ANTIPSYCHOTIC DRUGS
Drugs and textbook reference

- Goodman & Gilman, 11th Edition, Chapter 18, pp 461-480
- Haloperidol
- Quetiapine
- Risperidone
- Aripiprazole
Psychosis is Disorganized or Irrational Behavior

A state of altered salience

Probably a heterogenous group of syndromes
Positive Symptoms of Psychosis

- Bizarre, overdone behavior
- Delusions and ideas of reference
- Hallucinations
- Hostility
- Hyperactivity
Negative Symptoms of Psychosis

- Blunted affect
- Poverty of speech
- Diminished sense of purpose
- Diminished social drive
Cognitive Deficits

- Impairments in:
 - Attention
 - Memory
 - Executive function (ability to plan, initiate and regulate goal-directed behavior)
Early treatments of psychosis

Bethlehem Asylum 'Bedlam', one of the first asylums (1403) Courtesy of the National Library of Medicine.

18th century asylum
Early treatment of psychosis

- Reserpine
- Insulin shock
- Ice or fever therapy
- Lobotomies
- Chlorpromazine
- Haloperidol

Consequence of antipsychotic drug discovery
DA Receptors are G-protein coupled metabotropic receptors

D1 receptor family
D1 & D5

↑ cAMP

D2 receptor family
D2, D3, D4

↓ cAMP
The potency of APD binding to DA D2 Receptors is \propto to potency of clinical dose

Nestler et al., Molecular Neuropharmacology, c2001, p. 402
Pharmacological evidence supporting excess DA in the positive symptoms

- **Increasing dopamine worsens psychosis**
 - Amphetamine and cocaine
- **Decreasing dopamine ameliorates psychosis**
 - Blockade of DA receptors or DA synthesis
DA Neuroanatomy in Psychosis

- Prefrontal cortex
- Head of caudate nucleus
- Nucleus accumbens
- Amygdala
- Hypothalamus
- Thalamus
- Putamen
- Ventral tegmental area
- Substantia nigra
- Pituitary

Legend:
- Red: Mesocortical pathway
- Green: Mesolimbic pathway
- Blue: Nigrostriatal pathway
Model of DAergic activity in schizophrenia

Characteristics of Antipsychotic Drugs

- Active against psychosis of any origin: idiopathic, metabolic, drug-induced
- More active against ‘positive’ symptoms
- Antipsychotic drugs interfere with dopamine transmission, most block dopamine receptors
- Drugs start to work relatively quickly, but it takes a few months to reach maximum effect
Modern Course of Treatment

- New ‘atypical’ antipsychotic drugs (second generation)
- Conventional old-line drugs (first generation)
- Clozapine
First Generation Antipsychotic Drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>D2R specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpromazine</td>
<td>Low</td>
</tr>
<tr>
<td>Thorazine</td>
<td></td>
</tr>
<tr>
<td>Haloperidol</td>
<td>High</td>
</tr>
<tr>
<td>Haldol</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound</th>
<th>D2R specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpromazine</td>
<td>Low</td>
</tr>
<tr>
<td>Thorazine</td>
<td></td>
</tr>
<tr>
<td>Haloperidol</td>
<td>High</td>
</tr>
<tr>
<td>Haldol</td>
<td></td>
</tr>
</tbody>
</table>
Second generation antipsychotic drugs

- Risperidone (Risperdal)
- Olanzapine (Zyprexa)
- Ziprasidone (Geodon)
- Aripiprazole (Abilify)
- Quetiapine (Seroquel)
- Iloperadine (Fanapt)
Top selling drugs: 2010

Second Generation Antipsychotic Drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>D$_2$R specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone</td>
<td>Low</td>
</tr>
<tr>
<td>Clozapine</td>
<td>Low</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>Low</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>Low</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>[High]</td>
</tr>
</tbody>
</table>

Notes
- **Risperidone** (*Risperdal*): Low D$_2$R specificity
- **Clozapine** (*Clozaril*): Low D$_2$R specificity
- **Olanzapine** (*Zyprexa*): Low D$_2$R specificity
- **Quetiapine** (*Seroquel*): Low D$_2$R specificity
- **Aripiprazole** (*Abilify*): [High] D$_2$R specificity
The action of aripiprazole, a D2R partial agonist will depend on intrinsic activity at dopaminergic synapse

Strange, TIPS, 29: 314, 2008
Absorption, Distribution and Fate of Antipsychotic drugs

- Erratic absorption
- Highly lipophilic
- \(t_{1/2} = 6-40 \) hrs, most taken once a day
- Metabolized by cytochrome P450 enzymes
- Clearance from brain may be slower than clearance from plasma
Depot forms of antipsychotic drugs

- Are depot forms for non-compliant patients
- Less plasma level drug fluctuation
- Lower relapse rates
- Poor patient acceptance and no flexibility in dosing
- Paliperidone ER (Invega, active metabolite of risperidone) uses oral osmotic pump extended release technology
Actions of DA in dopaminergic pathways

<table>
<thead>
<tr>
<th>CNS area</th>
<th>Effect of DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesolimbic area</td>
<td>Emotional tone</td>
</tr>
<tr>
<td>Mesocortical area</td>
<td>Cognition</td>
</tr>
<tr>
<td>Nigrostriatal pathway</td>
<td>Movement</td>
</tr>
<tr>
<td>Tuberoinfundibular</td>
<td>Inhibit prolactin release</td>
</tr>
<tr>
<td>Chemoreceptor trigger zone</td>
<td>Nausea & vomiting</td>
</tr>
</tbody>
</table>
Actions of Antipsychotic drugs in dopaminergic pathways

<table>
<thead>
<tr>
<th>CNS area</th>
<th>Effect of AP Drug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesolimbic area</td>
<td>Reduce positive symptoms</td>
</tr>
<tr>
<td>Mesocortical area</td>
<td>Minimal effect on cognition</td>
</tr>
<tr>
<td>Nigrostriatal pathway</td>
<td>Abnormal movements</td>
</tr>
<tr>
<td>Tubero-infundibular</td>
<td>Increase prolactin release poikilothermic effect</td>
</tr>
<tr>
<td>Chemoreceptor trigger zone</td>
<td>Reduce nausea & vomiting</td>
</tr>
</tbody>
</table>
In vitro profiles of the relative ability of APDs to bind to specific receptors

Nestler et al., Molecular Neuropharmacology, c2001, p. 405
Other Actions of Antipsychotic drugs

<table>
<thead>
<tr>
<th>Area</th>
<th>Receptor blockade</th>
<th>Effect of APD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomic effects</td>
<td>α-adrenergic, mACh, H1 histamine, serotonin Rs, esp. 5-HT1 and 5-HT2</td>
<td>Hypotension, ↓ ejaculation, dry mouth, sedation</td>
</tr>
<tr>
<td>Metabolic effects</td>
<td>Same as above & D2Rs</td>
<td>Diabetes, weight gain</td>
</tr>
<tr>
<td>Cardiovascular effects</td>
<td>Direct and indirect effects</td>
<td>Mild orthostatic hypotension, prolongation QT interval (rare)</td>
</tr>
</tbody>
</table>
First Generation Antipsychotic Drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sedation</th>
<th>Hypotension</th>
<th>Metabolic</th>
<th>Motor (EP) Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpromazine</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Haloperidol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++++</td>
</tr>
<tr>
<td>Haldol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second Generation Antipsychotic Drugs

<table>
<thead>
<tr>
<th>Compound</th>
<th>Sedation</th>
<th>Hypotension</th>
<th>Metabolic effects</th>
<th>Motor effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risperidone</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+/++ Dose dependent</td>
</tr>
<tr>
<td>Clozapine</td>
<td>+++</td>
<td>+++</td>
<td>++++</td>
<td>0</td>
</tr>
<tr>
<td>Olanzapine</td>
<td>++</td>
<td>++</td>
<td>++++</td>
<td>0/+</td>
</tr>
<tr>
<td>Quetiapine</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Aripiprazole</td>
<td>o/+</td>
<td>o/+</td>
<td>o/+</td>
<td>o/+</td>
</tr>
</tbody>
</table>
Extrapyramidal (motor) side effects

<table>
<thead>
<tr>
<th>Effect</th>
<th>Time of Risk</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute dystonia</td>
<td>1-5 days</td>
<td>Spasm of muscles, face, tongue, neck</td>
</tr>
<tr>
<td>Akathisia</td>
<td>5-60 days</td>
<td>Restlessness</td>
</tr>
<tr>
<td>Parkinsonism</td>
<td>5-30 days</td>
<td>Bradykinesia</td>
</tr>
<tr>
<td>Tardive dyskinesia</td>
<td>Months or years, seen when withdraw or lower dose of drug</td>
<td>Stereotyped or choreic movements of face, tongue, trunk</td>
</tr>
</tbody>
</table>
SGAs have separated dose response curves for efficacy and extrapyramidal symptoms

Casey, J. Clinical Psych., 58:Suppl. 10, 55, 1997
Factors that may play a role in reduced EPS of 2nd generation drugs

- **Receptor occupancy?**
 - ~50-60% of D2Rs need to be occupied to get therapeutic effect
 - ≥ 80% occupation gives EPS
 - Aripiprazole occupies ~85%

- **Receptor binding profile:** most SGAs have high affinity for a number of serotonin receptor subtypes
Tolerance and dependence to antipsychotic drugs

- Not addicting
- Relapse in psychosis if discontinued abruptly

- Tolerance develops to sedative effects
- No tolerance to prolactin secretion
- No tolerance to antipsychotic effect
Drug Interactions of Antipsychotic drugs

- CNS Depressants: will potentiate actions of other CNS depressants
- Blocks effects of l-dopa and dopaminergic agonists
- Most are metabolized by P450 system, will be affected by drugs that alter P450
DA-Glutamate model of schizophrenia

- ↑ limbic DAergic activity
- ↓ prefrontal ctx DAergic activity
- ↓ glutamatergic input into limbic region and DA cell bodies

NMDA Hypothesis of Schizophrenia

- Reducing glutamate worsens psychotic symptoms
- NMDA agonists improve symptoms in schizophrenia
N-methyl-D-aspartate receptor ligands

- Agonist: glutamate
- Co-agonist: glycine or D-serine
- Permeability: Ca\(^{2+}\) and Na\(^{+}\)
- Phencyclidine (PCP) and ketamine: noncompetitive antagonists

Meyer & Quenzer, Psychopharmacology, c2005, p. 168
Upcoming therapies for schizophrenia

<table>
<thead>
<tr>
<th>Therapy</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine, sarcosine, D-serine</td>
<td>Enhance NMDA activity, reduce negative symptoms, cognitive enhancement</td>
</tr>
<tr>
<td>Glutamate reuptake inhibitors</td>
<td>Increase synaptic glutamate</td>
</tr>
<tr>
<td>DA D1 receptor agonist</td>
<td>Cognitive enhancement</td>
</tr>
<tr>
<td>Nicotinic ACh receptor agonist</td>
<td>Cognitive enhancement</td>
</tr>
</tbody>
</table>