IV Infusion

Outline
- Infusion plasma C vs. T
- The plateau value
- Approaching plateau
- Time to reach plateau
- Post infusion
- Change infusion rate
- Bolus and infusion
- Calculate PK parameters from infusion data
 - During infusion
 - Post infusion
 - Post infusion before Css has been reached

Constant-Rate Regimens
- IV infusion
 - Maintain constant plasma or tissue concentration
 - Infusion pump or drip
 - Mainly in hospital setting
- Controlled release device achieve the same purpose
- Transdermal delivery
- Implants

IV Infusion

\[\text{R0} \]

\[\text{C, V} \]

\[\text{Elimination} \]

- \(\text{R0} = \text{amount} / \text{time} \)
1. Infusion Plasma C – T Relationship

2. The Plateau Value

2. The Plateau Value

1. Infusion Plasma Concentration C vs. T

- Time 0: amount of drug in the body is zero, no elimination
- Time 0-t: amount of drug in the body increase
- Plateau:
 - rate of infusion = rate of elimination
 - Plasma C reaches steady state (plateau)
 - Rate of change is zero

- Rate change in the body = rate of infusion – rate of elimination
 - Ro: constant rate of infusion
 - K.A: rate of elimination

\[
\frac{dA}{dt} = Ro - k \cdot A \\
V \cdot \frac{dC}{dt} = Ro - CL \cdot C
\]
2. The Plateau Value

- Amount of drug in the body at steady state is determined by
 - Infusion rate
 - Elimination constant
- Steady state plasma concentration is determined by
 - Infusion rate
 - Clearance
- All drug infused at the same rate and have the same CL reach the same plateau concentration
 - The amount of drugs in the body vary with volume of distribution.
- All drugs infused with same rate and having the same half life accumulate same amount of drugs at the plateau

2. The Plateau Value: Example

- Theophyline
 - CL = 4 L/h
 - Infusion rate = 60 mg/h
 - K = 0.14 hr⁻¹
 - V = 29 L
 - Desired Plasma Css = 15 mg/L
- How much drug in the body at steady state
 - Ass = Ro/k = 60 /0.14 = 428 mg
 - Ass = Css . V = 15 x 29 = 435 mg
- If you find plasma C (15 mg/L) is too high, you need to decrease the desired plasma C to 10 mg/L in another patient (assume the drug’s PK is the same). What infusion rate you need to adjust?

3. Approaching Plateau

\[\frac{dA}{dt} = R_0 - k \cdot A \]

Integrate both sides

\[A = \frac{R_0}{k} (1 - e^{-kt}) = A_{ss} (1 - e^{-kt}) \]

Divided both sides by V

\[C = C_{ss} (1 - e^{-kt}) \]

3. Approaching Plateau: Loading dose analogy
3. Approaching Plateau: Loading dose analogy

- To reach certain desired plasma level C_{ss}
 - Loading dose by IV bolus: $D = Ass = \frac{R_0}{k}$
- The plasma level C_{ss} can be maintained by infusion (R_0) thereafter.
- The amount of drug eliminated from IV bolus dose at any given time

$$A_{\text{remaining from bolus dose}} = A_{ss} \cdot e^{-kt}$$

4. Time to Reach Plateau

<table>
<thead>
<tr>
<th>Time (in half lives)</th>
<th>Percent of plateau (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>29</td>
</tr>
<tr>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>87.5</td>
</tr>
<tr>
<td>3.3</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>93.75</td>
</tr>
<tr>
<td>5</td>
<td>97</td>
</tr>
</tbody>
</table>

3. Approaching Plateau: Loading dose analogy

- The drug loss from IV bolus will be exactly matched from IV infusion to maintain the plateau (Ass)

$$A_{\text{inf}} = A_{ss} - A_{ss} \cdot e^{-kt}$$

Divide both side by V

$$C_{\text{inf}} = C_{ss} (1 - e^{-kt})$$
4. Time to Reach Plateau

- Half life is the only factor to control the time to reach plateau
 - The shorter of half life, the sooner is the plateau reached
- The time is independent of infusion rate and plateau concentration
 - Although infusion rate and the plateau concentration will be different

Example

- The recombinant tissue-type plasminogen activator (t-PA): a drug with a short t½ (5 min) would reach a plateau after a short infusion (~17.5 minutes)
- A drug with a long t½, like phenobarbital (t½ =100 hr) would not reach steady-state for a really long time (~15 days).
- This becomes important to clinicians when they try to attain therapeutic results over a long period of time and avoid toxicity

5. Infusion Rate and Infusion Time

- Infusion rate (dose) is based on CL and desired Css
 - Css is determined by infusion rate and clearance
- Infusion time is based on $T_{1/2}$
 - Time to reach Css is only determined by $T_{1/2}$

6. Post-Infusion

- Postinfusion after steady state
 - Amount of drug in the body Ass
 - Steady state concentration Css
 - The decline of A or C follow the IV bolus kinetics from Ass or Css
- Postinfusion before steady state
 - Amount of drug in the body A_{inf}
 - Steady state concentration C_{inf}
 - The decline of A or C follow the IV bolus kinetics from A_{inf} or C_{inf}
7. Changing Infusion Rate

- If first infusion reaches plateau (C_{ss1}), new infusion rate needs to be adjusted to reach C_{ss2}.
 - Since $C_{ss} = R_0 / CL$
 - To double C_{ss}, double R_0
 - To halve C_{ss}, halve R_0
 - The time to reach new C_{ss2} from C_{ss1} is solely depends on the $T_{1/2}$.

7. Changing Infusion Rate

- If first infusion has not reach plateau (C_{inf}), new infusion rate needs to be adjusted to reach new plateau (C_{ss2}).
 - The time to reach new C_{ss2} from C_{inf} is solely depends on the $T_{1/2}$.

7. Changing Infusion Rate: Example 1

- Theophylline
 - Original infusion rate = (C_{ss1} x CL) = 30 mg/min
 - C_{ss1} = 7.5 mg/L
 - New target conc C_{ss2} = 15 mg/L
 - New infusion rate = C_{ss2} x CL = 60 mg/min
 - Time to reach new plateau is dependent on $T_{1/2}$.
7. Changing Infusion Rate: Example 2

- **T-PA**
 - IV bolus 10 mg
 - C = 350 IU/ml
 - IV infusion rate = 1.6 mg/min for 60 min
 - C_{s1} = 550 IU/min
 - IV infusion rate drop to 0.3 mg/min
 - C_{s2} = ~103 UI/ml
 - Time to reach is dependent on T_{1/2} (but since there was a first infusion, the time to reach plateau may be longer than that of only one infusion)

8. Bolus and Infusion

- **Loading dose**
 - IV bolus
 - C_s can reach rapidly due to clinical demand
 - Dose = V . Css
 - Ass = R₀/K
 - When Dose = Ass, maintain Css at time 0
 - When Dose > Ass, C will gradually decrease to Css
 - When Dose < Ass, C will gradually increase toCss

- **Maintenance dose**
 - Infusion to maintain Css
 - Infusion dose
 - Infusion rate R₀ = Css . CL

8. Bolus and Infusion: Example

- **Drug X**
 - IV bolus, Initial C(0) = 500 ug/L
 - IV infusion, Css = 100 ug/L
 - Desired C = 110 ug/L
 - How long the desired C (110 ug/L) can be reached?
8. Bolus and Infusion: Example

\[C = C(0) \cdot e^{-kt} + C_{ss} \cdot (1 - e^{-kt}) \]

\[C = C(0) \cdot e^{-kt} + C_{ss} - C_{ss} \cdot e^{-kt} \]

\[(C_{ss} - C(0)) \cdot e^{-kt} = C_{ss} - C \]

\[e^{-kt} = \frac{C_{ss} - C}{C_{ss} - C(0)} \]

9. Calculate PK Parameters From IV Infusion Plasma Data (Example)

- Drug Y
- Infusion rate = 40 mg/hr
- Css = 9.5 mg/L
- Calculate
 - CL
 - V
 - T_{1/2}

8. Bolus and Infusion: Example

\[n = \frac{t}{t_{1/2}} \quad k = \frac{\ln 2}{t_{1/2}} \quad e^{-kt} = (\frac{1}{2})^n \]

\[e^{-kt} = \frac{C_{ss} - C}{C_{ss} - C(0)} = (\frac{1}{2})^n \]

- Css = 100 ug/L
- C= 110 ug/L
- C(0) = 500 ug/L
- n = 5.5 half lives

9.1. Plasma C vs. T During and After IV Infusion

<table>
<thead>
<tr>
<th>Time, hr</th>
<th>C, mg/L</th>
<th>C_{ss} - C</th>
<th>ln(C_{ss} - C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>During Infusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4.1</td>
<td>3.3</td>
<td>6.2</td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>4.1</td>
<td>7.6</td>
</tr>
<tr>
<td>4</td>
<td>7.6</td>
<td>1.9</td>
<td>8.7</td>
</tr>
<tr>
<td>6</td>
<td>8.7</td>
<td>0.8</td>
<td>9.3</td>
</tr>
<tr>
<td>8</td>
<td>8.7</td>
<td>0.8</td>
<td>9.3</td>
</tr>
<tr>
<td>10</td>
<td>9.6</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>9.5</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>Post Infusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>-1.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9.1. Plasma C vs. T During and After IV Infusion

![Plasma Drug Concentration Graph]

9.2. Calculate CL

- \(CL = R_0 / C_{ss} = (40 \, \text{mg/hr}) / (9.5 \, \text{mg/L}) = 4.2 \, \text{L/hr} \)
 - Best way to calculate CL

9.3. Calculate K (or T1/2) (Method 1: During Infusion)

\[
C_{\text{inf}} = C_{ss} \left(1 - e^{-kt}\right)
\]
\[
C_{ss} - C_{\text{inf}} = C_{ss} \cdot e^{-kt}
\]
\[
\ln(C_{ss} - C_{\text{inf}}) = \ln C_{ss} - kt
\]

- Plot \(\ln(C_{ss} - C_{\text{inf}}) \) vs. t
 - Slope = \(k \)
 - \(T_{1/2} = \frac{0.693}{k} = 1.7 \text{hr} \)
- \(V = CL / k = CL \cdot T_{1/2} / 0.693 = 10 \, \text{L} \)
9.4. Calculate K (or T1/2)

Method 2: based on postinfusion data afterCss has been reached

<table>
<thead>
<tr>
<th>Time, hr Post-infusion</th>
<th>C, mg/L</th>
<th>ln(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9.5</td>
<td>2.25</td>
</tr>
<tr>
<td>2</td>
<td>4.1</td>
<td>1.41</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>0.59</td>
</tr>
<tr>
<td>6</td>
<td>0.76</td>
<td>-0.27</td>
</tr>
<tr>
<td>8</td>
<td>0.33</td>
<td>-1.11</td>
</tr>
<tr>
<td>10</td>
<td>0.14</td>
<td>-1.97</td>
</tr>
</tbody>
</table>

$$C = C_{ss} \cdot e^{-kt}$$

- Identical to IV bolus
 - When dose = Ass
 - C(0) = Css = 9.5 mg/L
- Slope = K
- $T_{1/2} = 0.693/K$
- What is the concentration two hour post-infusion (after Css) (mg/L)

$$C = 9.5 \cdot e^{-2k}$$

9.5. Post Infusion Before Css Has Been Achieved: Example

- A drug is administered by constant-rate intravenous infusion at a rate of 40 mg/hr for 6 hrs. Plasma levels are collected during and post the infusion and listed below.
- Estimate $t_{1/2}$, Css, and drug concentration at 5 hr post-infusion.

\[C_1 = C_{ss} \left(1 - e^{-kt_1}\right) \]

\[C_2 = C_1 \cdot e^{-kt_2} \]
Plasma C vs. t during and post infusion before C curves has been reached

<table>
<thead>
<tr>
<th>Time, hr (t1)</th>
<th>Time, hr (t2)</th>
<th>C, mg/L</th>
<th>ln(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>During infusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3.3</td>
<td>1.17</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5.4</td>
<td>1.66</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6.7</td>
<td>1.87</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7.6</td>
<td>1.97</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>8.7</td>
<td>2.12</td>
</tr>
<tr>
<td>Post infusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>5.5</td>
<td>1.71</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3.5</td>
<td>1.26</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1.4</td>
<td>0.36</td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>0.58</td>
<td>-0.54</td>
</tr>
<tr>
<td>14</td>
<td>8</td>
<td>0.24</td>
<td>-1.44</td>
</tr>
</tbody>
</table>