Pharmacology 659

Adrenergic Agonists and Antagonists

Charles B. Smith, M.D., Ph.D.
Fall Term, 2010

317A MSRB III
7343-763-9825
cbsmith@umich.edu
Adrenalin
Epinephrine
Classification of Adrenergic Agonists
Monoaminergic Synapse
Classification of Adrenergic Agonists

- Directly-acting adrenergic agonists act at adrenergic receptors located on effector cells.
- Indirectly-acting adrenergic agonists act by displacing norepinephrine from noradrenergic neurons.
- Mixed-acting agonists have both actions.
Monoaminergic Synapse

Cartoon of monoaminergic synapse
DIRECTLY-ACTING AGONIST

(log molar concentration)

RESPONSE (percent maximum response)

CONTROL
RESERPINE
DENERVATION COCAINE
Monoaminergic Synapse
Classification of indirectly acting agonists

INDIRECTLY-ACTING AGONIST
(log molar concentration)

RESPONSE (percent maximum response)

CONTROL
COCAINE
RESERPINE
DENERVATION
Classification of mixed acting agonists
Blood Pressure

A

B

Henry Hallett Dale
(1875-1968)
Nobel Prize - 1936
Definition of α-Adrenergic Receptors

- Relative potencies of agonists

 Epinephrine $>$
 Norepinephrine $>>>$ Isoproterenol

- Selective antagonists

 Phenoxybenzamine
 Phentolamine
α-Adrenergic Receptors

α₁-Receptors
- Agonist
 - Phenylephrine
- Selective antagonist
 - Prazosin

α₂-Receptors
- Agonists
 - Clonidine
 - α-Methyldopa
- Selective antagonists
 - Idazoxan
 - Yohimbine
Definition of β-Adrenergic Receptors

- Relative potencies of agonists
 - Isoproterenol > Epinephrine >> Norepinephrine

- Selective antagonist
 - Propranolol
\(\beta\)-Adrenergic Receptors

\(\beta_1\)-Receptors

- Agonist

 Iso > Epi = NE
 Dobutamine

- Selective antagonists

 Metoprolol
 Atenolol

\(\beta_2\)-Receptors

- Agonist

 Iso > Epi >> NE
 Terbutaline

- Selective antagonists

 ICI 118551
\[\beta\]-Adrenergic Receptors

\[\beta_3\]-Receptors

- Agonist

 Iso = NE > Epi
 BRL 37344

- Selective antagonists

 ICI 118551
 CGP 20712A
Structure-Activity Relationships
Structure-Activity Relationships

Epinephrine
Structure-Activity Relationships

Direct activity at α- and β- receptors requires -OH groups at the 3 and 4 positions of the ring.
Structure-Activity Relationships

- Substitution of a -OH on the β- carbon increases activity directly at α- and β- receptors
Structure-Activity Relationships

A two carbon side chain between the terminal -N and the benzene ring confers greatest activity overall.
Structure-Activity Relationships

Substitution on the terminal -N increases β-receptor activity.
Structure-Activity Relationships

Substitution on the α-carbon confers resistance to oxidative deamination.
Structure-Activity Relationships

- A two carbon side chain between the terminal -N and the benzene ring confers greatest activity.
- Substitution on the terminal -N increases β-receptor activity.
- Direct activity at α- and β- receptors requires -OH groups at the 3 and 4 positions of the ring.
- Substitution on the α- carbon confers resistance to oxidative deamination.
- Substitution of α -OH on the β- carbon increases activity directly at α- and β- receptors.