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Summary. Combining multiple studies is frequently undertaken in biomedical research to increase sample sizes for statistical
power improvement. We consider the marginal model for the regression analysis of repeated measurements collected in several
similar studies with potentially different variances and correlation structures. It is of great importance to examine whether
there exist common parameters across study-specific marginal models so that simpler models, sensible interpretations, and
meaningful efficiency gain can be obtained. Combining multiple studies via the classical means of hypothesis testing involves
a large number of simultaneous tests for all possible subsets of common regression parameters, in which it results in unduly
large degrees of freedom and low statistical power. We develop a new method of fused lasso with the adaptation of parameter
ordering (FLAPO) to scrutinize only adjacent-pair parameter differences, leading to a substantial reduction for the number
of involved constraints. Our method enjoys the oracle properties as does the full fused lasso based on all pairwise parameter
differences. We show that FLAPO gives estimators with smaller error bounds and better finite sample performance than the
full fused lasso. We also establish a regularized inference procedure based on bias-corrected FLAPO. We illustrate our method
through both simulation studies and an analysis of HIV surveillance data collected over five geographic regions in China, in
which the presence or absence of common covariate effects is reflective to relative effectiveness of regional policies on HIV
control and prevention.
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1. Introduction

This article concerns regression analysis of repeated measure-
ments from multiple studies using the marginal model. When
the sample size of a biomedical study is not large enough to
achieve adequate statistical precision, it is a common practice
to combine data from several similar studies (Zhang et al.,
2007; Thase et al., 2009). For instance, in a study of prostate-
specific antigen, Inoue et al. (2004) studied the pattern of
the prostate-specific antigen growth by combining three lon-
gitudinal studies to obtain adequate sample sizes to reach
satisfactory statistical power.

Arguably the increased sample size by combining data
from similar studies cannot always lead to desirable improve-
ment in estimation efficiency or testing power, especially when
datasets are sampled from heterogeneous subpopulations. In
meta analysis, a strong assumption of equal parameters from
individual studies is routinely imposed in order to combine
study-specific estimates. When data from different subpop-
ulations are blindly assumed to have common regression
parameters without any a priori data evidence or as such,
it would be hard to interpret the estimated covariate effects.
Thus, with the availability of subject-level data, one of the
primary tasks before combining multiple datasets is to check
parameter homogeneity across multiple studies. In this article,
we are interested in developing a methodology that enables

us to examine and identify sets of homogeneous (or com-
mon) regression coefficients across multiple studies. As a
result, we may simplify the formation of the mean model,
and consequently yield sensible interpretations and meaning-
ful efficiency gain from combining multiple data sets.

Our methodology development was motivated by a national
HIV surveillance project on injection drug users (IDUs) in a
southwestern province of China. By the end of 2006, China
had established 393 national and 370 provincial monitor-
ing sites reporting HIV incidences to the national center for
AIDS/sexually transmitted disease control and prevention
(Sun et al., 2007). Provincial HIV sentinel surveillance pro-
gram involved community health center, hospitals, and drug
addiction treatment centers at which surveys were conducted
among high-risk groups of IDUs.

The HIV surveillance data were collected between 2006 and
2009 using stratified sampling from 67 hospitals, community
health center, and drug addiction treatment centers as pri-
mary sample units to monitor incidences of HIV infection
among IDUs in the study area. All IDUs sampled in the sur-
veys were tested for HIV and interviewed for their behavioral
characteristics related to drug usage, e.g., if they inhale drugs,
if they share needles with other IDUs, and if they are infected
by syphilis virus. Cluster sizes of primary sample units varied
greatly from 11 to 440 IDUs.
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The study contains five regions termed as A, B, C, D, and
E, which are very different in many aspects, such as pop-
ulation size, HIV prevalence, and socioeconomic status. For
example, A is the largest metropolitan city in the province,
whereas E is primarily dominated by minorities living in
mountain villages. Thus, it is expected that highly diversi-
fied backgrounds and behaviors of IDUs across these regions
possibly lead to different trends and covariate effects on HIV
positive.

The focus of this study was on the association between
behavioral activities and HIV positive, among which needle
sharing is the central variable that has been proved as a criti-
cal factor for the infection of HIV. In particular, the provincial
Center for Disease Control was interested in assessing the
effectiveness of measures on needle sharing control across the
five regions. This required to identify common effects of nee-
dle sharing so that similar effectiveness of policies on disease
control and prevention may be clustered in the five regions.

Desirable properties for an approach used in combin-
ing multiple studies with repeated measurements include
flexibility and robustness with respect to heterogeneous char-
acteristics across study cohorts, such as discrepancies of
within-cluster correlation, dispersion, or longitudinal follow-
up schedule. Meta analysis (Hedges and Olkin, 1985; Hartung
et al., 2008), e.g., Cocharn’s test (Cochran, 1954), assumes all
study-specific parameters are equal to a population parame-
ter. Meta analysis utilizes individual estimates, instead of full
datasets, to provide an overall combined estimator for the
population parameter. This approach focuses more on provid-
ing inferential summary than identifying parameter structures
existing in multiple studies. Also, Wang et al. (2012) showed
that Cocharn’s test is unable to control Type I error against
heterogeneous covariances in multiple longitudinal studies. In
regard to generalized estimating equations (Zeger and Liang,
1986), several versions of modified sandwich covariance esti-
mators have been proposed to account for various types of
heterogeneities; refer to Wang et al. (2012) and more refer-
ences therein. However, all existing approaches are greatly
challenged by the large number of simultaneous hypotheses
to be checked for coefficient homogeneity when many studies
and/or many covariates in individual studies are involved. In
effect, the number of tests required in the case of K stud-
ies, each of which contains p covariates, is of order C(K, 2)p,
where C(K, 2) = K(K − 1)/2 is the number of combinations
of two studies out of K studies. When either K, or p, or both
are large, the degrees of freedom of a test statistic increase
rapidly, leading to low power. To deal with such issue of
high-dimensionality, Ke et al. (2015) proposed a clustering
algorithm to identify homogeneous parameter groups in a sin-
gle regression model by taking the advantage of preliminary
estimates obtained under full heterogeneity.

Alternatively, meta analysis may be tackled by Bayesian
approaches in that random effects models are typically used
to account for similarity and discrepancy among multiple
studies (Smith et al., 1995). Müller et al. (2004) proposed
a combined inference over several Bayesian models using a
mixture of a common distribution and an idiosyncratic dis-
tribution specific to each study. Dunson (2006) considered a
dynamic mixture of Dirichlet processes to account for hetero-
geneity of latent response distributions. Also see Dunson et al.

(2008) concerning an approach of matrix stick-breaking pro-
cesses for inter-study heterogeneity. In most of these Bayesian
approaches, prior specification and computing based on the
MCMC algorithm are not straightforward.

In contrast to Ke et al. (2015)’s method in a single study, we
consider issues arising from combining multiple studies from a
Frequentist point of view. We propose a new method by gen-
eralizing the fused lasso method (Tibshirani et al., 2005) in a
system of parallel estimating functions, each formed for one
study. We propose an objective function that automatically
allocates balanced weighting on different studies, so that none
of studies would dominate the resulting objective function.
Another contribution in this article is rooted in an appealing
adjustment on the penalty function through the adaptation of
parameter ordering. This new adaptive approach is different
from Zou’s (2006) adaptive lasso, which incorporates the mag-
nitudes of initial estimates to rescale the amounts of penalty
on individual regression parameters. In the specification of
contrasts in the fused lasso, we hope make a trade-off between
sufficiency and conciseness, so that although only using a sub-
set of adjacent parameter differences we can still sufficiently
cover the spectrum of parameter structures in the regularized
estimation. As a result, our proposed method, termed as fused
lasso with the adaptation of parameter ordering (FLAPO),
not only can identify common coefficients shared in multiple
studies but also can reduce the uncertainty and complications
pertinent to redundant constraints in pairwise comparisons.
As shown in simulation studies and Theorem A in the Supple-
mental Materials, our proposed FLAPO exhibits smaller error
bounds and better finite-sample performance than the full
fused lasso that uses all possible pairwise constraints in the
regularization. Following van de Geer et al. (2014), we provide
an inference procedure in FLAPO, which is applied to ana-
lyze the HIV surveillance data with conclusion of statistical
significance.

The rest of this article is organized as follows. Section 2
concerns both model formulation and FLAPO methodology.
Section 3 presents an algorithm for algorithmic implementa-
tion. Section 4 present theoretical results for FLAPO. After
simulation studies in Section 5, Section 6 presents the analysis
of the HIV surveillance data. Section 7 provides concluding
remarks. The Supplementary Web Materials include relevant
technical details and extra numerical results.

2. Formulation and Method

We consider K studies, where study k, k = 1, . . . , K, collects
nk clusters, and cluster i contains mk,i repeated measure-
ments, i = 1, . . . , nk. Let Yk,ij denote the outcome and Xk,ij

denote a p-dimensional covariate vector for the jth obser-
vation of cluster i in study k, where j = 1, . . . , mk,i. For the

ease of exposition, we let n = ∑K

k=1
nk and assume all stud-

ies have the same number of repeated measurements; that
is, all mk,i = m. For study k, the marginal model is speci-
fied as follows: the conditional mean of Yk,ij takes the form
of E(Yk,ij | Xk,ij) = μk,ij = h(XT

k,ijβ
0
k ), and the conditional vari-

ance of Yk,ij is given by var(Yk,ij | Xk,ij) = σkv(μk,ij), where σk

is the dispersion parameter, h(·) and v(·) are the known link
and variance functions, respectively, and β0

k = (β0
k,1, . . . , β

0
k,p)

T

is the vector of regression coefficients associated with Xk,ij.
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Denote Yk,i = (Yk,i1, . . . , Yk,im)T , μk,i = (μk,i1, . . . , μk,im)T , β0 =
(β0

1

T
, . . . ,β0

K

T
)T . To describe the underlying parameter con-

figuration for each covariate xl, we introduce a collection
of study-index sets, Gl

0, that constitutes, say, B distinct
groups of parameters among K coefficients of xl, β0

(l) =
(β0

1,l, . . . , β
0
K,l)

T . It takes the form of Gl
0 = �B

b=1G
l,b
0 , where

Gl,b
0 ⊂ {1, . . . , K} contains indices of studies whose βk,l’s equal

to a common value. Operation � denotes a union of mul-
tiple subsets (not elements in subsets). Take an example
of five studies in which parameters for the first covari-
ate have two clusters given by β0

1,1 = β0
2,1 = β0

3,1 < 0 < β0
4,1 =

β0
5,1. Then, G1,1

0 = {1, 2, 3},G1,2
0 = {4, 5}, and moreover G1

0 =
{1, 2, 3} � {4, 5} = {{1, 2, 3}, {4, 5}}. Since these parameters can
be equivalently represented by parameter differences, we
may instead use their pairwise differences to describe Gl

0.
As a convention, elements in each cluster {β0

k,l, k ∈ Gl,b
0 } are

always listed by an order of their study indices. Thus,
without loss of generality, we assume the true ordering is
β0

1,l ≤ · · · ≤ β0
K,l. Then, β0

(l) may be reparameterized by φ0
(l) =

(φ0
1,l, φ

0
2,l, . . . , φ

0
K,l)

T where φ0
1,l = β0

1,l and φ0
k,l = β0

k,l − β0
k−1,l for

k = 2, . . . , K. Denote φ0 = (φ0T

(1), . . . , φ
0T

(p))
T . By the above

convention, two sets Gl
0 and Al

0 can be fully determined each
other. Let Al

0 = {{k} : φk,l = 0, 1 ≤ k ≤ K} is the set of study
indices whose β0

k,l’s are identical to the lower adjacent ones
(or no jumps between pairs of adjacent coefficients). For the
above example, A1

0 = {{2}, {3}, {5}}, and sets G1
0 and A1

0 can
be uniquely converted into each other, because φ0

2,1 = φ0
3,1 =

0 is equivalent to β0
1,1 = β0

2,1 = β0
3,1, and so is φ0

5,1 = 0 to
β0

4,1 = β0
5,1. Thus, we can characterize the underlying parame-

ter configuration by covariate-specific sets A1
0, . . . ,A

p

0. Denote
A0 = �p

l=1Al
0. Let the cardinality of A0 be a0 = card(A0) =∑p

l=1
card(Al

0). Then, the cardinality of its complement, Ac
0,

is b0 = card(Ac
0) = Kp − a0.

Our objective is twofold: to determine grouping structures
in the set A0, and to estimate coefficients under the parameter
configuration by A0. These two tasks can be achieved simul-
taneously by using the regularization technique proposed in
the article.

As pointed out by Wang et al. (2012), the traditional esti-
mating function approach is questionable to draw inference
when the data are heterogeneous from one study to another.
To account for such heterogeneity, we first establish a system
of K study-specific estimating functions for β0

k , each for one
study, and then combine them by the means of the generalized
method of moments (Hansen, 1982), which is also referred
to as the quadratic inference function (QIF) by Qu et al.
(2000). This way of creating a meta estimating function enjoys
the flexibility of accommodating different variance–covariance
structures across different studies. Another advantage of this
approach is that it allows data from multiple studies to
contribute equally to the formation of the meta objective func-
tion, regardless of individual study sample size. A detailed
discussion of this point is given at the end of this sec-
tion. For each study, we first approximate the inverse of
working correlation matrix Rk(αk) by R−1

k (αk) ≈ ∑sk

s=1
�sMk,s,

where �1, . . . , �sk are constants possibly dependent on αk, and
Mk,1, . . . ,Mk,sk are known basis matrices with elements 0
and 1. Refer to Qu et al. (2000) for more details concern-

ing the basis matrices given in different working correlation
structures, such as compound symmetry (CS) and first order
autoregressive (AR-1). Also refer to Song et al. (2009) for the
extension of QIF for data of unequal cluster sizes.

Using the above expansion of R−1
k , we can construct a sys-

tem of study-specific estimating functions, ḡk(βk) for study
k = 1, . . . , K, given as follows:

ḡk(βk) = 1

nk

nk∑
i=1

gk,i(βk)

= 1

nk

nk∑
i=1

⎧⎪⎪⎨
⎪⎪⎩

∂μT
k,iA

−1/2
k,i Mk,1A

−1/2
k,i (Yk,i − μk,i)

...

∂μT
k,iA

−1/2
k,i Mk,skA

−1/2
k,i (Yk,i − μk,i)

⎫⎪⎪⎬
⎪⎪⎭ ,

∂μk,i = ∂μT
k,i/∂βk and Ak,i = diag

{
v(μk,i1), . . . , v(μk,im)

}
.

The dimension of ḡk(βk) is skdim(βk). Instead of sum-
ming these study-specific ḡk(βk), we stack them to
form an extended score function: ḡ(β) = 1

n

∑n

i=1
gi(β) =

1
n

∑n

i=1

{
δi(1)g1,i(β1)

T , . . . , δi(K)gK,i(βK)T

}T

, where δi(k)=1

denotes that subject i belongs to study k, and δi(k) = 0
otherwise. Because the dimension of ḡ(β) is much larger
than that of β, namely the case of over-identification,
following Qu et al. (2000), we construct an objec-
tive function of the form: Q(β) = nḡ(β)TC−1(β)ḡ(β),
where C(β) = block-diag

{
n1
n
C1(β1), . . . ,

nk

n
CK(βk)

}
and

C−1(β) is the inverse matrix of C(β). Thus, the clas-
sical QIF estimator is β̂ = argmaxβ Q(β). Note that
the objective function Q(β) can also be written as

Q(β) = ∑K

k=1
Qk(βk) = ∑K

k=1
nkḡk(βk)

TC−1
k (βk)ḡk(βk), where

Qk(βk) is a study-specific QIF. According to Qu et al. (2000),
when the mean model in study k is correctly specified, Qk(β̂k)
converges in distribution to χ2

rk−p where rk is the dimension

of Ck(β
0
k ). It is worth pointing out that the asymptotic

behavior of Qk does not depend on the sample size nk, nor
on the dispersion σk. In other words, the sample size will not
dictate the contribution of an individual QIF to the meta
inference function.

Now, we turn to the development of FLAPO methodol-
ogy for parameter fusion. Denote all regression coefficients
by β = (βT

(1), . . . ,β
T
(p))

T . To identify homogeneous parameter
groups, we propose to regularize the above QIF objective
function, Q(β), using two new penalties with the adaption of
parameter ordering. To proceed, let us begin with the adap-
tive fused lasso (Tibshirani et al., 2005; Zou, 2006), whose

penalty takes the form: P(β) = ∑p

l=1

∑K

k=1

∑K

k′>k
wkk′,l|βk,l −

βk′,l| + ∑p

l=1

∑K

k=1
wk,l|βk,l|, where weights wk,l = 1/|β∗

k,l|γ1 and
wkk′,l = 1/|β∗

k,l − β∗
k′,l|γ2 are typically specified by initial root-n

consistent estimates β∗
k,l’s of βk,l’s for some constants γ1, γ2 > 0

(Zou, 2006). In practice, often γ1 and γ2 are set equal to 1.
Note that for each covariate, the total number of constraints is
s = K + C(K, 2). Ueki (2009) and Ueki and Kawasaki (2011)
considered a similar problem of variable grouping in a much
simpler setting of single cross-sectional study (i.e., K = 1,
m = 1), where the �2-norm penalty for group lasso was used.
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Equivalently, we may write the above fused lasso penalty P(β)
in a matrix notation: P(β) = ‖Dβ‖1 = ‖WBβ‖1, where ‖ · ‖1

is L1-norm on Rsp, B is an sp × Kp matrix that defines sp

constraints involving p covariates across K studies, and W is
an sp × sp diagonal matrix containing all weights correspond-
ing to the constraints in B. Thus, to compare a pair βk,l and
βk′,l, k 
= k′, the corresponding two entries in B are 1 and −1,
and the corresponding diagonal entry in W is wkk′,l. For a sin-
gle parameter βk,l, the corresponding entry in B is 1 and the
corresponding entry in W is wk,l.

A potential caveat with the above fused lasso penalty P(β)
is that most of sp constraints in B are redundant, especially
when the regression parameters of a covariate are ordered.
For an example of β0

1,1 ≤ β0
2,1 ≤ β0

3,1, the term |β1,1 − β3,1|
may not be needed when two adjacent pairs |β1,1 − β2,1| and
|β2,1 − β3,1| are used. Thus, when it is possible to arrange
parameters in β0

(l) in an increasing order as, say, β0
1,l ≤ β0

2,l ≤
· · · ≤ β0

K,l, we can consider a simpler K × K constraint matrix

B̃l for adjacent pairs in the β(l) for covariate xl. B̃l is a lower-
triangular matrix of all zero entries, except the elements on
the main diagonal being (1, −1, . . . , −1) and those on the sub-
diagonal (i.e., directly below the main diagonal) all equal to 1.

Through row permutations in B̃l, it is easy to accommodate
different orderings of parameters in β0

(l). Define a block-

diagonal Kp × Kp matrix B̃ = block-diag{B̃1, . . . , B̃p}. In the
fused lasso penalty P(β) above, matrix B can be partitioned

as B = (B̃T ,B
T
)T where B is a qp × Kp matrix of the redun-

dant pairs that are not included in B̃, q = s − K. Accordingly,

matrix W may be partitioned as W = block-diag(W̃,W),

where W̃ is a Kp × Kp matrix consisting of weights corre-
sponding to B̃, and W is a qp × qp matrix of the weights
associated with B. Unfortunately, such partition for matrix
B is unknown in practice. However, if the parameter order-
ing were known and utilized, a new penalty (termed as the

FLAPO penalty) would be specified by the form: P̃(β) =
‖D̃β‖1 = ‖W̃B̃β‖1. Thus, adequately estimating the param-
eter ordering is crucial to carry out the above strategy, and
when such ordering is available from, say, certain initial root-
n consistent estimates β∗, we could construct a matrix B̃e to

estimate B̃. Consequently, a new weight matrix W̃e replaces

W̃, and moreover, an empirical counterpart of the FLAPO
penalty P̃(β) is given by

P̃e(β) =
p∑

l=1

K∑
k=1

K∑
k′>k

wkk′,lδ{|T ∗
k,l − T ∗

k′,l| = 1}|βk,l − βk′,l|

+
p∑

l=1

wk∗
l
,l|βk∗

l
,l|, (1)

where T ∗
k,l = ∑K

k′=1
δ{β∗

k′,l ≥ β∗
k,l} is the ranking of β∗

k,l among
the elements in β∗

(l), and k∗
l is the lowest position. A matrix

form for (1) is now written as P̃e(β) = ‖D̃eβ‖1 = ‖W̃eB̃eβ‖1.
We consider three versions of the regularized estimators

obtained, respectively, by minimizing the following penalized

objective functions, β̂D = arg min
β∈RKp

{
Q(β) + λP(β)

}
, and

β̂
D̃

= arg min
β∈RKp

{
Q(β) + λP̃(β)

}
,

and β̂
D̃e

= arg min
β∈RKp

{
Q(β) + λP̃e(β)

}
, (2)

where λ > 0 is a tuning parameter controlling the sparsity or
cardinality of A0, which affects the search of common param-
eters. We refer to the proposed regularization method using
penalty P̃(β) or P̃e(β) as the fused lasso with the adapta-
tion of parameter ordering (FLAPO). The second and third

estimators β̂
D̃

and β̂
D̃e

defined in (2) are our proposed estima-

tors, using penalties with the true and estimated parameter
orderings. The first estimator β̂D, which does not incorporate
the ordering, is the traditional fused lasso with all possible
pairwise differences in the penalty.

3. Implementation

For convenience, here we focus on FLAPO with the empir-
ical penalty P̃e(β) in the algorithm; the entire procedure is

applicable to the other two penalties P̃(β) and P(β). We
begin by approximating QIF Q(β) by a second-order Tay-
lor expansion at an initial consistent estimate β∗. This initial
estimate may be obtained by performing routine GEE analy-
sis with one study at a time, where the estimation consistency
holds when the mean models are correctly specified. The
second-order approximation to the objective function (β) =
Q(β) + λP̃e(β) around β∗ is

(β) ≈ Q∗ + (
∂QT

∗
)
(β − β∗) + 1

2
(β − β∗)T

(
∂2Q∗

)
(β − β∗)

+ λ‖D̃eβ‖1, (3)

where Q∗, ∂Q∗, and ∂2Q∗ denote Q(β∗), the first- and
second-order derivatives of Q(β) evaluated at β∗, respectively.
Following Kim et al. (2009), we propose the following algo-
rithm to minimize (3) for a fixed λ.

Step 1: Evaluate both first- and second-order approxima-

tions of (β) at an update β̂
(r)

obtained at iteration

r. Set β̂
(1) = β∗.

Step 2: Obtain τ̂
(r) by the following minimization:

min
τ∈R

(K−1)p

+

− τT D̃eβ
(r)

+ 1

2
(∂Q∗ + D̃T

e τ)T (∂2Q∗)−1(∂Q∗ + D̃T
e τ)

∣∣∣
β=β(r)

subject to ‖τ‖∞ < λ.

Step 3: Update β̂
(r+1) = β̂

(r)−(∂2Q∗)−1(∂Q∗ + D̃T
e τ̂

(r))

∣∣∣
β=β(r)

.

Step 4: If ‖β̂(r) − β̂
(r+1)‖∞ < ε, then stop; otherwise, set r =

r + 1 and go back to step 1.
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In practice, ε is set at a small number, e.g., 10−5, and
an optimal λ may be chosen by the smallest BIC (Schwarz,
1978): BIC(λ) = Q(β̂λ) + df(β̂λ)log(n), where β̂λ is the final
output given at the algorithm convergence, and df(β̂λ) is the
number of distinctive values in β̂λ. This criterion has been
widely used (e.g., Wang et al., 2007, 2009). See details in the
Supplementary Materials.

4. Large Sample Properties

This section concerns the asymptotic properties of the three
proposed estimators under certain regularity conditions listed
in Section 1 of the Supplementary Materials. Given the
parameter ordering, we consider reparametrize β by φ as
discussed in Section 2. Although this reparametrization
is not required in the first estimator β̂D, this formula-
tion is still adopted for the ease of exposition. To present
these three estimators in the setting of reparametrization,

first note the relationship: block-diag(W̃,W)(B̃T ,B
T
)T β =

(W̃T , (WBB̃−1)T )T φ
def= Fφ, where F = DB̃−1, B̃−1 is the

inverse of the full-rank square matrix B̃, and F =
(F̃T ,F

T
)T with F̃ = W̃ and F = WBB̃−1. Thus, the

fused lasso penalty, the FLAPO penalty, and the empiri-
cal FLAPO penalty become P(φ) = ‖Fφ‖1, P̃(φ) = ‖F̃φ‖1 =
‖W̃φ‖1, P̃e(φ) = ‖F̃eφ‖1 = ‖W̃eφ‖1, respectively, and the
expressions of both extended scores g(·) and QIF objective
function Q(·) remain the same. The three regularized estima-
tors are equivalently obtained as follows:

φ̂F = arg min
φ∈RKp

{
Q(φ) + λP(φ)

}
, (4)

φ̂
F̃

= arg min
φ∈RKp

{
Q(φ) + λP̃(φ)

}
,

φ̂
F̃e

= arg min
φ∈RKp

{
Q(φ) + λP̃e(φ)

}
. (5)

Given an estimator φ̂, which may be φ̂F , φ̂
F̃
, or φ̂

F̃e
, the esti-

mated set Â0 is obtained by

Â0 = �p

l=1Â0

l

, with Â0

l = {{k} : φ̂k,l = 0, 1 ≤ k ≤ K},
l = 1, . . . , p. (6)

Using A0 and its complementary set, Ac
0, we decompose

φ0 = (φ0
Ac

0

T
, φ0

A0

T
)T = (φ0

Ac
0

T
,0T )T , φ̂F = (φ̂

T

FAc
0
, φ̂

T

FA0
)T , φ̂

F̃
=

(φ̂
T

F̃Ac
0
, φ̂

T

F̃A0
)T , φ̂

F̃e
= (φ̂

T

F̃eAc
0
, φ̂

T

F̃eA0
)T , D = (DT

Ac
0
,DT

A0
)T , F̃ =

(F̃T
Ac

0
, F̃T

A0
)T , and F = (F

T

Ac
0
,F

T

A0
)T .

The regularity conditions listed in Section 1 of the Supple-
mentary Materials are required to establish Proposition 1 and
Theorem 1. Proposition 1 presents the oracle property for the
estimator φ̂F in the sense given by Fan and Li (2001), includ-
ing selection consistency and asymptotic normality. Theorem
1 establishes these results for the estimator φ̂

F̃
with known

parameter ordering. Consequently, φ̂F and φ̂
F̃

have the same
asymptotic distribution despite different penalties.

Proposition 1. Suppose that λ → ∞, λn−1/2 → 0, and
the initial estimator φ∗ is root-n consistent. Under
Assumptions 1–5 in the Supplementary Materials, the
estimator φ̂F in (4) satisfies: (a) φ̂F is root-n consis-

tent, namely φ̂F − φ0 = Op(n
−1/2); (b) (selection consistency)

Â0 → A0 in probability, where the estimator Â0 is given in
(6) based on the estimator φ̂F ; (c) (asymptotic normality)

n1/2(φ̂FAc
0
− φ0

Ac
0
)=−(GAc

0
�−1GT

Ac
0
)−1GAc

0
�−1�+op(1), where

G = (GT
Ac

0
,GT

A0
)T and � = (�T

Ac
0
, �T

A0
)T with n1/2ḡ(φ0) →

� ∼ N(0, �) in distribution.

The proof of Proposition 1 is provided in Section 3.1 of
the Supplementary Materials. Proposition 1 implies that the
nonzero parameter φ0

Ac
0

can be consistently estimated at root-

n rate, and that the estimator of the zero parameter φ̂FA0

can be asymptotically shrunk to 0. The penalty used in φ̂F

contains many redundant constraints, giving rise of unneces-
sary extra noise to the regularization procedure. The following
theorem (its proof is given in Section 3.3 of the Supplemen-

tary Materials) shows that our proposed estimator φ̂
F̃

based
only on adjacent-pair contrasts in the penalty can achieves
the same asymptotic results as those of φ̂F .

Theorem 1. Suppose that λ → ∞, λn−1/2 → 0, the initial
estimator φ∗ is root-n consistent and the ordering of regression
coefficients is known. Under Assumptions 1–4 in the Supple-
mentary Materials, all results in parts (a), (b), and (c) stated

for φ̂F in Proposition 1 hold for φ̂
F̃
, where φ̂

F̃
= (φ̂

T

F̃Ac
0
, φ̂

T

F̃A0
)T ,

and estimator Â0 is given in (6) based on φ̂
F̃
.

In practice the ordering of parameters is unknown. For each
covariate xl, we use T ∗

k,l defined in (1) based on initial root-n
consistent estimates β∗

(l) to estimate the true position Tk,l of

β0
k,l, i.e., T ∗

k,l = ∑K

k′=1
δ{β∗

k′,l ≥ β∗
k,l}. Let sets Tl = {T1,l, . . . , TK,l}

and T∗
l = {T ∗

1,l, . . . , T
∗
K,l}, in which the elements are arranged

in the same order of the β∗. Consider an event {T∗
l = Tl}

that represents the coincidence of the estimated ordering with
the true ordering of the parameters in β(l). Take an exam-
ple of four studies where the first covariate has two distinct
parameter groups {β0

1,1, β
0
2,1} and {β0

3,1, β
0
4,1} listed as, say,

β0
1,1 = β0

2,1 < β0
3,1 = β0

4,1. Then, event {T∗
1 = T1} occurs if one

of these four scenarios occurs: (i) β∗
1,1 ≤ β∗

2,1 ≤ β∗
3,1 ≤ β∗

4,1;
(ii) β∗

2,1 ≤ β∗
1,1 ≤ β∗

3,1 ≤ β∗
4,1; (iii) β∗

2,1 ≤ β∗
1,1 ≤ β∗

4,1 ≤ β∗
3,1; and

(iv) β∗
1,1 ≤ β∗

2,1 ≤ β∗
4,1 ≤ β∗

3,1.

Lemma 1. Assume estimator β∗ is root-n consistent for β0.
Then, pr({T∗

l = Tl}) → 1 as n → ∞, for l = 1, . . . , p.

The proof of Lemma 1 is given in Section 3.1 of the Supple-
mentary Materials. This lemma means that we can estimate
the parameter ordering correctly with probability tending to
1 as the sample size n increases to infinity. Therefore, we
can extend the results of Theorem 1 to the proposed third
estimator φ̂

F̃e
, as stated in Theorem 2.
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Theorem 2. When the parameter ordering Tl is estimated
by the T∗

l using an initial root-n consistent estimator β∗,
under Assumptions 1–4, the results given in Theorem 1 hold
for the estimator φ̂

F̃e
defined in (5).

The proof of Theorem 2 is given in Section 3.4 of the Sup-
plementary Materials.

To close this section, we make an important remark on
the inference. All the above results are not applicable to
conduct statistical inference for parameter φ or β0. Follow-
ing van de Geer et al. (2014), we managed to establish the
needed asymptotic distributions for bias-corrected PLAPO

estimator φ̂
c

F̃e
. To do so, we first construct a bias-corrected

estimator, φ̂
c

F̃e
, for φ̂

F̃e
, given by the following form: φ̂

c

F̃e
=

φ̂
F̃e

+ n−1λ{∂ḡ(φ̂
F̃e

)C(φ̂
F̃e

)−1∂g(φ̂
F̃e

)T }−1F̃T
e κ, where κ is the

subdifferential of ‖F̃eφ‖1 and λ is the tuning parameter
selected by the BIC. Applying similar arguments given in

van de Geer et al. (2014), we obtained
√

n(φ̂
c

F̃e
− φ0)

d→
N (0, {G�−1GT }−1), where G and � are defined in Assump-
tions 3 and 4 in the Supplementary Materials. Moreover,

a bias-corrected estimator of β̂
D̃e

of β0 is β̂
c

D̃e
= β̂

D̃e
+

1
n
λ{B̃T

e ∂ḡ(φ̂
F̃e

)C(φ̂
F̃e

)−1∂g(φ̂
F̃e

)T B̃e}−1B̃T
e W̃

T
e κ, which leads to

√
n(β̂

c

D̃e
− β0)

d→ N

(
0, (B̃T

e G�−1GT B̃e)
−1

)
.

5. Simulation Experiments

We conduct two simulation studies in the article. The first
one, presented in this section, aims to examine the perfor-
mance of the methods to identify the underlying homogeneity
of parameters for continuous outcomes. The second one, pre-
sented in the Supplementary Materials (Section 4) due to the
space limitations, considers binary longitudinal outcomes.

We simulate eight longitudinal studies with four
repeated measurements through the following linear models:
Yk,ij = β0

k,0 + β0
k,1Xk,i + β0

k,2Zk,ij + εk,ij, j = 1, . . . , 4, k = 1, . . . , 8,

i = 1, . . . , nk, where β0
k = (β0

k,0, β
0
k,1, β

0
k,2)

T is the vec-
tor of true regression parameters and the error term
εk,i = (εk,i1, . . . , εk,i4)

T follows N{0, σkRk(αk)}. Covariate Xk,i

is a baseline covariate generated from N(0, 0.52). Covariate
Zk,i = (Zk,i1, . . . , Zk,i4)

T is time-dependent and simulated
from N(0, 0.52). Covariance structures are set to mimic a
situation where these eight studies recruit subjects from
different subpopulations; set Rk(·) for k = 1, 4, 6, 7, 8 as
AR-1 and for k = 2, 3, 5 as compound symmetry (CS),
with equal correlation αk = 0.5, 1 ≤ k ≤ 8. Set the vari-
ances (σ1, . . . , σ8)

T = (0.6, 1.5, 1.5, 0.6, 1.5, 0.6, 0.6, 0.6)T .
We consider two cases of the underlying homogeneous
parameters: all intercepts are always set at −1; the slope
parameters for X are also set the same in both cases at
β0

1 = (2, 2, 3, 3, 3, 3, 3.3, 3.3)T ; and the parameters for Z

are set different as β0
2 = (2.3, 2.3, 2, 2, 2, 2, 3, 3)T for case

I and β0
2 = (2, 2, 2, 2, 2, 2, 3, 3)T for case II. The former is

slightly harder than the latter because case I contains more
distinct parameter groups with smaller magnitude of pairwise
differences.

Clearly, an exhaustive search requires to check a total of
56 hypotheses to determine the homogeneity clusters for both
slope parameters. The intercepts are ignored here as they may
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Figure 1. Bayesian information criterion (BIC) curves for
the selection of tuning parameters in FLAPO under two dif-
ferent working correlations (AR-1 and Compound Symmetry
(CS)).

be removed by centralizing the response variables. Here, we
mainly focus on identifying homogenous parameter clusters
across different studies, so no penalty is imposed on individ-
ual coefficients. Figure 1 displays two BIC curves computed
from one randomly chosen simulated dataset, and their shapes
appear to be quite representative to those obtained in our
entire simulation study.

To summarize the simulation results, we report results
based on three criteria of sensitivity, specificity, and model size
in Table 1 under two working correlation structures (i.e., AR-
1 and CS) from 200 rounds of simulation. Sensitivity refers to
the proportion of correctly identified equal coefficient pairs,
while specificity refers to the proportion of correctly identified
unequal coefficient pairs. Model size is the number of distinc-
tive estimates in β̂(1) and β̂(2). The true numbers of parameter
clusters are six for case I and five for case II, respectively.

Results in Table 1 provide us numerical evidence to com-
pare β̂

D̃
, β̂

D̃e
, and β̂D. Clearly, β̂

D̃
gives a better performance

in terms of sensitivity and specificity than both β̂
D̃e

and

β̂D. But β̂
D̃e

, not β̂
D̃
, is actually the method that is used

in practice because the true parameter ordering is unknown.
Focusing on the comparison between β̂

D̃e
and β̂D, the for-

mer clearly outperforms the latter in both cases in terms of
sensitivity, specificity, and model size. This example suggests
that including redundant constraints in the regularization
approach actually worsens the finite sample performance.
This also provides the supporting evidence to Theorem A
in the Supplementary Materials, which shows theoretically
the FLAPO estimator has a smaller error bound than the
full fused lasso estimator. The performance of β̂

D̃e
is greatly

improved if the size of between-pair differences is larger than
0.3, and a small difference of 0.3 or less considered in our sim-
ulation study presents a challenge for grouping. Also, Table 1
reveals that both sensitivity and specificity get improved
along the increase of the sample size. In regard to the choice
of working correlation structures, there is little effect observed
on the performance of the methods. From the view of model
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Table 1
Sensitivity (se100, se90), specificity (sp100, sp90), model size (size), and standard deviation of model size for the Case I and
Case II in the simulation study I using different penalty matrices. Se100 and se90 represent the sensitivities computed based
on 100% and 90% correct identification of all equal parameter pairs, respectively. Sp100 and sp90 are defined in the similar

way but for unequal parameter pairs.

AR-1 CS
Case
Penalty nk Se100(Se90) Sp100(Sp90) Size(Std) Se100(Se90) Sp100(Sp90) Size(Std)

100 0.57 (0.67) 0.65 (0.73) 6.19 (0.82) 0.63 (0.71) 0.59 (0.67) 6.01 (0.79)

I, D̃ 200 0.62 (0.68) 0.90 (0.94) 6.44 (0.76) 0.69 (0.75) 0.87 (0.91) 6.26 (0.67)
400 0.79 (0.83) 0.99 (0.99) 6.25 (0.51) 0.83 (0.86) 0.99 (0.99) 6.19 (0.46)
100 0.42 (0.54) 0.26 (0.44) 6.00 (0.93) 0.43 (0.57) 0.26 (0.42) 5.95 (0.86)

I, D̃e 200 0.51 (0.62) 0.57 (0.74) 6.22 (0.77) 0.55 (0.64) 0.55 (0.72) 6.14 (0.76)
400 0.60 (0.68) 0.84 (0.98) 6.36 (0.62) 0.62 (0.69) 0.83 (0.98) 6.30 (0.55)
100 0.22 (0.57) 0.19 (0.28) 6.52 (1.12) 0.19 (0.57) 0.21 (0.32) 6.62 (1.17)

I, D 200 0.27 (0.65) 0.54 (0.63) 6.89 (1.26) 0.31 (0.67) 0.50 (0.59) 6.76 (1.26)
400 0.35 (0.71) 0.81 (0.90) 6.93 (1.14) 0.38 (0.74) 0.82 (0.90) 6.84 (1.05)
100 0.55 (0.62) 0.63 (0.71) 5.19 (0.80) 0.66 (0.71) 0.59 (0.67) 5.00 (0.78)

II, D̃ 200 0.62 (0.66) 0.90 (0.93) 5.41 (0.74) 0.72 (0.77) 0.86 (0.90) 5.21 (0.66)
400 0.72 (0.77) 0.99 (0.99) 5.37 (0.68) 0.81 (0.83) 0.99 (0.99) 5.20 (0.47)
100 0.55 (0.64) 0.24 (0.40) 4.79 (0.79) 0.54 (0.66) 0.26 (0.42) 4.82 (0.79)

II, D̃e 200 0.56 (0.66) 0.56 (0.73) 5.14 (0.73) 0.58 (0.67) 0.55 (0.71) 5.08 (0.72)
400 0.62 (0.68) 0.83 (0.98) 5.33 (0.61) 0.64 (0.69) 0.83 (0.98) 5.29 (0.56)
100 0.37 (0.74) 0.18 (0.25) 5.02 (0.96) 0.37 (0.72) 0.19 (0.29) 5.06 (0.93)

II, D 200 0.43 (0.78) 0.51 (0.59) 5.35 (1.06) 0.44 (0.78) 0.50 (0.58) 5.30 (1.02)
400 0.46 (0.81) 0.78 (0.87) 5.56 (0.94) 0.44 (0.80) 0.80 (0.90) 5.59 (0.88)

size comparison, in general β̂
D̃

and β̂
D̃e

can achieve better

results in both smaller estimation bias and standard devia-
tion. With no surprise, all three methods uniformly perform
better in case II than in case I, due to the fact that case I has
more complex parameter structures than case II.

6. Analysis of HIV Surveillance Cohort Data

We now apply the proposed regularization method to ana-
lyze the clustered dataset of the motivating example from
the HIV surveillance project on injection drug users (IDUs).
Refer to Section 1 for more details of the study back-
ground. To reduce heterogeneity within each primary sample
unit (e.g., spousal correlation), we further divide IDUs
within each sample unit into three groups according to
martial status (single, marriage, and divorce). This divi-
sion enables to simplify the analysis, and does not affect
the estimation for the effect of needle sharing according to
the finding of insignificant association between marital sta-
tus and needle sharing (Wu et al., 1996). This results in
194 smaller but more homogeneous clusters of IDUs. The
primary aim is to identify homogeneous groups of asso-
ciation parameters between behavioral activities and HIV
positive across five regions. We fit the following marginal
logistic model: logit{E(Yk,ij | Xk,i1, Xk,i2, Xk,i3, Xk,i4)} = βk,0 +
βk,1Xk,i1 + βk,2Xk,i2 + βk,3Xk,i3 + βk,4Xk,i4, where Yk,ij is a
binary outcome of HIV positive for the jth subject in the
ith cluster from region k, and covariates Xk,i1 to Xk,i4 are gen-
der (1 for male, 0 for female), time (0–4 years), needle sharing
(1 for yes, 0 otherwise), and syphilis (1 for yes, 0 otherwise).

Region index k is coded as 1 = A, 2 = B, 3 = C, 4 = D, 5 = D.
All covariates are standardized.

First, the data are analyzed separately by region using the
existing QIF method (Qu et al., 2000) under the compound
symmetry correlation. These initial estimates are reported in
the upper panel of Table 2, which are used to estimate the
parameter ordering required in FLAPO. Second, we apply
FLAPO to identify groups of common effects of needle shar-
ing and syphilis reflective to relative effectiveness of regional
policies for disease control and prevention, while the other
parameters are treated as confounding and not considered for
fusion. In particular, using different intercepts in the model
allows to account for unequal regional HIV prevalence. Both
BIC curves and solution paths of needle sharing and syphilis
are showed in Figure 2. FLAPO estimates and confidence
intervals for all four covariates are shown in the lower panel
of Table 2 and in Figure 3. These estimates are yielded at the
minimum BIC, λ = 1.00625. This chosen tuning parameter is
used to construct the 95% confidence intervals in Tables 2 and
3 according to the inference described in Section 4.

The solution paths concerning the effects of needle shar-
ing in Figure 2 indicate regions A and B share a common
effect of needle sharing, which is slightly higher than that in
region C and much higher than those in regions D and E.
Using the p-values in Table 3, at the significance level by
the Bonferroni correction for multiplicity 0.05/4 = 0.0125, we
detect three clusters of needle sharing effects on HIV positive,
{A, B, C}, {D}, {E}. We fail to conclude any significant differ-
ential effects among three regions A, B, and C. Furthermore,
we apply the standard meta analysis approach to combining
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Table 2
Parameter estimates obtained by QIF from initial individual analyses and FLAPO and bias-corrected (BC) FLAPO using

HIV data from five regions A–E. All covariates are standardized with mean 0 and variance 1.

Region Estimate A B C D E

Intercept QIF −3.072 −3.863 −2.660 −1.911 −0.741
Gender QIF 0.128 −0.232 −0.058 0.164 0.325
Time QIF −0.237 0.337 0.172 −0.378 −0.132
Needle QIF 0.788 0.927 0.628 0.023 0.308
Syphilis QIF 0.186 0.041 0.157 −0.059 0.088

Intercept FLAPO −3.0858 −3.7881 −3.0469 −2.0400 −0.7607
BC FLAPO −3.0859 −3.7878 −3.0469 −2.0400 −0.7607
95% CI (−3.2472, −2.9246) (−4.0790, −3.4966) (−3.3784, −2.7154) (−2.1313, −1.9488) (−0.8871, −0.6343)

Gender FLAPO 0.1578 −0.1921 −0.1184 0.2416 0.3492
BC FLAPO 0.1577 −0.1920 −0.1184 0.2416 0.3492
95% CI (0.0291, 0.2863) (−0.3697, −0.0143) (−0.2136, −0.0233) (0.0896, 0.3935) (0.2775, 0.4210)

Time FLAPO −0.2408 0.1723 0.3280 −0.6222 −0.2120
BC FLAPO −0.2407 0.1724 0.3279 −0.6223 −0.2120
95% CI (−0.3795, −0.1019) (−0.0801, 0.4250) (0.0176, 0.6382) (−0.7327, −0.5119) (−0.3343, −0.0896)

Needle FLAPO 0.7832 0.7832 0.6237 −0.0544 0.3247
BC FLAPO 0.7834 0.7829 0.6237 −0.0545 0.3247
95% CI (0.6388, 0.9281) (0.5505, 1.0153) (0.4957, 0.7517) (−0.1662, 0.0572) (0.2433, 0.4061)

Syphilis FLAPO 0.1707 0.0076 0.1707 −0.0319 0.0964
BC FLAPO 0.1708 0.0071 0.1707 −0.0322 0.0965
95% CI (0.1151, 0.2264) (−0.1644, 0.1785) (0.0830, 0.2584) (−0.1653, 0.1009) (0.0222, 0.1708)

both these three estimated effects of regions A, B, and C,
and their confidence interval listed in Table 2. We obtain the
weighted estimate equal to 0.7067 and 95% confidence inter-
val (0.6181, 0.7953) for {A, B, C}. Clearly, D is the only region
at which we do not find a significant effect of needle sharing
on HIV positive as its confidence interval contains 0.

A similar procedure is applied to examine the effects of
syphilis. The p-values from Table 3 indicate an equal effect of
syphilis on HIV positive across the five regions. By the stan-
dard meta analysis approach, we obtain a weighted estimate of

the common effect as 0.1286, with a 95% CI (0.0915, 0.1658),
which does not cover 0. So, there is a significant effect of
syphilis on HIV positive, and this effect has a smaller magni-
tude than that of needle sharing in regions A, B, and C.

In summary, one interesting finding from this analysis is
that in region D there was no significant effect of needle shar-
ing on HIV positive, while risk of HIV positive among IDUs in
regions A, B, and C was significantly associated with needle
sharing. This provides useful information to the provin-
cial CDC for a further investigation. Because of potential
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Figure 2. Bayesian information criterion and solution paths for the effects of needle sharing and syphilis on HIV positive
in five regions A (square), B (circle), C(triangle), D(plus), and E(cross).
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Figure 3. 95% confidence intervals of regression parameters in five regions A, B, C, D, and E, obtained by the bias-corrected
FLAPO.

confounding in the data, the above findings should be
interpreted with great caution and may not be generalizable
to represent a general mechanism of risk prediction for HIV.

7. Concluding Remarks

In this article, we propose a new methodology of regularized
estimation and inference to conduct statistical analysis for
combined datasets of repeated measurements, including longi-
tudinal data and clustered data as special cases. This method
is developed to address the situation where the underlying

parameter homogeneity cannot be analyzed by using the clas-
sical hypothesis testing procedures due to excessively high
computing burden. The proposed method of fused lasso with
the adaptation of parameter ordering (FLAPO) incorporates
parameter ordering in the regularization procedures, so that
the number of parameter constraints can be greatly reduced,
leading to both improved computing speed and better finite-
sample performance. The numerical examples further verify
that the approach works well in terms of sensitivity and speci-
ficity as well as model size. However, the proposed method
may be challenged by the increased computational complexity

Table 3
Estimates of parameter differences obtained by FLAPO and bias-corrected (BC) FLAPO, 95% confidence intervals, and

p-values obtained from the regularized inference

βD,3 − βE,3 βE,3 − βC,3 βC,3 − βA,3 βA,3 − βB,3

Needle FLAPO −0.3790 −0.2991 −0.1595 0.0000
BC FLAPO −0.3792 −0.2990 −0.1598 0.0005
95% CI (−0.5174, −0.2409) (−0.4507, −0.1473) (−0.3529, 0.0334) (−0.2732, 0.2743)
p-value 0.0000 0.0001 0.1050 0.9969

βD,4 − βB,4 βB,4 − βE,4 βE,4 − βC,4 βC,4 − βA,4

Syphilis FLAPO −0.0395 −0.0889 −0.0743 0.0000
BC FLAPO −0.0393 −0.0894 −0.0742 −0.0001
95% CI (−0.2563, 0.1778) (−0.2763, 0.0974) (−0.1891, 0.0407) (−0.1039, 0.1038)
p-value 0.7230 0.3482 0.2058 0.9991
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concerning the underlying pattern of homogeneous param-
eters. One of the limitations might be attributive to the
inflexibility of bearing the variable selection only on a sin-
gle tuning parameter in our method. In addition, when the
number of parameters goes to infinity, it is not clear to us
if it is possible to recover the true parameter ordering with
probability 1. This problem deserves further improvement for
handling data integration involving a large number of similar
studies.

8. Supplementary Materials

Web supplementary sections 1–4 referenced in Sections 3–
5 are available with this article at the Biometrics website
on Wiley Online Library. It provides all technical detail,
including regularity conditions, large-sample properties and
finite-sample error bounds, as well as the proofs. Also, it
includes some extra information of the algorithm and the
results of the second simulation study. A file of the R code
used in the simulation study is available online with the
article.
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