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Abstract 
Architecture problems are by their very nature multivariable. Evolutionary algorithms have been 
shown to be an effective way to explore solutions to multivariable problems. But what is the most 
effective way to search for high performing solutions using evolutionary algorithms? In population 
based search methods, the selection of parents has a direct effect on the children produced. ParaGen is 
a design exploration method developed at the University of Michigan which makes use of 
Evolutionary Multiobjective Optimization (EMO) in selecting parents in a multivariable search space. 
This paper compares two selection methods used by ParaGen: 1. multiobjective selection using SQL 
queries and 2. selection through a Pareto set. How each of these methods works as well as a 
comparison of the resulting children is shown. Coordinate plots are used to depict the relative location 
of selected individuals in the solution space. Image sets are also displayed, which allow for further 
qualitative selection of solutions based on appearance. Using ParaGen it is demonstrated how final 
selection refinement can be made to include both quantitative and qualitative architectural criteria. 

Keywords: optimization, conceptual design, generative design, multiobjective optimization, concrete shells, genetic 
algorithms, performance optimization 

1. Introduction 
ParaGen, under development at the University of Michigan Hydra Lab, is an evolutionary based 
exploration method intended for early design phases of architectural problems. The method has been 
described in more detail in preceding papers [4] [5], and can be used for a wide range of applications. 
The method is cyclic and is configured with a single server and any number of parallel client machines 
connected through a standard web browser interface. The server maintains a SQL database of all 
solutions generated, and delivers new child solutions to the local client computers. Each child solution 
is processed on a client machine to find the geometry using parametric software (such as Grasshopper 
for Rhino, Generative Components by Bentley Systems or Dynamo by Autodesk, etc.). With the 
geometry established, any number of simulations can be run on the child solution to discover desired 
performance data. ParaGen links together any commercial or public domain simulation software to 
perform the performance analysis. Both the geometry along with performance data is subsequently 
uploaded back to the server where everything is stored in the SQL database. Because images and files 
of all sorts can be attached and uploaded, the server is able to deliver graphic as well as performance 
data to describe a solution. Figure 1. shows the ParaGen cycle between web server and local clients. 
Designers are then able to access the stored data in a variety of ways and explore the best solutions to 
the problem. 

ParaGen makes use of a Non-destructive Dynamic Population GA (NDDP-GA) [4] to explore the 
multivariable design space comprised of the parametrically defined geometries. The geometries are 
analyzed for a set of multiobjective performance criteria which include in this example structural 
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performance, cost, weight and daylight criteria. The values for the parametric variables which define 
the generated geometries define the children which are produced in the evolutionary process. In this 
study, two different methods for the selection of the parents of these children are presented to show 
the effects that selection has on the overall search process.  

 

Figure 1: The cycle used in the ParaGen method 

ParaGen makes use of a Non-Destructive Dynamic Population Genetic Algorithm (NDDP GA) to 
build a database of solutions. This approach is functionally a bit different from a traditional GA. 
Because all solutions are stored in the database, the NDDP GA can pull a population of parents out of 
that database of all previous solutions dynamically as each child is produced. So unlike traditional 
GAs which select parents from an ever evolving population of a set size, ParaGen actually selects the 
population first from the database of all previous solutions and then selects the parents from that 
selected population. The use of the SQL database has several advantages over traditional GAs: 

 Prevention of duplicate solutions 
 Enables multiobjective search 
 Makes possible dynamic populations 
 Allows changeable search direction 
 Allows interactive search 
 Stores Pareto trade-off sets with levels 
 Suitable for parallel computation 
 Graph data relationships 

A description of each of these points is given in another recent paper [5]. This study looks in more 
detail at aspects related to selection. But of course all of the above aspects are interrelated. Selection 
for example is what enables “multiobjective search”, and the “dynamic populations” are what get 
selected. 



Proceedings of the IASS Annual Symposium 2017 
Interfaces: architecture.engineering.science 

 

 

 3 

2. Genetic Selection 
How the selection of parents is made is key to how a GA is able to find a particular solution or range 
of solutions. If selection were merely random, there would be some degree of exploration, but the 
generation of new solutions would not be directed toward any particular objectives. In ParaGen, since 
all solutions are saved, given sufficient random solutions, better solutions could of course be searched 
and selected with the post processing tools (by simply applying SQL queries to the solution database), 
but to generate solutions which have higher performance, parents need to be strategically selected and 
bred. 

Selection in a traditional GA generally follows one of several methods such as: “roulette wheel”, 
sigma scaling, elitism, Boltzmann selection, rank selection, tournament, steady-state, etc. [3] Each of 
these methods attempts to varying degrees to converge on better solutions while maintaining a broad 
sampling of the solution space to prevent getting stuck on local maxima. An NDDP GA could use any 
of these methods to select parents from the population, although simple random selection of parents 
generally works fine since the breeding population itself is what has already been selected. Only one 
set of two parents is selected from a given selected population. 

2.1. NDDP GA population selection 

More critical for the NDDP GA is the selection of the parent population, rather than the selection of 
the breeding parents out of that population. The NDDP GA selects the breeding population from the 
entire database of all solutions found to that point. How this breeding population is selected is the 
factor that actually guides the search through the solution space. The selection is elitist in that it 
always chooses the solutions which best match the SQL query. The search maintains diversity by 
choosing the individual parents randomly, and by increasing the size of the parent population (set with 
a SQL “limit” parameter). 

This study compares two population selection techniques: through SQL queries and through Pareto 
sets. Actually the two can also be combined which is perhaps more effective. A Pareto set can be 
constrained or limited through a SQL query. The combination is generally more effective because the 
extreme ends of the Pareto set are less of a compromise and more of a single objective optimization.  

 

Figure 2: Example of initial random generations – “bird’s eye view” 

2.2. Initializing the database of solutions 

In order to select a population from the database of solutions, the database needs to have some initial 
solutions added to it. This can be accomplished either through random generation or systematic 
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selection. ParaGen gives the options either to randomly generate a child solution (within the 
constraints set for the problem) or mutate a single parent to form a child or breed two parents to form a 
child. It is also possible for the user to simply supply or modify a child manually. Typically, and most 
simply, ParaGen is set to generate an initial field of random solutions. Each of these child solutions 
will be run through the required simulations to calculate the desired performance data. The example 
used for this study is the exploration of shape and perforation options of a curved concrete shell. A 
complete and more detailed description of this problem is presented in Emami, et al. [2]. The problem 
has eight variables which define the geometry. Values for these variables are read into a 
Rhino/Grasshopper script which both generates the geometry and performance values calculated with 
Karamba (structural parameters) and DIVA (daylighting) and Archsim (energy parameters). The 
database table contains a total of 54 rows which include the initial geometry variables, the structural 
and daylighting performance values, as well as other calculated values relating to cost, construction 
and design. Figure 2 shows some initial randomly generated solutions. 

In this trial, about 400 solutions were randomly generated and about 100 were systematically selected 
by the user. Figure 3. contains two plots showing a comparison of the random solutions versus the 
systematically selected solutions. 

 

Figure 3: A comparison of initial solutions: randomly generated (left) and systematically created (right) 

3. Search by SQL query 
Having first generated about 500 solutions both randomly and systematically, the next step is to set the 
selection criteria to guide further exploration toward more desired solutions. In this case the first 
selection criteria were chosen through a SQL query. Queries can range from simple single objective 
searches to more complex, multiobjective exploration with limiting criteria. The query used here 
combines lighting criteria with some structural parameters. A more detailed explanation can be found 
in the paper by Emami, et al. [2]. The query found solutions that meet these criteria: 

1. Spatial Daylight Autonomy of 300 lux for at least 50% of the year 

2. The maximum amount for Daylight Autonomy is taken as 3000 lux (considered oversupply – 
glare). It is limited to less than 5% of the year 
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3. Daylight Glare Probability < 4% 

4. The third quartile of von Mises stresses across the shell which are less than 30 MP 

5. From the set of solutions defined by the first four criteria, the query set is limited to 20 by 
least weight 

This query produced a population of 20 solutions from which two parents were chosen at random to 
breed one child. Figure 4 shows the solutions bred with this query. As expected the solutions produced 
a cluster in response to the parameters of the query. 

 

Figure 4: Plot showing solutions found by the SQL query (red dots). 

4. Search by Pareto sets 
Pareto optimization and the calculation of Pareto sets are a well know approach to multiobjective 
search especially when dealing with conflicting criteria [1]. A Pareto (level 1) set is composed of 
solutions which are non-dominated for the given criteria by any other solutions in the population. 
These are commonly known as best tradeoff solutions. A level 2 Pareto set is found in the same way, 
but with the level 1 set removed. In this way the width of the solution set can be increased to include 
more solutions. Figure 5 compares a level 1 solution set with a set which includes levels 1 to 3. 
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Figure 5: A plot showing in red the Pareto level 1 set (left) and a set including levels 1 to 3 (right) 

In order to use the Pareto sets in the breeding populations, the sets need to be first defined and then 
added to the SQL database. Any number of sets can be defined. A separate program on the server 
recalculates the Pareto levels for each set each time a new solution is added to the database. The 
Pareto level of each solution is then recorded along with all the other parameters for that solution in 
the database. In that way, the Pareto level can be called up and used in the same way any other 
parameter is used – either in post-processing graphics or in forming a breeding population. This can be 
useful in that a Pareto set can be plotted in relation to other parameters as well. Figure 6 shows the 
Pareto set of solutions for weight versus deflection plotted against skylight area of the shell. The red 
cluster of dots shows the location of the level 1 Pareto solutions in relation to skylight area. 

 

Figure 6: A plot showing the level 1 Pareto set (red dots) for weight vs. deflection in relation to skylight area. 
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Another advantage of ParaGen is that by clicking on the dots of any graph, the image of the solution is 
displayed. Figure 7 shows how this can be used to explore the range of a Pareto set. 

 

Figure 7: A Pareto plot of minimized weight and deflection, with three solutions selected for viewing 

A Pareto set can also be displayed directly in the solution window using any of the image sets 
collected during the run. Figure 8 shows the same level 1 Pareto set for weight versus deflection. With 
such image arrays, one can quickly see the relationship between the chosen parameters and the 
corresponding forms – in this case the open grid shell topology with saddle shape. 

 

Figure 8: The level 1 Pareto set for least weight versus least deflection. Images show deflection levels. 

When used for selecting a population, limiting criteria can be defined for the Pareto set in the same 
way as they are for other SQL queries. Since the Pareto level number is another column in the 
database table, it can be combined with any of the other parameters stored in the database. In this way 
the selection can be limited to the more useful range of the Pareto set which usually means the 
extreme ends of the set are removed. For example when defining the selection for the above Pareto set 
of weight versus least deflection, the deflection range was limited to less than 60 cm (about 1/100 of 



Proceedings of the IASS Annual Symposium 2017 
Interfaces: architecture.engineering.science 

 

 

 8 

the 60 m span). In this way, the Pareto set level can be used as any other criteria in forming the 
selection criteria made by a SQL query. 

 

Figure 9: A plot showing a 3-dimensional Pareto set of minimized weight, deflection and von Mises stresses. 
Level 1 is shown in red with levels 2 and 3 in orange. 

It is also possible to define multidimensional Pareto sets. These are less often seen in the literature 
perhaps because they are harder to illustrate, but also because as more dimensions are compared it 
becomes harder to decipher the interplay of the individual parameters. As an example, three 
parameters were chosen: weight vs. deflection vs. von Mises stress. Figure 9 shows a 3D plot of this 
space with the level 1 Pareto set indicated in red. Higher dimensional sets are also possible. 

 

Figure 10. (left) Solutions before Pareto breeding        (right) Result of Pareto breeding - red dots show new 
solutions  
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Finally the calculated Pareto set itself can be taken as the breeding population. In doing this the 
number of Pareto levels may also be specified in order to give a broader band of breeding solutions. 
The result of this breeding is again more solutions similar to the Pareto set. Because the full Pareto set 
ranges from each extreme of performance tradeoffs, the solutions along the full length of the frontier 
are not necessarily similar. In NSGA-II the solution is to breed nearest neighbors along the frontier. In 
the ParaGen implementation individuals along the frontier are chosen and mutated rather than bred. 
This works well even with a sparsely populated frontier. Figure 10 compares a set of solutions before 
and after the Pareto optimization. 100 cycles were run using a Pareto level 1 and 2 solutions which 
minimized both weight and von Mises stresses. The breeding population was further limited to 
solutions with deflection less than 50 cm. Before the Pareto breeding, there were 38 level 1 Pareto 
front solutions in this range. Out of the 100 new solutions, 54 ranked as level 1 when compared to the 
original Pareto set. Of course as new solutions are added they can displace some of the former level 1 
solutions, so that in the end the size of the level 1 Pareto frontier increased from 54 to 79. It can be 
seen in figure 10 that most of the new solutions cluster around the Pareto frontier. Thus the breeding is 
successful in finding more Pareto optimal solutions. 

5. Conclusions 
This study has focused on the selection method employed by the NDDP GA used in ParaGen. In an 
NDDP GA the defining selection is of the breeding population rather than individual parents. The 
selection is made using SQL queries, but those may include Pareto sets. Pareto sets may be computed 
at any time during the exploration (from the outset or defined later), but need to be recalculated each 
time new solutions are added to the database. Once the Pareto levels for a group of parameters are 
entered in the database, they can be used as any other parameters in the exploration of the solution 
space. More solutions can be added to the Pareto set simply by using the Pareto set itself as the 
selected population for breeding. This is show to be a very efficient way to increase the number of 
Pareto optimal solutions. When building the Pareto set in this way, a focus can be made of certain 
areas of the set by using additional limiting criteria in the search. The Pareto set definitions combined 
with other performance parameters give a very effective means of exploring and comparing solutions 
to complex design problems found in architecture. 
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