are recommended to be applied in practice.

(4) The performances of the proposed Rn, Tn(1), SRn, STn(1), JRn,
JTn(1), SJRn, SJTn(1) tests as well as the existing Sn and Jn tests
are relied on the strength of dependence. When τ = 0.25
and sample size n = 100, with no surprise, all these tests
have almost no power. Up to our knowledge, there exists no
single test that has a desirable performance in such a setting
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(a) Gauss under H0 . (b) Clayton under H0 .

Fig. 1. Local power curves for the Rn test with (a) Gaussian copula and (b) Clayton copula being under H0 and four different cases of the true mixtures of copulas, where
δ∗

= δ/
√
n.
of low correlation. Similar results are reported by Genest et al.
(2009). Challenges arise in the separation of the copulas with
τ = 0.25 because with a Kendall’s tau close to 0, the simulated
data are drawn from a copula that resembles the independent
copula. In this case, it becomes hard to differentiate one copula
from others. Perhaps in this case making a choice of the copula
functional form does not really matter. It is interesting to note
that even in this situation of weak dependence, in contrary to
Sn and Jn tests, all our proposed tests have demonstrated to
have relatively high power of rejecting Gaussian copula against
the Student’s t copula. When Kendall’s tau is not too small
(τ = 0.5 or τ = 0.75), and the sample size is large enough
(n = 300), all the proposed tests exhibit satisfactory global
power.

(5) It is interesting to observe that all the proposed tests are
significantly superior to Sn and Jn tests to differentiate between
Student’s t copula and Gaussian copula. These two blanket
tests Sn and Jn have similar behaviors in this scenario. When
the sample size increases to n = 300, the tests Rn and Tn(1) as
well as the hybrid tests almost reach 100% power as opposed
to the Sn test having power lower than 70% and Jn lower than
25%.

(6) It is worth pointing out that in some scenarios, both Rn and
Tn(1) tests perform poorly and are inferior to the Sn test and
the hybrid tests involving Sn, such as when Gaussian is true
and Gumbel is under H0, or when Gumbel is true and t is
under H0, or when Gaussian is true and Clayton under H0 with
τ = 0.5, or when Clayton is true and Student’s t copula under
H0 with τ = 0.5. However, in all the remaining cases, the
proposed Rn and Tn(1) tests together with the hybrid ones SRn
and STn(1) perform comparably or better than Sn test. On the
other side, the Jn is superior to Sn, Rn, Tn(m) inmost of the cases
when Clayton copula is underH0. These scenarios areworth for
further investigation.

(7) For the scenario of multivariate time series data, Table 4
reports the empirical global power of the proposed tests Rn and
Tn(1) using the observation-based bootstrap procedure. The
two tests Rn and Tn(1) show similar performances. For most of
the settings, as the strength of the dependence increases, the
test power increases.

6.3.3. Local power
We also run a simulation experiment to illustrate the theory

of local power discussed in Section 4.3. The simulation study
concerns two settings of mixtures. On setting involves mixtures
of two copulas from the same family, either Gaussian or Clayton,
with different values of dependence parameter θ , and the other
setting involvesmixtures of two copulas belonging to two different
families, one from Gaussian and the other from Clayton. The
sample size is set at n = 500, and we perform M = 1000
replications to obtain the empirical rejection rate. Themargins F(·)
are set to be uniform on (0, 1). The Kendall’s τ in C0(·; θ0) and
C1(·; θ1) are specified as (τ1, τ2) = (0.4, 0.8). Fig. 1 displays the
local power curves of the Rn statistic with the values of δ∗

:= δ/
√
n

in (6) varying from 0.0 to 0.5. All the curves are approximately
equal to 5% for δ∗

= 0. This corresponds to the type I error which
is well controlled. Also see Section 6.3.2. As δ∗ increases to 0.5 the
local power curve rises to 1.0 in all the curves. Dashed lines in both
panels of Fig. 1 indicate a fast power growth of test Rn when the
copula with higher dependency becomes more dominant, while
the solid lines show the power rises relatively slowly when the
copula with higher dependency dims off.

7. Applications

In this section we present two empirical examples to illustrate
the usefulness of the proposed tests in practice. The first example
focuses on changes of the dependence structure over time between
stock returns, and the second example concerns the dependence
structure of insurance data on losses and expenses.

7.1. Detecting structural changes in the dependency

We are interested in daily stock returns of Citigroup (C)
and Bank of America (BAC) over years 2004, 2006 and 2009.
It is known from some recent studies (e.g. Hafner and Manner,
2012, Patton, 2012, Härdle et al., 2013) that during the global
financial crisis over years 2008–2009 the dependency between
various financial instruments appeared different, which may be
used as a benchmark to gauge the performance of the proposed
tests. First, similar to the procedures used in the simulation
study, we remove temporal dependencies using the GARCH(1,1)
model for each year separately, and the residuals are then used
to estimate the dependency between the two bank stocks. To
remove the marginal distribution of the residuals, we use the
empirical cumulative distributions. To visualize potential structure
changes in dependency, Fig. 2 displays the scatterplots of the
residuals transformed by the standard normal distribution for the
three years, 2004 (top left), 2006 (top right) and 2009 (bottom
central). Table 5 presents p-values of the tests computed via the
observation-based bootstrap and values of the maximized log-
likelihood, for bivariate copula model specification at these years,
when one of four chosen candidate copulas is set for H0. Having
different goodness-of-fit tests, the best suited copula is selected via
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(a) Year 2004. (b) Year 2006. (c) Year 2009.

Fig. 2. Scatterplots of the residuals transformed to the standard normal for Citigroup (C) / Bank of America (BAC) for years 2004 (top left), 2006 (top right) and 2009 (bottom).
Table 5
p-values of the tests for bivariate copula model specification for the dependency between residuals of Citigroup and Bank of America for years 2004, 2006 and 2009. Selected
copulas for each year and test are marked with bold. The values of maximized log-likelihood (loglik) are also provided.

Tn(1) Rn Sn Jn STn(1) SRn JTn(1) JRn SJTn(1) SJRn loglik

2004

Cl. 0.450 0.574 0.001 0.002 0.002 0.002 0.004 0.004 0.003 0.003 52.467
Gu. 0.834 0.920 0.158 0.841 0.316 0.316 1.000 1.000 0.474 0.474 64.999
Ga. 0.333 0.544 0.455 0.887 0.666 0.910 0.666 1.000 0.999 1.000 72.234
t 0.033 0.012 0.092 0.777 0.066 0.024 0.066 0.024 0.099 0.036 65.041

2006

Cl. 0.015 0.015 0.002 0.000 0.004 0.004 0.000 0.000 0.000 0.000 55.644
Gu. 0.024 0.024 0.166 0.054 0.048 0.048 0.048 0.048 0.072 0.072 73.337
Ga. 0.000 0.000 0.446 0.089 0.000 0.000 0.000 0.000 0.000 0.000 68.705
t 0.697 0.328 0.397 0.165 0.794 0.656 0.330 0.330 0.495 0.495 78.396

2009

Cl. 0.265 0.328 0.002 0.000 0.004 0.004 0.000 0.000 0.000 0.000 60.479
Gu. 0.478 0.409 0.686 0.514 0.956 0.818 0.956 0.818 1.000 1.000 87.449
Ga. 0.145 0.301 0.599 0.759 0.290 0.602 0.290 0.602 0.435 0.903 85.814
t 0.127 0.360 0.572 0.608 0.254 0.720 0.254 0.720 0.381 1.000 85.604
the largest p-value, following the suggestions byMurtaugh (2014),
de Valpine (2014), and Gneiting and Raftery (2007), among others.
Based on these residuals, Fig. 2(a) of the residuals for year 2004
shows a usual Gaussian elliptical shape, which is supported by the
tests Sn and Jn, with the largest p-value and the largest value of the
log-likelihood, but not chosen by the Tn(1) and Rn (see Table 5).
Fig. 2(b) for year 2006 shows a shape of t-copula with Gaussian
margins, highlighted by a few outliers lying far from the diagonal
on the two wings close to (2,−2) and (−2, 2). This is confirmed
by the Tn(1), Rn and Jn tests and by the largest log-likelihood,
but not by the Sn. Fig. 2(c) for year 2009 shows an asymmetric
shape like a ‘‘water-drop’’, which signifies the Gumbel copula. This
observation is verified by the tests Tn(1), Rn and Sn and by the log-
likelihood based criteria but not by the Jn test. These discrepant
results given by the individual single tests are harmonized by the
triplet-hybrid tests SJTn(1) and SJRn; both consistently support the
visual inspections and in a full agreement with the log-likelihood
selection criterion. Our final selection gives to Gauss, t and Gumbel
for years 2004, 2006 and 2009, respectively.

7.2. Analysis of losses and allocated loss adjustment expenses

Now, we apply the proposed tests to a well-known insurance
dataset on losses and allocated loss adjustment expenses (ALAE),
which are collected by the US Insurance Service Office. Such data
has been previously analyzed by many authors, including Frees
and Valdez (1998), Genest et al. (1998), Klugman and Parsa (1999),
Denuit and Scaillet (2004), Scaillet (2005), Chen and Fan (2005),
Denuit et al. (2006) and Giacomini and Rossi (2009), among others.

The dataset consists of 1500 general liability claims, among
which 34 claims are censored due to late settlement lags. Each
claim consists of an indemnity payment (i.e. the loss) and an
allocated loss adjustment expense (ALAE). Here we determine
a dependence model using the 1466 complete data. We run
the proposed goodness-of-fit tests on four families of copulas,
including Gaussian copula, Student’s t copula, Gumbel copula and
Clayton copula. For each copula, we estimate the dependence
parameter by the PMLE approach described in Section 2.

Table 6 reports the results of PMLE, test statistics and p-values.
The estimated degree of freedom of Student’s t copula is 11.11.
From Table 6, we find that Gumbel copula appears to be the most
adequate and Gaussian copula is least suitable among the four
copulamodels. This result is also supported by themaximumvalue
of the log-likelihood function reported in the last row of the table.

Our findings obtained by the hybrid tests are consistent with
the model selection results reported by Frees and Valdez (1998),
Genest et al. (1998), Chen and Fan (2005) and Denuit et al. (2006).
Frees and Valdez (1998) and Denuit et al. (2006) point out a
positive upper-tail dependence between loss and ALAE, implying
that large losses tend to be associated to large ALAEs. This is
because expensive claims usually take some time to be settled and
induce extra costs for the insurance company. Thus, it is reasonable
to observe a positive upper-tail dependence. On the other hand,
no lower tail dependence is detected. Among the four copula
models, Gumbel copula exhibits a strong upper-tail dependence,
which properly reflects the relationship between loss and ALAE.
The other copula models do not have similar features of upper tail
dependence.

8. Discussion

In this paper, we focus on goodness-of-fit tests for specification
of semiparametric copula dependence models. We propose a
new method based on pseudo likelihood of cross-validation
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Table 6
Summary of data analysis results obtained from the four copulas: Gaussian,
Student’s t , Clayton and Gumbel, including dependence parameter estimates θ̂
with the standard errors in the parentheses and p-values with test statistics in the
parentheses. The maximum value of the log-likelihood is reported at the last line.

Statistic Copula
Clayton Gumbel Gauss t

θ̂ 0.511 (0.043) 1.428 (0.029) 0.456 (0.019) 0.466 (0.020)
Tn(1) 0.000 (1.316) 0.370 (0.954) 0.000 (1.223) 1.000 (0.998)
Rn 0.000 (1.323) 0.315 (0.959) 0.000 (1.274) 1.000 (1.654)
Sn 0.000 (0.407) 0.006 (0.072) 0.000 (0.118) 0.000 (0.163)
Jn 0.000 (0.095) 0.789 (0.023) 0.041 (0.038) 0.296 (0.033)
STn(1) 0.000 0.012 0.000 0.000
SRn 0.000 0.012 0.000 0.000
JTn(1) 0.000 0.740 0.000 0.592
JRn 0.000 0.630 0.000 0.592
SJTn(1) 0.000 0.018 0.000 0.000
SJRn 0.000 0.018 0.000 0.000
loglik 89.95 191.4 171.2 177.9

leading to the construction of a test statistic by comparing
the ‘‘in-sample’’ pseudo-likelihood and ‘‘out-of-sample’’ pseudo-
likelihood. As shown in the theory and numerical examples, the
proposed comparison of pseudo likelihoods over different datasets
has provided a highly competitive performance to indicate how
well a copula model fits the data. To mitigate the computational
burden of the proposed Tn(m) test, we introduce the Rn test,
which show similar performance to Tn(m) test. We establish the
large sample properties for both Tn(m) and Rn tests, develop the
asymptotic local theory in the Pitman sense. In comparison to the
blanket tests considered in Genest et al. (2009) and Scaillet (2007),
all of which are rank-based tests, the proposed test enables us to
avoid using any probability integral transformations.

In addition, we extend the PIOS test to the case of SCOMDY
model. To take into account uncertainty in estimating the
dynamic parameters in finite sample, we propose a new bootstrap
procedure, in which time series data is resampled and the dynamic
parameters are re-estimated in each bootstrap sample case. This
bootstrap procedure is shown to control type I error better,
compared to the commonly used bootstrap based on resampling
of the estimated innovation processes.

By means of Bonferroni correction for multiple testing, we
propose a hybrid test to combine several different test statistics for
a common hypothesis problem. In terms of average performance,
the hybrid test is clearly superior to any of the individual tests
used in the combination. An important property is that if there is
at least one consistent test in the combination, then the hybrid
test is consistent. This hybrid strategy is particularly appealing
when there is no a priori knowledge which test might be the top
performer at a given occasion.

We conduct extensive simulation experiments to investigate
and compare the finite-sample performances between our pro-
posed tests and the Sn test (Genest et al., 2009) and the Jn test
(Scaillet, 2007). The results of Monte Carlo simulations show that
the proposed tests perform satisfactorily in type I error control and
that they are very comparable to the existing best performer Sn and
Jn tests. In particular, when the data are generated from Student’s
t copula, the proposed tests are more powerful than Sn test and Jn
test in differentiating t and Gaussian copulas. Also, the proposed
hybrid tests have shown a superior performance in all the cases,
regardless of the choice of the copula family or the choice of the de-
pendency strength, and hence they are highly recommended as a
desirable method to be applied in practice. In our simulation stud-
ieswe found, that all the tests, including proposed Rn and Tn(m) are
not uniformly powerful in all situations, like the situation when
Gumbel is the true copula but t is under H0. These situations are
worth for further investigation in order to improve our proposed
test.

As suggested by a referee, combining test statistics may be
alternatively done by a ‘‘Portmanteau’’ type test statistic, namely
the maximum of the involved test statistics. This approach is
meaningful when the test statistics are comparable with the same
type of probability distribution. By normalizing the test statistics to
have a common null distribution, the resulting Portmanteau test
would be equivalent to the minimum of their corresponding p-
values. Note that, the method of p-values based combination is
more general as it allows the test statistics to have different types
of distributions, which is the choice ofmethod in this paper to form
the hybrid test.

In this paper, we focus all numerical illustrations only on the
occasion of 2-dimensional copula families, and it is of great interest
to evaluate these tests to multi-dimensional copulas, such as vine
copulas. It is also interesting to explore in general the effect of block
size on the test power.
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Appendix A

This appendix is devoted to the proofs of the theorems given in
Section 4.

Proof of Theorem 1. Define the rescaled empirical copula of
X1, . . . , Xn by

C̃(u) =
1

n + 1

n
t=1

I

F̃(Xt) ≤ u


=

1
n + 1

n
t=1

I

F̃1(Xt1) ≤ u1, . . . , F̃d(Xtd) ≤ ud


.

For any θ ∈ Θ , we can rewrite S(θ), Ŝ(θ), V (θ) and V̂ (θ) as
follows:

S(θ) = −


u∈[0,1]d

lθθ (u; θ)dC0(u);

Ŝ(θ) = −
n + 1
n


u∈[0,1]d

lθθ (u; θ)dC̃(u),

and

V (θ) =


u∈[0,1]d

lθ (u)lTθ (u)dC0(u);

V̂ (θ) =
n + 1
n


u∈[0,1]d

lθ (u)lTθ (u)dC̃(u),

where C0(·) and C̃(·) are the true copula and the rescaled empirical
copula.
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By condition (A1), applying Lemma 1(c) in Chen and Fan (2005)
(see also Fermanian et al. (2004)), we have

sup
θ∈N (θ∗)

Ŝ(θ)− S(θ)


= sup
θ∈N (θ∗)


u∈[0,1]d

lθθ (u; θ)d

n + 1
n

C̃(u)− C0(u)
 pr

→ 0,

as n → ∞.

Hence, using the two facts
Ŝ(θ̂)− S(θ∗)

 ≤

Ŝ(θ̂)− S(θ̂)
+S(θ̂)− S(θ∗)

, and θ̂ pr
→ θ∗,we obtained Ŝ(θ̂)

pr
→ S(θ∗).

Applying the same arguments above, we can show V̂ (θ̂)
pr
→

V (θ∗).
Furthermore, by condition (A2) and Slutsky’s theorem, we have

Rn = tr

Ŝ(θ̂)−1V̂ (θ̂)


pr
→ tr


S(θ∗)−1V (θ∗)


.

Proof of Theorem 2(i). First note that, θ̂ solves the equationn
t=1 lθ {F̃(Xt); θ̂} = 0. Applying the mean-value theorem, we

have

0 =

n
t=1

lθ {F̃(Xt); θ
∗
} +

n
t=1

lθθ {F̃(Xt); θ̃}(θ̂ − θ∗),

where θ̃ lies between θ∗ and θ̂ . Thus

θ̂ − θ∗
= −


1
n

n
t=1

lθθ {F̃(Xt); θ̃}

−1
1
n

n
t=1

lθ {F̃(Xt); θ
∗
}.

For any 1 ≤ i, j ≤ p, expanding lθθ {F̃(Xt); θ̂}ij around θ∗ leads
to

Ŝ(θ̂)ij =
1
n

n
t=1

lθθ {F̃(Xt); θ̂}ij

=
1
n

n
t=1

lθθ {F̃(Xt); θ
∗
}ij +

1
n

n
t=1

∂ lθθ {F̃(Xt); θ̌}ij

∂θ T
(θ̂ − θ∗)

=
1
n

n
t=1

lθθ {F̃(Xt); θ
∗
}ij −

1
n

n
t=1

∂ lθθ {F̃(Xt); θ̌}ij

∂θ T

×


1
n

n
t=1

lθθ {F̃(Xt); θ̃}

−1
1
n

n
t=1

lθ {F̃(Xt); θ
∗
},

where θ̌ lies between θ∗ and θ̂ .
By condition (B3), applying again Lemma 1(c) in Chen and Fan

(2005), we obtain

1
n

n
t=1

∂ lθθ {F̃(Xt); θ̌}ij

∂θ T
pr
→ E0


∂ lθθ {F(X1); θ

∗
}ij

∂θ T


.

Also, we know 1
n

n
t=1 lθθ {F̃(Xt); θ̃}

pr
→ S(θ∗) as n → ∞.

Therefore

Ŝ(θ̂)ij =
1
n

n
t=1


lθθ {F̃(Xt); θ

∗
}ij + M ij

1S
−1(θ∗)lθ {F̃(Xt); θ

∗
}


+ op(1)

△
=

1
n

n
t=1

hS{F̃(Xt); θ
∗
}ij + op(1), (14)

where,M ij
1

△
= E0


∂ lθθ {F(X1);θ∗

}ij
∂θT


is a 1×p vector, hS is a p×pmatrix

with element hS{F̃(Xt); θ
∗
}ij.
Employing the same arguments above, we have

V̂ (θ̂)ij =
1
n

n
t=1


lθ {F̃(Xt); θ

∗
}ilθ {F̃(Xt); θ

∗
}j

+ M ij
2S

−1(θ∗)lθ {F̃(Xt); θ
∗
}


+ op(1)

△
=

1
n

n
t=1

hV {F̃(Xt); θ
∗
}ij + op(1), (15)

where M ij
2 = E0[

∂ lθ {F(X1);θ∗
}i

∂θT
lθ {F(X1); θ

∗
}j +

∂ lθ {F(X1);θ∗
}j

∂θT
lθ {F(X1);

θ∗
}i] and hV is a p × pmatrix with element hV {F̃(Xt); θ

∗
}ij.

Under the null hypothesis of the copula model being correctly
specified, by Bartlett identity, we have S(θ∗) = V (θ∗), moreover
the test statistic Rn given in (5) can be represented as follows:
√
n (Rn − p) =

√
ntr

Ŝ−1(θ̂)V̂ (θ̂)− Ip


=

√
ntr

Ŝ−1(θ̂)V̂ (θ̂)− S−1(θ∗)V (θ∗)


= tr


S−1(θ∗)

√
n

V̂ (θ̂)− V (θ∗)


+ tr


S−1(θ∗)V̂ (θ̂)S−1(θ∗)

√
n

S(θ∗)− Ŝ(θ̂)


+ tr


Ŝ−1(θ̂)V̂ (θ̂)S−2(θ∗)

√
n

S(θ∗)− Ŝ(θ̂)

2
.

Utilizing the asymptotic expansion in (14) and (15), we have
√
n

Ŝ(θ̂)− S(θ∗)


=

1
√
n

n
k=1


hS{F̃(Xt); θ

∗
} − S(θ∗)


+ op(1)

=
√
n

u∈(0,1)d

hS(u; θ∗)d

n + 1
n

C̃(u)− C0(u)


+ op(1),

and
√
n

V̂ (θ̂)− V (θ∗)


=

1
√
n

n
k=1


hV {F̃(Xt); θ

∗
} − V (θ∗)


+ op(1)

=
√
n

u∈(0,1)d

hV (u; θ∗)d

n + 1
n

C̃(u)− C0(u)


+ op(1).

By conditions (B1) and (B2), employing Lemma 2 in Chen and
Fan (2005) (see also Ruymgaart et al. (1972), Ruymgaart (1974)
or Genest et al. (1995)), we have ∥Ŝ(θ̂) − S(θ∗)∥ = Op(n−1/2)

and ∥V̂ (θ̂) − V (θ∗)∥ = Op(n−1/2). In addition, giving these facts:
√
n∥Ŝ(θ̂) − S(θ∗)∥2

= op(1), Ŝ(θ̂)
pr
→ S(θ∗) and V̂ (θ̂)

pr
→ V (θ∗),

we reach the following expression:

√
n (Rn − p) =

√
n

u∈[0,1]d

hR(u; θ∗)d

n + 1
n

C̃(u)− C0(u)


+ op(1),

where

hR(u; θ∗) =

p
i,j=1

S−1(θ∗)ij

hS(u; θ∗)ji + hV (u; θ∗)ji


.

Again, applying Lemma 2 in Chen and Fan (2005), we have
√
n (Rn − p)

d
→ N(0, σ 2

R ),
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where

σ 2
R = var0


hR(u; θ∗)+ D{F(X1); θ

∗
}

, (16)

and

D{F(X1); θ
∗
} =

d
j=1


u∈[0,1]d

∂hR(u; θ∗)

∂uj
I{Fj(X1j) ≤ uj}dC0(u).

Note that the additional term D{F(X1); θ
∗
} comes from the

uncertainty of the estimator for the marginal distribution function
F(X1) = {F1(x1), . . . , Fd(xd)}. It vanishes when F(·) is known.

The asymptotic variance σ 2
R may be consistently estimated by

σ̂ 2
R =

1
n

n
t=1


hR{F̃(Xt); θ̂} −

p
i,j=1

Ŝ(θ̂)−1
ij V̂ (θ̂)ji + D[F̃(Xt); θ̂}

2

.

(17)

To prove Theorem 2(ii), we need the following lemma.

Lemma 1. Under the conditions (A1) and (C1), we have

sup
1≤b≤B

∥θ̂ − θ̂−b∥ = op(n−
3
4 ). (18)

Proof of Lemma 1. By Eq. (3), θ̂−b solves the following equation

0 =

B
b′=1,b′≠b

m
i=1

lθ {F̃(Xb′

i ); θ̂−b}.

Expanding lθ {F̃(Xb′

i ); θ̂−b} around θ̂ leads to

0 =

B
b′=1,b′≠b

m
i=1

lθ {F̃(Xb′

i ); θ̂−b}

= −

m
i=1

lθ {F̃(Xb
i ); θ̂} +

B
b′=1,b′≠b

m
i=1

lθθ {F̃(Xb′

i ); θ̃−b}(θ̂−b − θ̂ ),

where θ̃−b lies between θ̂ and θ̂−b. It follows that

θ̂−b − θ̂ =


1
n

B
b′=1,b′≠b

m
i=1

lθθ {F̃(Xb′

i ); θ̃−b}

−1
1
n

m
i=1

lθ {F̃(Xb
i ); θ̂}.

By conditions (A1) and (C1),

sup
1≤b≤B

1
n

 m
i=1

lθ {F̃(Xb
i ); θ̂}

 ≤
m
n

sup
1≤b≤B

sup
θ∈N (θ∗)

lθ {F̃(Xb
i ); θ}


= op(n−

3
4 )Op(1)

= op(n−
3
4 ).

In addition, by condition (A1), using the similar arguments in
the proof of Theorem 1, we can show

1
n

B
b′=1,b′≠b

m
i=1

lθθ {F̃(Xb′

i ); θ̃−b}
pr
→ S(θ∗).

Moreover,

sup
1≤b≤B

∥θ̂−b − θ̂∥ ≤ sup
1≤b≤B



1
n

B
b′=1,b′≠b

m
i=1

lθθ {F̃(Xb′

i ); θ̃−b}

−1


× sup
1≤b≤B

1n
m
i=1

lθ {F̃(Xb
i ); θ̂}


= op(n−

3
4 ).
Proof of Theorem 2(ii). By definition

Tn(m) =

B
b=1

m
i=1

l{F̃(Xb
i ); θ̂} −

B
b=1

m
i=1

l{F̃(Xb
i ); θ̂−b},

expanding l{F̃(Xb
i ); θ̂−b} around θ̂ leads to

Tn(m) = −

B
b=1

m
i=1

lθ {F̃(Xb
i ); θ̂}(θ̂ − θ̂−b)

−
1
2

B
b=1

m
i=1

(θ̂ − θ̂−b)
T lθθ {F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b)

= −

B
b=1

m
i=1

lθ {F̃(Xb
i ); θ̂}


1
n

B
b′=1

m
i=1

lθθ {F̃(Xb′

i ); θ̂}

+ e1b + e2b

−1
1
n

m
i=1

lθ {F̃(Xb
i ); θ̂}

−
1
2

B
b=1

m
i=1

(θ̂ − θ̂−b)
T lθθ {F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b)

∆
= Rn − W1 − W2,

where

W1 =
1
2

B
b=1

m
i=1

(θ̂ − θ̂−b)
T lθθ {F̃(Xb

i ); θ̃−b}(θ̂ − θ̂−b),

and

W2 =

B
b=1

m
i=1

lθ {F̃(Xb
i ); θ̂}


1
n

B
b′=1,b′≠b

m
i=1

lθ {F̃(Xb′

i ); θ̃−b}

−1

× (e1b + e2b)

×


1
n

B
b′=1

m
i=1

lθ {F̃(Xb′

i ); θ̂}

−1
1
n

m
i=1

lθ {F̃(Xb
i ); θ̂},

with

e1b =
1
n

m
i=1

lθ {F̃(Xb
i ); θ̃−b},

and

e2b =
1
n

B
b=1

m
i=1

lθθ {F̃(Xb
i ); θ̃−b} −

1
n

B
b=1

m
i=1

lθθ {F̃(Xb
i ); θ̂}.

Lemma 1 implies that

sup
1≤b≤B

∥W1∥ = sup
1≤b≤B

 B
b=1

m
i=1

(θ̂ − θ̂−b)
T lθ {F̃(Xb

i ); θ̂}(θ̂ − θ̂−b)


= op(n−

1
2 ) sup

1≤b≤B
sup
θ∈Θ

∥lθ {F̃(Xb
i ); θ}∥

= op(n−
1
2 )Op(1)

= op(n−
1
2 ).

We now prove that W2 = op(n−
1
2 ). By conditions (A1) and (C1),

sup
1≤b≤B

∥e1b∥ ≤
m
n

sup
1≤b≤B

sup
θ∈N (θ∗)

lθ {F̃(Xb
i ); θ}

 = op(n−
3
4 )Op(1)

= op(n−
3
4 ).
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Expanding lθθ {F̃(Xb
i ); θ̃−b} around θ̂ leads to, under condition

(B3),

∥e2b∥ =

1n
B

b=1

m
i=1

lθθ {F̃(Xb
i ); θ̃−b} −

1
n

B
b=1

m
i=1

lθθ {F̃(Xb
i ); θ̂}


≤

1n
B

b=1

m
i=1

p
k,l=1

∂

∂θ
lθθ {F̃(Xb

i );
˜̃
θ−b}kl

 sup
1≤b≤B

∥θ̂ − θ̃−b∥

= op(n−
3
4 )Op(1) = op(n−

3
4 )

where ˜̃
θ−b lies between θ̂ and θ̂−b. Therefore,

sup
1≤b≤B

∥W2∥

≤ n

1n
B

b=1

m
i=1

lθ {F̃(Xb
i ); θ̂}


× sup

1≤b≤B



1
n

B
b′=1,b′≠b

m
i=1

lθ {F̃(Xb′

i ); θ̃−b}

−1


× sup
1≤b≤B

∥(e1b + e2b)∥



1
n

B
b′=1

m
i=1

lθ {F̃(X
q
i ); θ̂}

−1


× sup
1≤b≤B

1n
m
i=1

lθ {F̃(Xb
i ); θ̂}


= n × Op(1)Op(1)op(n−

3
4 )Op(1)op(n−

3
4 )

= op(n−
1
2 ).

In summary, we prove that

Tn(m)− Rn = op(n−
1
2 ).

Proof of Theorem 3. Under assumption (D1), Lemma 3.10.11
of van der Vaart and Wellner (1996) implies that the likelihood
ratio process of PC1,δ

n over P0 has the following asymptotic
representation:

Λn =

n
t=1

log
dPC1,δ

n

dP0
(Xt)

=
δ

√
n

n
t=1

g(Ut)−
δ2

2n

n
t=1

g (Ut)
2
+ op(1), (19)

where g(Ut) =
c1(Ut )−c0(Ut ;θ0)

c0(Ut ;θ0)
and Ut = F(Xt).

Thus, under assumption (B1)–(B3) and (E1), the likelihood ratio
process Λn converges to a normal distribution with mean −

δ2

2 Γ0

and variance δ2σ 2
g , where Γ0 = Ec0


g{F(X1)}

2

and σ 2

g =

Varc0 [g{F(X1)}].
According to Chen and Fan (2005), the PMLE θ̂ has the following

asymptotic representation:

θ̂ − θ0 =
1
n

n
t=1

S−1


lθ (Ut; θ0)+

d
j=1

Dj(Ut; θ0)


+ op(n−1/2)

△
=

1
n

n
t=1

φθ (Ut; θ0)+ op(n−1/2), (20)

where S = Ec0


lθθ {F̃(Xt); θ̃}


and Dj(Ut; θ0) = Ec0 [lθ,j(Ut; θ0)

{I

Utj ≤ Usj


− Usj}|Utj].
By condition (B1), expanding lθθ

F̃(Xt); θ̂


around θ0 leads to

Ŝ(θ̂) = −
1
n

n
t=1

lθθ

F̃(Xt); θ̂


= −

1
n

n
t=1

lθθ

F̃(Xt); θ0


−

1
n

n
t=1

p
j=1

∂ lθθ {F̃(Xt); θ0}

∂θj

× (θ̂j − [θ0]j)+ op(n−1/2).

By condition (B3) and Eq. (20), we have

1
n

n
t=1

d
j=1

∂ lθθ {F̃(Xt); θ0}

∂θj
(θ̂j − [θ0]j)

=
1
n

n
t=1

d
j=1

Ms
j φθ (Ut; θ0)j + op(n−1/2),

where

Ms
j = Ec0


∂

∂θj
lθθ

F̃(Xt); θ0


, j = 1, . . . , p.

By condition (B2), applying functional Taylor expansion in the
direction of dF = F̃ − F (van der Vaart, 2000), we have

1
n

n
t=1

lθθ

F̃(Xt); θ0


=

1
n

n
t=1

lθθ (Ut; θ0)+
1
n

n
t=1

d
j=1

lθθ,j (Ut; θ0)

F̃j(Xtj)− Fj(Xtj)


+ op(n−1/2)

=
1
n

n
t=1

lθθ (Ut; θ0)+
1

n(n + 1)

n
t=1

n
s=1

d
j=1

lθθ,j (Ut; θ0)

×

I

Xsj ≤ Xtj


− Fj(Xtj)


+ op(n−1/2).

Applying the standard arguments in the theorem of U-statistics
(Serfling, 2009), we have

1
n(n + 1)

n
t=1

n
s=1

d
j=1

lθθ,j (Ut; θ0)

I

Xsj ≤ Xtj


− Fj(Xtj)


=

1
n

n
t=1

d
j=1

Ec0


lθθ,j (Ut; θ0)


I

Usj ≤ Utj


− Utj


|Utj


+ op(n−1/2).

Combining the arguments above, we have

Ŝ(θ̂)

= −
1
n

n
t=1


lθθ {Ut; θ0} +

d
j=1

Ms
j φθ (Ut; θ0)j

+

d
j=1

Ec0


lθθ,j {Ut; θ0}


I

Usj ≤ Utj


− Utj


|Utj


+ op(n−1/2)

△
= −

1
n

n
t=1

ψ S(Ut; θ)+ op(n−1/2).

By conditions (B1)–(B3), using the above similar arguments, we
also can expand V̂ (θ̂) as follows:

V̂ (θ̂) =
1
n

n
t=1

lθ (Ut; θ0) lθ (Ut; θ0)
T

+
1
n

n
t=1

p
j=1

Mv
j φθ (Ut; θ0)j

+
2
n

n
t=1

d
j=1

Ec0


lθ (Ut; θ0) lθ,j (Ut; θ0)

T
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×

I

Usj ≤ Utj


− Utj


|Utj

+ op(n−1/2)

△
=

1
n

n
t=1

ψv(Ut; θ)+ op(n−1/2),

where

Mv
j = Ec0


lθ

F̃(Xt); θ0

 ∂

∂θj
lθ

F̃(Xt); θ0

T
, j = 1, . . . , p.

Therefore, employing similar arguments to those in the proof of
Theorem 2(i), we can rewrite

√
n (Rn − p) as follows:

√
n (Rn − p) =

√
nŜ(θ̂)−1


V̂ (θ̂)− Ŝ(θ̂)


=

1
√
n

n
t=1

p
i,j=1


S−1

ij [ψ
v
{F(Xt); θ0}

+ ψ s
{F(Xt); θ0}


ji


+ op(1)

△
=

1
√
n

n
t=1

W (Xt)+ op(1). (21)

Applying the multivariate central limit theorem, the vector√
n(Rn − p),Λn

T converges under P0 to a bivariate distribution

with mean vector (0,− δ2

2 Γ0)
T and covariance matrix

σ̄ 2
R δm(c0, c1)

δm(c0, c1) δ2σ 2
g


where

σ̄ 2
R = Varc0


p

i,j=1


S(θ0)−1

ij


ψv(Ut; θ0)+ ψ s(Ut; θ0)


ji


, (22)

and

m(c0, c1) = Ec0 {W (Xt)g(F(Xt); θ0)} .

By Le Cam’s third lemma (van der Vaart andWellner, 1996), we
have

√
n(Rn − p) is asymptotically normal with mean δm(c0, c1)

and variance σ̄ 2
R under the contiguous sequence PC1,δ

n .

Proof of Theorem 4(i). First, we prove S̃(θ̂)
pr
→ S(θ∗), since

S̃(θ̂) = −
1
n

n
t=1

lθθ

F̌(ϵ̃t); θ̂


= −

1
n

n
t=1

lθθ

Ut; θ̂


−

1
n

n
t=1


lθθ

F̌(ϵ̃t); θ̂


− lθθ


Ut; θ̂


.

By condition (A1), the application of lemma A.1(1) in Chen and Fan
(2006), leads to 1

n

n
t=1


lθθ

F̌(ϵ̃t); θ̂


− lθθ


Ut; θ̂


= op(1). By

theuniform lawof largenumbers,wehave−
1
n

n
t=1 lθθ


Ut; θ̂


pr
→

S(θ∗). Hence, S̃(θ̂)
pr
→ S(θ∗).

By the above similar arguments, it is easy to show Ṽ (θ̂)
pr
→

V (θ∗). Thus, the result holds by applying condition (A2) and the
Slutsky’s Theorem.
Proof of Theorem 4(ii). We begin with the (functional) Taylor
expansion of the negative sensitivity matrix S̃(θ̂):

S̃(θ̂) = −
1
n

n
t=1


ψS0


Ut; θ

∗

+ ψS1


Ut; θ

∗

+ ψS2


Ut; θ

∗


+ op(n−1/2), (23)

where ψS0 (Ut; θ
∗) = lθθ (Ut; θ

∗), ψS1 (Ut; θ
∗) =

d
j=1 E0

lθθ,j (Us; θ
∗)

I

Utj ≤ Usj


− Usj


|Utj

andψS2 (Ut; θ

∗) =
p

i=1 E0
∂ lθθ (Ut ;θ

∗)
∂θi


φθ (Ut; θ

∗)i. Note that ψS1(·; ·) and ψS2(·; ·) account
for the errors of estimation with respect to parameter θ distribu-
tion function F(·).

Similarly, the variability matrix Ṽ (θ̂) can be expanded as

Ṽ (θ̂) =
1
n

n
t=1


ψV0


Ut; θ

∗

+ ψV1


Ut; θ

∗

+ ψV2


Ut; θ

∗


+ op(n−1/2), (24)

where ψV0 (Ut; θ
∗) = lθ (Ut; θ

∗)lθ (Ut; θ
∗)T , and

ψV1

Ut; θ

∗


= 2
d

j=1

E0


lθ

Us; θ

∗

lθ,j

Us; θ

∗
T

×

I

Utj ≤ Usj


− Usj


|Utj


,

and ψV2 is a p × pmatrix with the (i, j)th element given by

2
p

k=1

E0

lθ

Ut; θ

∗

i lθθ (Ut; θ)jk


φθ

Ut; θ

∗

k .

Also, ψV1(·; ·) and ψV2(·; ·) account for the error of estimation
of the finite-dimension parameter θ and infinite-dimension
parameter F(·).

By the asymptotic expansion of S̃(θ̂) in Eq. (23) and Ṽ (θ̂)
in Eq. (24), applying similar arguments as that in the proof of
Theorem 2(i), we have
√
n

R̃n − p


d

→ N(0, σ̃ 2
R ), as n → ∞

where

σ̃ 2
R = Var


p

i,j=1


S(θ∗)−1

ij


ψV (Ut; θ

∗)+ ψS(Ut; θ)

ji


, (25)

where ψV (·; ·) =
3

h=0 ψVh(·; ·), and ψS(·; ·) =
3

h=0 ψSh(·; ·).
It isworth pointing out that asymptotically, the estimation error

of η has no impact on S̃(θ) and Ṽ (θ̂), and hence, the behavior of R̃n
is the same as if the residuals {ϵ̃t , t = 1, . . . , n} are observed.

Now we provide the proof of Eq. (23), and the proof of Eq. (24)
are similar and hence omitted. By its definition, we have

S̃(θ̂) = −
1
n

n
t=1

lθθ

F̌(ϵ̃t); θ̂


= −

1
n

n
t=1

lθθ

F̌(ϵ̃t); θ∗


−

1
n

n
t=1

p
i=1

∂ lθθ (Ut; θ
∗)

∂θi

×


θ̂i − θ∗

i


−

1
n

n
t=1

p
i=1

∂ lθθ

F̌(ϵ̃t); θ̃


∂θi

−
∂ lθθ (Ut; θ

∗)

∂θi


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×


θ̂i − θ∗

i


△
= −SI − SII − SIII ,

where θ̃ lies between θ̂ and θ∗.
Consider the first term SI . By conditions (B2) and (E1)–(E4), an

application of Lemma A.1(2) in Chen and Fan (2006) leads to

SI =
1
n

n
t=1

lθθ

Ut; θ

∗

+

1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̌j(ϵ̃tj)− Fj(ϵtj)


+ op(n−1/2).

By conditions (E1)–(E4) and Eq. (12), we have

1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̌j(ϵ̃tj)− Fj(ϵtj)


=
1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̃j(ϵ̃tj)− Fj(ϵ̃tj)

+ fj(ϵ̃tj)C(ϵ̃tj)(η̂ − η0)+ Fj(ϵ̃tj)− Fj(ϵtj)+ op(n−1/2)


=
1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̃j(ϵtj)− Fj(ϵtj)


+
1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗

fj(ϵtj)


ω(ϵtj)−


Σ

−1/2
tj (η0)µ̇tj(η

0
1)

+ ϵtj
1
2
Σ−1

tj (η
0)Σ̇tj(η

0)

T
(η̂ − η0)

+ op(n−1/2).

Since ω(x) = E0

ω1 +

x
2ω2


, we have

1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗

fj(ϵtj)


ω(ϵtj)−


Σ

−1/2
tj (η0)µ̇tj(η

0
1)

+
ϵtj

2
Σ−1

tj (η
0)Σ̇tj(η

0)
T

(η̂ − η0)

= op(n−1/2).

That is, the estimation error of η is asymptotically ignorable.
Consequently,

1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̌j(ϵ̃tj)− Fj(ϵtj)


=
1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̃j(ϵtj)− Fj(ϵtj)


+ op(n−1/2)

=
1
n2

n
t=1

n
s=1

d
j=1

lθθ,j

Ut; θ

∗
 

I

ϵsj ≤ ϵtj


− Fj(ϵtj)


+ op(n−1/2).

Under condition (B2), employing the standard arguments in the
theorem of U-statistics (Chapter 5, Serfling (2009) or Lemma A.2
in Chen and Fan (2006)), we obtain

1
n

n
t=1

d
j=1

lθθ,j

Ut; θ

∗
 

F̌j(ϵ̃tj)− Fj(ϵtj)


=
1
n

n
t=1

d
j=1

E0

lθθ,j


Us; θ

∗
 

I

Utj ≤ Usj


− Usj


|Utj


△
=

1
n

n
t=1

ψS1

Ut; θ

∗

.

Now consider the second term SII , under condition (B3), Eq. (13),
applying Lemma A.1(2) in Chen and Fan (2006) gives

1
n

n
t=1

p
i=1

∂ lθθ (Ut; θ
∗)

∂θi


θ̂i − θ∗

i


=

1
n

n
t=1

ψS2

Ut; θ

∗


+ op(n−1/2)

where

ψS2

Ut; θ

∗


=

p
i=1

E0


∂ lθθ (Ut; θ

∗)

∂θi


φθ

Ut; θ

∗

i .

Therefore, we can rewrite the negative sensitivity matrix S̃(θ̂)
as follows:

S̃(θ̂) = −
1
n

n
t=1


ψS0


Ut; θ

∗

+ ψS1


Ut; θ

∗

+ ψS2


Ut; θ

∗


+ op(n−1/2)

△
= −

1
n

n
t=1

ψS

Ut; θ

∗

+ op(n−1/2).

Applying the above similar arguments, an expansion of the
variability matrix Ṽ (θ̂)may be written as follows:

Ṽ (θ̂) =
1
n

n
t=1


ψV0


Ut; θ

∗

+ ψV1


Ut; θ

∗

+ ψV2


Ut; θ

∗


+ op(n−1/2)

△
=

1
n

n
t=1

ψV

Ut; θ

∗

+ op(n−1/2),

where ψV0 (Ut; θ
∗) = lθ (Ut; θ) lθ (Ut; θ)

T , and

ψV1

Ut; θ

∗


= 2
d

j=1

E0


lθ

Us; θ

∗

lθ,j

Us; θ

∗
T

×

I

Utj ≤ Usj


− Usj


|Utj


,

and ψV2 (Ut; θ
∗) is a p × pmatrix with the (i, j)th element

ψV2

Ut; θ

∗


ij = 2
p

k=1

E0

lθ

F(ϵ1); θ∗


i lθθ {F(ϵ1); θ}jk


×φθ


F (ϵt) ; θ∗


k .

Proof of Theorem 4(iii). From Proposition 3.2 in Chen and Fan
(2006), the asymptotic distribution of θ̂ is not affected by the
estimation error of nuisance parameter η. Thus, under assumption
(C1), Lemma 1 still holds with the standardized residuals
{ϵ̃t , t = 1, . . . , n}, which are only dependent on parameter η.
That is, sup1≤b≤B

θ̂ − θ̂−b

 = op(n−3/4). Going through similar

arguments in the proof of Theorem 1(ii) leads to T̃n(m) − R̃n =

op(n−1/2).

Appendix B

This Appendix describes the test proposed by Genest et al.
(2009) and Scaillet (2007), termed in short as Sn and Jn tests
respectively.
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The Sn test statistic is a Cramér–von Mises statistic based on
Rosenblatt’s transform (Rosenblatt, 1952), defined by

Sn = n


[0,1]d
{Dn(u)− C⊥(u)}2 du

= n/3d
− 1/2d−1

n
t=1

d
k=1


1 − E2

tk


+ 1/n

n
t=1

n
s=1

d
k=1

{1 − max(Etk, Esk)} ,

where Et = (Et,1, . . . , Et,d)T , t = 1, . . . , n, are pseudo
observations derived from the following Rosenblatt’s transform:

Etk =
∂k−1C(Ut,1, . . . ,Ut,k, 1, . . . , 1)/∂Ut,1 . . . ∂Ut,k−1

∂k−1C(Ut,1, . . . ,Ut,k−1, 1, . . . , 1)/∂Ut,1 . . . ∂Ut,k−1
,

k = 1, 2, . . . , d,

and Dn(u) =
1
n

n
t=1 I(Et ≤ u) is the d-dimensional empirical

distribution function based on the pseudo observations E1, . . . , En,
and C⊥(u) = u1 × u2 × · · · × ud is the d-dimensional independent
copula.

The Scaillet test is a kernel-based goodness-of-fit test with
a fixed smoothing parameter. For the copula density c(u; θ), its
kernel estimator is given by

ĉ(u) =
1
n

n
t=1

KH [u − {F̃1(Xt1), . . . , F̃d(Xtd)}
T
]

where according to Scaillet (2007) the function KH(y) =

K(H−1y)/det(H) is a d-dimensional kernel, and H is a nonsingular,
symmetric matrix of smoothing parameters. Following Scaillet
(2007), in our simulation study KH(y) is taken to be a bivariate
quadratic product kernel with H = 2.6073n−1/6Σ̂1/2, specified
in terms of the Scott’s rule of thumb with Σ̂ being an estimate
of the sample covariance matrix of the vector of the transformed
variables {F̃1(Xtk), . . . , F̃d(Xtk)}, t = 1, . . . , n. We also scale the
smoothing parameters by δ = 0.5, as the resulting estimator
provides on average the best results in Scaillet (2007). Thus, the test
statistics used in our simulation study takes the following form:

Jn =


[0,1]d

{ĉ(u)− KH ∗ c(u; θ̂ )}w(u)du (26)

where ‘‘∗’’ denotes the operation of convolution andw is a certain
weight function. Using the computing package from Dr. Scaillet,
here we utilized a bivariate Gauss–Legendre quadrature method
with 12 × 12 grids to compute the integral in (26) numerically.

Appendix C

This appendix is devoted to the results of the Simulation and
Empirical Studies.
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