Intravenous Bolus Dose

Outline

• Different compartmental models for Pharmacokinetic analysis
• IV bolus administration
 – Volume of distribution
 – Drug concentration and drug amount changes over time
 – Elimination rate constant and half life
 – Fraction of drug remaining in the body
 – Total clearance
 – Better ways to calculate clearance and volume of distribution

Intravascular Administration

• Bolus injection
• IV infusion
 – More in practice
• Intra-arterial administration
 – Directly inject to target
 – Less used

1. Different Compartmental Models
1.1. One Compartmental Model

- Assume distribution is rapid

\[C = C(0) \cdot e^{-kt} \]

1.2. Two Compartmental Model

- Distribution faster than elimination
- Need two exponential terms

\[C = C_1 \cdot e^{-k_1t} + C_2 \cdot e^{-k_2t} \]
Disposition From Plasma

- Concentration (C) vs. time curve
 - Dose: IV 500 mg, theophylline
 - fast early exponential decline
 - From 29 to 18 mg/ml, takes 30 min
 - Slower exponential decline
 - From 19 to 8 mg/ml, takes 4 hrs

- Log concentration (Log C) vs. time curve
 - Rapid fall to 16 mg/ml, within 1 hr
 - Then slow linear decline

Distribution Phase

- Dose = 500 mg
- Within 5 min
 - C = 33mg/L
 - Vp = 3 L
 - Amount in plasma (A) = 3 x 33 = 99 mg
- Other 401 mg
 - Must be in other tissues----- distribution

Elimination Phase

- The time for plasma concentration (C) or amount of drug in the body (A) to fall by 50%
 - Theophylline, from 16 to 8 mg/ml, it takes 5 hrs
 - From 12 to 6 mg/ml, it takes 5 hrs
 - T_{1/2} is independent of amount of drug in the body

1.3. Three Compartmental Model

![Diagram of three compartmental model with input, slow distribution, fast distribution, peripheral compartment, central compartment, and elimination rate constant (k).]
Three Compartmental Model

- Central compartment
 - Assume elimination from central compartment
- Fast distribution compartment
- Slow distribution compartment
- Need three exponential terms to define C

1.4. Physiologically Based Pharmacokinetic Model (PBPK)

2. IV Bolus Administration

One Compartment Model as An Example
One Compartment Model

2.1. Volume of Distribution (V, V_d)
- One compartment model as an example
 - Hypothetical body distribution volume
 - Distribution equilibrium has to be reached before first data for V calculation
 - No drug has been eliminated yet at time 0
 - A: Dose of injection
 - Plasma concentration C(0) at time 0

\[
V = \frac{A}{C}
\]

Volume of Distribution
- One compartmental model
- \(V = \text{Dose} / C(0) \)
- Dose = \(V \cdot C(0) \)
- How to get \(C(0) \):
 \[
 \ln C = \ln C(0) - k t
 \]
 - \(k \) is slope of the decline
 - \(C(0) \) is the extrapolated value from this equation
 - Negative sign indicate decline

2.2. Amount of Drug in the Body
- \(A = V \cdot C(t) \),
 - at any given time \(t \)
 - \(V \) is volume of distribution (or other related volumes)
 - \(C \) is after distribution equilibrium
Example

- Theophyline Dose = 500 mg
- C(0) = 18 mg/L
- V = 500 / 18 = 28 L
- How much drug in the body when plasma C is 5 mg/L?
 - A = VC = 28 x 5 = 140 mg
- How much drug in the plasma when plasma C is 5 mg/L
 - A = VC/5 x 5 mg/L = 15 mg

2.3. Plasma Drug Concentration Changes with Time

\[\ln C = \ln C(0) - kt \]

\[C = C(0) \cdot e^{-kt} \]

Multiply each side by V

\[A = Dose \cdot e^{-kt} \]

These two equations can estimate drug concentration and amount of drug in the body at any given time.

2.4. Amount of Drug in the Body Changing with Time

\[A = Dose \cdot e^{-kt} \]

\[\frac{dA}{dt} = -k \cdot Dose \cdot e^{-kt} \]

\[\frac{dA}{dt} = -k \cdot A \]

\[LnA = LnA(0) - k \cdot t \]

- First order elimination process
- K: first order rate constant

First order vs. Zero Order Kinetics

\[\frac{dA}{dt} = -k \cdot A \]

\[\frac{dA}{dt} = -k \cdot A^0 \]

Divide both side by V

\[\frac{dC}{dt} = -k \cdot C \]

\[\frac{dC}{dt} = -k \cdot C^0 \]

First order

Zero order
2.5. Elimination Rate Constant

\[k = - \frac{dA}{dt} / A \]

- \(k \) = rate of elimination / amount in body

2.6. Half Life \((t_{1/2}) \)

- At one half life, \(C = \frac{1}{2} C(0) \)

\[C = C(0) \cdot e^{-kt} \quad 0.5 = e^{-kt_{1/2}} \]

\[e^{kt_{1/2}} = 2 \]

\[kt_{1/2} = \text{Ln}2 = 0.693 \]

\[t_{1/2} = \frac{0.693}{k} \]

Calculation of Half Life \((t_{1/2}) \)
Example-Theophyline IV (500mg)

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>(C_p) (mg/ml)</th>
<th>(\text{Ln} \ C_p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>16</td>
<td>2.77</td>
</tr>
<tr>
<td>3</td>
<td>13.9</td>
<td>2.63</td>
</tr>
<tr>
<td>4</td>
<td>12.2</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>10.6</td>
<td>2.36</td>
</tr>
<tr>
<td>6</td>
<td>9.2</td>
<td>2.22</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>2.08</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1.94</td>
</tr>
</tbody>
</table>

C ~ T, and Ln C ~ T

- Graphs showing concentration over time and log scale.
Calculation of Half Life (t_{1/2})

- Elimination rate constant $K = \text{slope of Ln } C\text{-}t$ curve
 - $K = 0.1386 \text{ hr}^{-1}$
 - $T_{1/2} = 0.693 / K = 0.693 / 0.1386 = 5 \text{ hrs}$

2.8. Fraction of Dose Remaining in the Body

- Fraction of dose remaining at any given time

 \[A = \text{Dose} \cdot e^{-kt} \]

 \[
 \text{Fraction of dose remaining} = \frac{A}{\text{Dose}} = e^{-kt}
 \]

- Define n is number of half-lives

 \[
 n = \frac{t}{t_{1/2}} \quad k = \frac{0.693}{t_{1/2}}
 \]

2.8. Fraction of Dose Remaining in the Body

- Then

 \[
 \text{Fraction of dose remaining} = e^{-kt} = e^{-0.693n}
 \]

 \[
 e^{-0.693} = \frac{1}{2}
 \]

 \[
 \text{Fraction of dose remaining} = \left(\frac{1}{2}\right)^n
 \]

<table>
<thead>
<tr>
<th>Number of half lives n</th>
<th>Fraction of dose remaining e^{kt}</th>
<th>Fraction of dose loss $1-e^{-kt}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>3</td>
<td>0.125</td>
<td>0.875</td>
</tr>
<tr>
<td>4</td>
<td>0.0625</td>
<td>0.9375</td>
</tr>
<tr>
<td>5</td>
<td>0.03</td>
<td>0.97</td>
</tr>
</tbody>
</table>
2.9. Total Clearance

- Rate of elimination = CL. C
 \[
 \frac{dA}{dt} = -k \cdot A = -k \cdot V \cdot C
 \]
- \(A = V \cdot C \)
- Clearance \(CL = k \cdot V \)

Relationship among CL, V, k, and \(t_{1/2} \)

\[
CL = k \cdot V
\]
\[
k = \frac{0.693}{t_{1/2}}
\]
\[
t_{1/2} = \frac{0.693 \cdot V}{CL}
\]
- Two independent parameters (V, CL) controls \(t_{1/2} \)

Examples

- Creatinine
 - MW 113
 - CL = 7.2 L/hr
 - V = 42 L (total body water)
 - \(T_{1/2} = ? \)
- Inulin
 - MW 5000
 - CL = 7.2 L/hr
 - V = 15 L
 - \(T_{1/2} = ? \)

2.10. Calculate CL using AUC and Dose

- Rate of elimination = CL. C
 \[
 \frac{dA}{dt} = CL \cdot C \quad dA = CL \cdot C \cdot dt
 \]
- Amount eliminated in interval \(dt \), \(dA = CL \cdot C \cdot dt \)
 - C. dt: small area under C-time curve within time interval \(dt \)
 - Amount of drug eliminated from time 0 to infinity = adding up or integrating amount eliminated in each interval = Dose
 - AUC: adding up or integrating small area in each time interval

\[
Dose = CL \cdot AUC \quad CL = \frac{Dose}{AUC}
\]
Advantage to Use AUC for Calculation of CL

\[\text{Dose} = CL \cdot AUC \]

- No need to know \(t_{1/2} \)
- No need to know \(V \)
- Independent of shape of C-t curve
- Appendix A

- Amount eliminated up to time \(t \),
 \[A_t = CL \cdot AUC(0, t) \]
- Fraction of drug eliminated up to time \(t \),
 \[F_t = \frac{AUC(0, t)}{AUC(0, \infty)} \]
- Fraction of drug remaining up to time \(t \),
 \[A_{\text{remaining}} = 1 - \frac{AUC(0, t)}{AUC(0, \infty)} \]

Example

- Theophylline
 - Dose 500 mg
 - At 3.6 hrs, AUC (0, 3.6) = 40% of total AUC
 - At 3.6 hrs, 40% dose has been eliminated (200 mg)
 - At 3.6 hrs, 300 mg dose remains in the body

2.11. Better Method to Calculate \(V \)

- Extrapolation
 - \(V = \frac{\text{Dose}}{C(0)} \)
 - It is not suitable when extensive elimination during distribution phase

- Using CL and \(K \)
 - No need \(C(0) \)
 - Can be used in both IV and infusion

\[V = \frac{CL}{K} = \frac{\text{Dose}}{AUC \cdot K} \]
Summary

• Different compartmental models
• IV bolus (one compartmental model)
 – Volume distribution calculation using Dose and C(0)
 – Concentration and amount of drug change with time
 – Elimination rate constant and half life
 – Fraction of dose remaining in the body
 – Clearance and relationship among CL, V, K
 – Calculate CL using AUC and dose
 – Better method to calculate V

Summary

• Pharmacokinetic parameter calculation after IV bolus (one compartmental model)
 – \(t_{1/2} = \frac{0.693}{k} \)
 – \(CL = \frac{Dose}{AUC} \)
 – \(V = \frac{CL}{K} = \frac{Dose}{AUC \cdot K} \)
 – Other method to calculate V
 – \(V = \frac{Dose}{C(0)} \)

Example

• A 45 year male hospitalized and has concurrently developed an infection in urine and blood (resistant to penicillin). Doctor has decided to use vancomycin.
• The patient was loaded with vancomycin (1 gram) IV on 9/14 at 12 noon. Drug levels in plasma are determined below.
 – Vancomycin 9/16: 08:00am: 22 ug/mL
 – Vancomycin 9/17: 08:00am: 20 ug/mL
• If pharmacokinetic of vancomycin follows one compartment model, and if the desired effective vancomycin concentration is 15 ug/mL (assume that the second dose has to be given when vancomycin concentration is below 15 ug/mL):
 – When should the vancomycin be re-dosed?
 – What is the volume of distribution and clearance of vancomycin? (MD may not be interested in these numbers, but you may need them for dose calculations)
 – What dose regimen (time and dose) do you recommend? (you may not be able to do the second question yet)