
Proceedings of the IASS Annual Symposium 2016 
“Spatial Structures in the 21st Century” 
26–30 September, 2016, Tokyo, Japan 

K. Kawaguchi, M. Ohsaki, T. Takeuchi (eds.) 

 
Copyright © 2016 by Andre Chaszar & Peter von Buelow 
Published by the International Association for Shell and Spatial Structures (IASS) with permission. 

Multivariate Interactive Visualisation of Data for Multi-Objective 
Design Space Exploration 

Andre CHASZAR*b, Peter von BUELOWa 

*O-Design Research & Consulting 
ac@0-design.com 

 
a University of Michigan 

b Technical University of Delft 

Abstract 
This paper describes recent developments in an ongoing research effort to develop a method, ParaGen,  
combining parametric form generation with multi-performance optimization and exploration. Here we 
focus on how the system is augmented with data visualisation capabilities which enhance the 
understanding of relationships between design parameters and performance, and thus aid the 
exploration of design alternatives. These capabilities are applicable to a very wide variety of designs, 
including spatial structures, and we illustrate their use with an example of a long-span gridshell dome 
with central oculus, having variable parameters for defining the dome’s and framing’s basic 
geometries. We demonstrate how various kinds of data visualisations facilitate overviews and 
checking of the large amounts of data generated by the system, and we conclude that these 
visualisations improve the comprehension of important relationships within the data as well as guiding 
exploration of design alternatives. 

Keywords: data visualisation, design space exploration, gridshell, interactive visualisation, multi-criterion, 
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1. Introduction 
Multi-objective design situations arise frequently in work on shell and spatial structures -- as well as 
many other types -- due to these structures’ various, at times complementary but sometimes 
conflicting performance requirements. Recursive optimisation routines and other generative design 
processes aid multi-objective design by producing many variations with given design parameters, 
making many alternative designs available for comparison. However, the potentially very large 
number of design alternatives produced, and the even larger number of variations possible, both 
present formidable challenges to the designers’ comprehension. Whereas understanding the details of 
one or a few design options -- as in conventional design processes -- is tractable, expansion of the 
options’ number to dozens, hundreds or thousands (or even more, given sufficient computational 
resources) requires that significant support be available, if they are all or even mostly to be examined 
and understood. In conventional optimisation routines, this problem is circumvented to some degree 
by focusing only on the optimal solutions or a few of the top performing ones. Yet this is not entirely 
satisfactory, as: 1) the correctness of the analysis is difficult to check with so few samples; 2) much 
valuable knowledge about the behaviour of the design model is potentially lost; 3) the fixed objectives 
needed for such a closed optimisation process are not present in earlier design stages; and 4) designers 
may wish to interact with the process rather than just accept the final outcomes of a ‘black box’. 

The ParaGen system (or method) addresses these issues in various ways, primarily by:  
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a) storing all design data and supplemental files produced (including their input parameters, 
performance values, images and other files) for all solutions, and making them available for retrieval; 

b) allowing designers to select design alternatives to be further developed, including directly 
specifying input parameters if so desired; 

c) making it possible to change the objective (or “fitness”) function(s) during the process of design 
generation without restarting the process or losing progress; and 

d) providing data visualisation tools to help designers make sense of the results. 

In this paper we focus on the data visualisation capabilities, and aside from a brief summary of 
ParaGen’s main features, we refer readers to other publications for more details of other aspects. In the 
following sections we describe the features and operation of the data visualisation tools and illustrate 
their use with an example gridshell structure (Figure 1). We close with a discussion of the system’s 
current performance in terms of the points mentioned above, indicate directions for future work on 
further developing the system, and conclude that based on our experiences so far, as well as assisting 
with trouble-shooting and checking of design models’ consistency, the data visualisations do help with 
comprehension of relationships between design parameters and performance indicators. (Note that 
illustrative figures are reproduced here at small size due to limitations of space; please contact the 
authors for access to a website with higher resolution images.) 

 

Figure 1: perspective view of example gridshell roof with partially opaque cladding. 

2. System 
Development of the ParaGen system has been an ongoing effort at the University of Michigan for 
several years. An overall description of the method can be found in an IASS Journal article from 2012 
(von Buelow [22]) as well as several more recent updates at conferences on specific topics such as 
designer interaction (von Buelow [23]), multi-objective fitness functions using database queries (von 
Buelow [24]) and data visualisation techniques for design exploration (Chaszar [3], [4], Chaszar et 
al.[5]). 

ParaGen is termed a system or method because it actually combines several programs running on 
different machines with interactive control and visualization interface using a web site. Figure 2 shows 
the key components of the system. All of the solutions generated and analysed are maintained in a 
SQL database (5). The database contains both the parameters used to generate the solutions 
(parametric input values) as well as the performance values which result from one or more digital 
simulations. In addition any number of files or images can be linked to the solutions held in the 
database. Ultimately the database holds this solution data in a form which can be accessed in a variety 
of ways both for selection in breeding more solutions as well as for post-processing analysis and 
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exploration. The server which holds the database also runs a genetic algorithm (Grierson [7], Miles 
[13]) to select and breed (1 and 2) new solutions based on parent solutions taken from the database. 
The new child solutions are downloaded to client PCs (running in a parallel network) in the form of 
parametric variables. These variables are then processed and the results analysed by appropriate 
parametric and simulation software (3 and 4). In the example used for this paper, a Grasshopper script 
was used for the parametric processing and STAAD.Pro provided the structural simulation with a 
finite element analysis. Finally the performance results of the simulation(s) are uploaded to the 
database on the server. A web site provides access to the database, and is used to display and explore 
the solutions in a variety of ways. 

 
Figure 2: The five steps in the ParaGen cycle. 1. Selection of parents, 2. GA breeding through crossover, 3. 
Generation of the child solution, 4. Evaluation of the solution, 5. Saving all data in a relational database. 

3. Data visualisations 
Years of research and practice in the area of data visualisation have resulted in a great variety of 
visualisation methods (Keim et al. [10], Mourshed et al. [15]; Unwin et al. [19]), a comprehensive 
review of which is beyond the scope of this article. Instead, we focus on three particular types of 
visualisations implemented (via D3, Bostock) in the ParaGen system: 1) design images with captioned 
data; 2) scatterplots (Elmqvist et al. [6]; Mayorga and Gleicher [12]); and 3) ‘parallel coordinates’ (or 
‘parallel axes’) plots (Alsakran et al. [1]; Inselberg, [9]). The aim of each of these is to promote 
comprehension of the data associated with the various design alternatives generated by providing 
graphical information supplementary to the alphanumeric tabulation of data which is typically 
predominant. The graphical information enables comparison of alternatives’ data by visual means 
more powerful than the viewing of just words and numbers. In the case of design images, the forms of 
the designs as well as supplemental colouring can quickly convey key similarities and differences. 
Likewise, plotting of data points and supplemental colouring can summarise similarities and 
differences for even more alternatives in less space than a ‘gallery’ of design images, although with 
loss of richness in terms of the number of data dimensions presented in a given scatterplot. Parallel 
coordinate plots, on the other hand, preserve more (almost all) dimensions of the data. The potentials 
of such techniques are being exploited in other disciplines (Arentze [2]; Monks et al. [14]; Woodruff 
et al. [21]) but apparently only rarely in architectural design and engineering. 

4. Example model 
We demonstrate the application of these visualisation methods through an example exploring design 
alternatives for a long-span roof with an elliptical base and central oculus. While the base plan of the 
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roof is fixed, design variations can occur in: the oculus’ size; the oculus’ height; the roof’s sectional 
profile; and the subdivision of the roof surface into framing elements constituting a gridshell. (See 
Figures 1 and 3.) Each of these design characteristics is alterable by changing the values of variable 
parameters in a parametric-associative model describing the roof’s geometry. Each variable parameter 
is initially defined over a range of minimum and maximum values. While some of these could be 
continuously variable, for purposes of the example they also have defined step sizes. (This is in any 
case appropriate for initial design explorations, in contrast with later optimisations where finer 
gradations of parameter values may be needed.) See Table 1 for parameters, ranges and step sizes. 

 

 
Figure 3: plans (top) and sections (bottom) of roof framing with variation of roof profile parameter from 

minimum (left) to maximum (right) values. 
Table 1: Gridshell model variable parameters for generating alternative roof designs 

parameter range (min - max) step remarks 

oculus size 5 - 20 0.5 radius (nominal) 

oculus height 5 - 20 0.25 (nominal) 

profile curve 0 - 15 0.5 offset from line: base to oculus edge 

radial divisions 5 - 15 1 concentric rings 

circumferential divs. 16 - 50 1 radial spirals 

   NOTE: values are with fixed roof base nominal size of 55 m (minor radius) 

5. Test results 
Our testing of the ParaGen system’s generative and data visualisation capabilities on the example 
model presented above comprised general exploratory activities as well as more goal-directed ones. 
The initial phase of design space exploration consisted of 200 randomly generated designs (fitting 
within the parameter ranges above) to give an overall sense of the space’s characteristics, and also to 
provide material for further generation via recombination. Scatterplots of various performance criteria 
and input parameters allow visual confirmation of the ranges covered, as shown in Figure 4 below. 
Subsequent phases of design generation aimed to minimise or maximise relevant inputs and outputs in 
order to explore the extremes available within the given parameter ranges. (See Figure 5.) Again 
scatterplots enable a rapid overview and checking of the values produced. Visible jumps in the plots 
occur each time the fitness function is altered. This shows the immediate and effective shift in the 
areas being explored. 
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Figure 4: scatterplots showing distributions of parameters for initial population of 200 random designs 

 
Figure 5: distributions of performance criteria for initial random designs and later single-objective optimisations; 
criteria shown are (top, left to right): roof height, number of members, longest member, total member length, and 

(bottom, left to right): covered area, total weight, maximum deflection, modal frequency. 
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Figure 6: (left) scatterplots filtered and highlighted with user-defined criteria via menus and text fields;  

(right) clicking the dots shows further design performance data with an image of that solution.  

The last phases of design generation aimed to find balanced solutions by using multi-objective fitness 
functions as follows: 

1) 600 or fewer structural members; 0.6 Hz maximum modal frequency; 90 t maximum weight; and 
minimise deflection; 

2) number of structural members 600 or less; deflection less than 100 cm; and minimise weight.  

These two multi-objective search examples are essentially described as SQL queries that define a 
limited set of solutions which form the breeding population. In this way further child solutions are 
found by the GA that match these multi-objective criteria. Design solutions meeting these criteria are 
shown in scatterplots via user-defined filters and highlighting, as shown above (Figure 6). Interactive 
selection allows on-demand examination of more details concerning particular designs of interest by 
simply clicking the dots on the plots. Note that some good (non-dominated) intermediate (non-
extreme) design solutions are also found within the initial randomly generated set, of course, as well 
as among others resulting as by-products of the shifts in objective functions. 

                                  
Figure 7: scatterplots showing inverse nonlinear relationship of modal frequency to maximum deflection. 
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The scatterplots also allow checking of model behaviour, where we find for example an interesting 
inverse (and nonlinear) relationship between maximum deflection and modal frequency within both 
the reduced, multi-objective set as well as within the entire set of design solutions (Fig. 7). In this  

 

 
Figure 8: parallel coordinates plot showing relationships of all input and output values, within entire set of 

designs generated (top) and within reduced set limited by multi-objective criteria (bottom). 

example the modal frequency is based on self-weight, while the maximum deflections are coming 
from asymmetric loadings of either wind or snow. The member sizes (giving the self-weight) are 
based on the highest stress condition produced by the worst case load scenario for that member. 
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More detailed analysis of the generated designs is facilitated by parallel axis plotting, which 
simultaneously shows all parameter values for all generated solutions -- or user-selected subsets of 
those (Fig. 8). This allows examination of relationships among multiple parameters, and highlights the 
extent to which particular parameters depend on others, or on combinations of others. For the multi-
objective criteria stipulated above, parallel plotting gives some sense of the design parameters most 
influential in affecting the particular balance of performance goals. Automatic scaling of the various 
axes displays the range of minimum to maximum values for each input and each output parameter. 
Within these ranges, the extent of concentration or dispersal of values is visible. Interactive 
highlighting via selection fences facilitates examination of how increases or decreases in particular 
values relate directly, inversely or otherwise to changes in other parameters. This dynamic selection 
mode also shows how expansion or shifting of parameter ranges may give access to other designs with 
even better performance values. For example, allowing an increase in the number of members from 
600 to ~700-750 gives access to designs having both low deflections and low modal frequencies, 
albeit at some cost in weight (see Figure 9). 

 
Figure 9: Parallel axis plot showing possible improvements of modal frequency and maximum deflection with 

increase in range of acceptable number of members, but still within given weight objective. 

By shifting as desired between model views, scatterplots and parallel plots, users of the system can 
thoroughly explore the pool of designs already generated, derive understanding of the relationships 
governing behaviour of the design model, and guide further generation of designs to explore design 
space areas of interest, or even transform the design space by changing parameter ranges or changing 
the parametric model itself. 

6. Discussion 
As mentioned in the introduction, the methods described above are applicable to a wide range of 
design problems including the evaluation of shells, gridshells and space frame structures for multi-
criterion (multi-objective) performance. Such analyses may also include various non-structural 
performance considerations (Turrin et al. [17], [18]) -- e.g. lighting, ventilation, acoustics, etc. -- 
which often need to be balanced with structural aspects of the design, resulting in ‘sub-optimal’ 
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solutions that nevertheless can offer better overall performance or at least point to better ones (Sosa & 
Gero [16]). 

While other approaches to such multi-objective design situations are more common in practice -- such 
as intuition- and judgement-led ones focusing on one design or a few alternatives, case-based 
reasoning, or ‘satisficing’ -- due to constraints of design schedules, budgets and skills, the approach 
we have described facilitates generating and evaluating large numbers of alternative structures (or 
designs) with variations of parametric model parameter values affecting various scales (e.g. overall 
form, subdivision, specific design features, etc.) (Hatchuel et al. [8]; Woodbury & Burrow [20]) This 
can enable broader and more in-depth consideration of alternatives even within tight time constraints. 
Confidence in the results is promoted by interactivity both in supporting users’ guidance of the design 
generation process -- e.g. by specifying changeable objectives (Maher & Poon [11]) and selecting 
designs of interest for further development -- and in supporting interactive assessment of performance 
(output) indicators’ sensitivity to various design (input) parameters. This in turn enables checking of 
model behaviour against expectations for validation, and helps comprehension of which parameters to 
focus upon and which to de-prioritise (e.g. by choosing fixed values for them or limiting them to few 
variations) as well as where altering their ranges could be appropriate. The result is a design process 
promoting greater potential for innovation as well as quality of designs within reasonable timeframes. 

Further improvement of this approach can be envisioned on some points including: a) a need for 
systematic exploration of design space as well as stochastic generation, to better build confidence in 
model behaviour; b) inclusion of statistical analyses to support examination of parameter 
interrelationships; and c) extension of multivariate interactive visualisation capabilities to enable more 
effective identification of relevant patterns in the design data, such as automated and interactive 
methods for dealing with overplotting in areas of high data density. 

7. Summary / Conclusion 
We have described how the ParaGen system for generative design is augmented with data 
visualisation capabilities which aim to support designers in understanding the relationships between 
design parameters and performance indicators, especially for complex, multi-objective design 
situations. We have illustrated the system’s operation and data visualisations with an example model 
of a gridshell roof having design parameters controlling the overall roof form and its subdivision into 
individual framing elements. By providing multivariate interactive visualisation tools, the system 
enables interactive exploration of Pareto-optimal as well as sub-optimal design alternatives, which 
makes explicit to the designer trends and other relevant information about parameters and 
performance. We have shown how this helps comprehension of parameters having greater and lesser 
effects on performance, as well as aiding trouble-shooting and model consistency checking. On this 
basis we hope to further develop the capabilities of ParaGen and also see interactive data visualisation 
become a more common complement to optimisation and generative design tools in general. 
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