Composite Hypar Structural System (U)

T.F. MORIARTY, J.A. KERSAVAGE, and P.V. BUELOW

UNIVERSITY OF TENNESSEE
310 PERKINS HALL
KNOXVILLE, TN 37996-2030

JUNE 1984

INTERIM REPORT
DECEMBER 1982 - SEPTEMBER 1983

DISTRIBUTION LIMITED TO U.S. GOVERNMENT AGENCIES ONLY: THIS REPORT DOCUMENTS TEST AND EVALUATION. DISTRIBUTION LIMITATION APPLIED JUNE 1984. OTHER REQUESTS FOR THIS DOCUMENT MUST BE REFERRED TO THE AIR FORCE ENGINEERING AND SERVICES CENTER (AFESC/RDCS), TYNDALL AIR FORCE BASE, FLORIDA 32403.

WARNING
INFORMATION SUBJECT TO EXPORT CONTROL LAWS
THIS DOCUMENT MAY CONTAIN INFORMATION SUBJECT TO THE INTERNATIONAL TRAFFIC IN ARMS REGULATION (ITAR) OR THE EXPORT ADMINISTRATION REGULATION (EAR) OF 1979 WHICH MAY NOT BE EXPORTED, RELEASED, OR DISCLOSED TO FOREIGN NATIONALS INSIDE OR OUTSIDE THE UNITED STATES WITHOUT FIRST OBTAINING AN EXPORT LICENSE. A VIOLATION OF THE ITAR OR EAR MAY BE SUBJECT TO A PENALTY OF UP TO 10 YEARS IMPRISONMENT AND A FINE OF $100,000 UNDER 22 U.S.C. 2778 OR SECTION 2410 OF THE EXPORT ADMINISTRATION ACT OF 1979. INCLUDE THIS NOTICE WITH ANY REPRODUCED PORTION OF THIS DOCUMENT.
NOTICE

Please do not request copies of this report from HQ AFESC/RD (Engineering and Services Laboratory).

Additional copies may be purchased from:

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314
Availability of this report is specified on reverse of front cover

A new underground shelter to resist explosions of 500 pounds (226.8 kg) of TNT is currently under development. This shelter uses prefabricated hyperbolic paraboloids with a coating of reinforced concrete and asphalt composite. The new design reduces the required structural wall thickness from 31.7 inches (0.805 meters) needed in the conventional concrete barrel vault design, or from 37.4 inches (0.950 meters) needed in the conventional concrete rectangular box design to resist localized effects of conventional weapons blast, to only 6 inches (0.152 meters). The HYPAR shelter also has the following design advantages: rapid deployment; ease and simplicity of construction; elimination of formwork; modular designed interconnected shelters; ability to shock isolate the interior ground slab; large foundation footprint for poor soil conditions; exceptional resistance to "floating" in high water table applications; excellent intergral waterproofing; elimination of internal destructive spalling; excellent sealing against chemical or biological agents even if the main structure is fractured; ability to function as an economical, permanent multiuse space; overall economic advantage.