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Abstract—This report presents a solution to the Simul-
taneous Localization and Mapping (SLAM) problem for a
quadrotor in an office environment. We have implemented
a robust, efficient Correlative Scan-Matcher[2] that is able
to extract rigid body constraints between both successive
and non-successive poses. These pose constraints are used
to generate a map via an Exactly Sparse Delayed-State
Filter[1]. We present our approach and follow with ex-
perimental results for simulated data of a robot driving
through the streets of Manhattan and then for a real data
set generated by a ground robot with a laser scanner on
the A-level of Carnegie Melon University′s Newell-Simon
Hall[5].

I. INTRODUCTION

Michigan Autonomous Aerial Vehicles (MAAV) was
founded in the fall of 2009 with intent to compete in
the International Aerial Robotics Competition (IARC).
The IARC is an annual event hosted by the Association
for Unmanned Vehicle Systems International (AUVSI).
Teams from around the world have come to display
cutting edge UAV technology at the competition for
the past 20 years. The current mission (Mission 6)
requires teams to infiltrate an unknown building that
is part of a Nari Military Compound. Competitors are
required to design a UAV capable of autonomous takeoff
and undetected entry into the facility. Once inside the
vehicle must follow Arabic signs leading it to the Chief
of Security′s office where it will locate a small USB
thumb drive that must be extracted from the building and
replaced with a decoy. More information can be found
at http://iarc.angel-strike.com/.

The competition environment is GPS-denied and thus
requires teams to localize and map the environment in
real time. The environment is also sparse of unique

Fig. 1. Image of the quadrotor

features, thus limiting the methods by which we can
close loops in the map. This report presents our solution
to the problem statement described above.
The two main parts of our system are:
• Simultaneous Localization and Mapping
• Scan-Matching
The quadrotor sensor payload includes a Hokuyo laser

scanner and an inertial measurement unit. We have
implemented a Correlative Scan-Matcher [2] that extracts
rigid body constraints and their associated covariances
from lidar returns. An Exactly Sparse Delayed-State
Filter [1] makes use of these constraints to track the
entire robot trajectory and the uncertainty associated with
each pose in the map. Our system architecture is shown
in Fig.2.

II. REVIEW

A. Pose GraphSLAM

Simultaneous localization and mapping (SLAM) is a
method to help robots explore, navigate, and map an

http://iarc.angel-strike.com/
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Fig. 2. Flowchart of the overall concept

unknown environment [6], [7]. It is well known that
traditional methods for SLAM based on the extended
Kalman filter (EKF) suffer computational complexity
problems when dealing with large scale environments,
as well as inconsistencies for non-linear SLAM prob-
lems. To incorporate non-linear measurements, current
research has been focused on smoothing approaches
using Graph SLAM techniques. The Exactly Sparse
Delayed-State Filter (ESDF) was used by Eustice et al[1]
to map the RMS titanic using pose constraints between
camera views. We use the same formulation as in [1] as
a starting point for our Graph SLAM implementation.

ESDF: The ESDF consists of four main parts; state
augmentation, measurement updates, motion prediction,
and state recovery.

State augmentation: At each time step, a new pose
is added to the Markov chain, or the most recent pose is
propagated in time via motion prediction. The posterior
distribution is given by:

p(xt, xt+1,M |zt, ut+1)

where xt represents the current robot state and M is
the map. The letter M is arbitrary as it may represent
landmarks, poses, or a combination of the two. Factoring
and applying markovity yields the new target distribu-
tion:

p(xt+1|xt, ut+1)p(xt,M |zt, ut)

The robot′s state is assumed to evolve according to
the model:

xt+1 = f(xt, ut+1) + wt

≈ f(µxt
, ut+1) + F (xt − µxt

) + wt

where F is the jacobian of the process model evaluated
around the mean and wt is zero-mean white process
noise. Therefore the state representation is augmented
as follows:

Covariance Form

µ′t+1 =

f(µxt
, ut+1)
µxt

µM



Σ′t+1 =

(FΣxtxt
F T +Q) FΣxtxt

FΣxt
M

Σxtxt
F T Σxtxt

Σxt
M

ΣMxt
F T ΣMxt

FΣMM


InformationForm

η′t+1 =

 Q−1(f(µxt
, ut+1)− Fµxt

)
ηxt
− F TQ−1(f(µxt

, ut+1)− Fµxt
)

ηM



Λ′t+1 =

 Q−1 −Q−1F 0
−F TQ−1 Λxtxt

+ F TQ−1F ΛxtM

0 ΛMxt
ΛMM


where Q is the covariance associated with the zero-

mean Gaussian white process noise. It is to be noted
that the lower left and upper right hand blocks of the
information matrix are exactly zero.

Measurement Update: In the information form,
measurement updates are constant time. A measurement
in the ESDF framework corresponds to a pose-constraint
between two poses xi and xj . The equations for mea-
surement updates in the information and covariance form
are shown below.

Covariance Form

K = Σ̄tH
T (HΣ̄tH

T +R)−1

µt = µ̄t +K(zt − h(µ̄t))

Σt = (I −KH)Σ̄t(I −KH)T +KRKT

Information Form

ηt = η̄t +HTR−1(zt − h(µ̄t) +Hµ̄t)

Λt = Λ̄t +HTR−1H

Here K is the Kalman gain, R is the zero-mean
Gaussian white observation noise, and H represents the
Jacobian of the observation model with respect to the
poses xi and xj .

H =
[
0 . . . ∂h

xi
. . . 0 . . . ∂h

∂xi
. . . 0

]
In general, HTR−1H is fully dense and therefore

modifies all elements in the information matrix. How-
ever, in the ESDF framework, the H matrix is sparse and
therefore measurement updates require only changing
the blocks of the information matrix associated with the
poses being observed.
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Motion prediction: The robot′s state is propagated
forward in time whenever a new pose is not being added
to the state representation. This involves marginalizing
out the previous state, xt. Marginalization in the informa-
tion form is generally computationally intense. However
in the ESDF framework, measurement prediction is
constant time because each pose only shares information
with the pose directly before and after.

η̄t+1 =

[
Q−1FΩ−1ηxt

+ ψ(f(µxt
, ut+1)− Fµxt

)
ηM − ΛMxt

Ω−1η?xt

]

Λ̄t+1 =

[
ψ Q−1FΩ−1ΛxtM

ΛxtMΩ−1F TQ−1 ΛMM − ΛMxt
Ω−1ΛxtM

]

η?xt
= ηxt

− F TQ−1(f(µxt
, ut+1)− Fµxt

)

Ω = Λxtxt
+ F TQ−1F

ψ = (Q+ FΛ−1xtxt
F T )−1

State recovery: State recovery can be done naively
by inverting the information matrix. This involves cubic
complexity. However as the information matrix is sparse,
state recovery may be performed by solving a linear
system of equations with quadratic complexity.

Λtµt = ηt

[1] pioneered a method to partially recover the robot
state by partitioning the map into a set of local and
benign states. Local states are in close proximity to the
robot, whereas the benign states are not. This partitioning
allows solving for the local portion of the map in
constant-time.

µ̂l = Λ−1ll (ηl − Λlbµ̂b)

B. Scan-Matcher

Iterative Closest Point (ICP) [8], [9] and Iterative
Closest Line (ICL) [10], [11], [12] are used commonly
for scan matching. In ICP, each point in the query scan
is associated with the reference scan according to a
distance metric (most commonly Euclidean distance). A
rigid-body transformation that best aligns the reference
and query points can then be computed. Heuristics such
as Hill-Climbing search methods are used to enhance
computation. It is shown in [2] that as the initial estimate
of the rigid-body transformation deteriorates, so does the
quality of the output for both ICP and Hill-Climbing. In
our case we are formulating the problem considering that

we do not have any prior odometry measurements as the
motion model of a quadrotor is commonly unreliable.
We have chosen to implement scan matching using a
Correlative Scan-Matcher to recover laser odometry.

Correlative Scan-Matcher: Correlative Scan Matching
[2] is a relatively new approach to the scan matching
problem that was developed by Professor Edwin Olson of
the University of Michigan′s Computer Science depart-
ment. It is a probabilistically motivated algorithm that
produces higher quality and more robust results. Unlike
ICP and Hill-Climbing techniques, Correlative Scan-
Matching is not vulnerable to converge at local minima.
The robustness is achieved at the cost of additional
computational time. The algorithm may be implemented
on a GPU to improve efficiency. It makes use of a
multi-resolution look-up table that greatly accelerate the
computations.The Correlation based Scan-Matching ap-
proach results in both a more robust maximum likelihood
estimate and a principled estimation of uncertainty.

The problem is formulated such that the robot is mov-
ing from xi−1 to xi , according to some motion u. The
observation z is dependent on the environment model m
and the robots position. Our goal is to find the posterior
distribution over the robots position, p(xi|xi−1, u,m, z).
By applying Bayes rule and removing irrelevant condi-
tionals, we get

p(xi|xi−1, u,m, z) ∝ p(z|xi,m)p(xi|xx−1, u) (1)

The first term, p(z|xi,m) is the observation model:
how likely is a particular observation, if the environ-
ment and the robots position are known? The second
term, p(xi|xi−1, u) is the motion model of the robot, as
obtained (for example) from control inputs or odometry.

Each individual lidar return zj is independent giving
Eq.2:

p(z|xi,m) =
∏
j

p(zj |xi,m) (2)

The computation of the probability p(z|xi,m) can be
accelerated by building a 2D lookup table. The 2D table
is a rasterized cost table containing log probabilities of
lidar observation at each (x,y) position of the world. Here
m is the previous scan that we are matching to. For large
loop closures m is the model or the reference scan. In
principle, we need to evaluate p(z|xi,m) over a three-
dimensional volume of points; the three dimensions
corresponding to the unknown parameters of the rigid
body transformation, T : ∆x,∆y, and ∆θ. This is a brute
force method but can be sped up using certain techniques
explained later.
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One of the biggest advantages of a Correlation based
Scan-Matcher is a principled evaluation of uncertainty
covariances. Once the value of the cost function has been
evaluated over a range of values of xi , a multivariate
Gaussian distribution can be fit to the data as per Eqn.3.

Let xi be jth the evaluation of xi :

K =
∑
j

x
(j)
i x

(j)T

i p(x
(j)
i |xi−1, u,m, z)

u =
∑
j

x
(j)
i p(x

(j)
i |xi−1, u,m, z)

s =
∑
j

p(x
(j)
i |xi−1, u,m, z)

∑
xi

=
1

s
K − 1

s2
uuT (3)

xi is a 3-vector in x y θ and j is search space over x
y θ.

III. IMPLEMENTATION

A. ESDF

Our ESDF algorithm receives a set of measurements
from a Scan-Matcher. These measurements are either a
local incremental or global loop closure pose constraint.
The local incremental pose constraint serves as our
motion model. For each such measurement, the state
representation is augmented using the Eqn.4, where ut+1

comes from laser odometry. For each global loop closure
constraint, the state representation is updated according
to the observation model described in Eqn.5. Pseudo-
code is shown in Fig.3 and a flowchart of our ESDF
implementation is shown in Fig.2.

Motion Model:

xt+1
∼= f(µxt

, ut+1) + F (xt − µxt
) + wt

µxt
=

xxt+1

yxt+1

θxt+1

 ut+1 =

δxδy
δθ


xxt+1

yxt+1

θxt+1

 =

δxδy
δθ

+

δxcosθxt
− δysinθxt

δxsinθxt
+ δycosθxt

δθ



F =

1 0 −δxsinθxt
− δycosθxt

0 1 δxcosθxt
+ δysinθxt

0 0 1

 (4)

Fig. 3. Pseudo-code for ESDF

Observation Model:

µxi
=

xxi

yxi

θxi

 , µxj
=

xxj

yxj

θxj



ẑ =

 (xxj
− xxi

)cosθyi + (yxj
− yxi

)sinθxi

−(xxj
− xxi

)sinθxi
+ (yxj

− yxi
)cosθxi

θxj
− θxi


H =

[
0 . . . H1 . . . 0 . . . H2 . . . 0

]
H1 =

 cosθxi
sinθxi

0
−sinθxi

cosθxi
0

0 0 1


H2 =

[
−cosθxi −sinθxi −(xxj − xxi)sinθxi + (yxj − yxi)cosθxi

sinθxi −cosθxi −(xxj − xxi)cosθxi − (yxj − yxi)sinθxi

0 0 −1

]
(5)

State Recovery: We recover state by solving a linear
system of equations using the Matlab backsolve. In the
future, we will be implementing SLAM using the iSAM
framework given its computational benefits.

B. Correlation Scan-Matcher

We have implemented a Correlative Scan-Matcher to
extract rigid body transformations between sequential re-
turns from the laser range finder to obtain laser odometry.
For computational efficiency a rasterized cost table of
size 256 x 256 pixels is created. Initially the raster table
was built representing 8m x 8m in the world and hence
each pixel represented 8/256m = 0.03125m, but later we
increased it to represent 16m so that the robot could see
the end of corridors.
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Fig. 4. Rasterized cost table for the model scan. Bright values
indicate large probabilities

Fig. 5. Current scan

Initially, we created two tables; one for the model
(previous) scan and one for the current scan. The table
representing the model scan consisted of log probabil-
ities of each (x,y) position in the world with radially
symmetric gaussian noise. In our first implementation,
we created raster tables for both the previous scan and
the current scan and then performed a matrix dot product
over the two 256x256 raster tables. This was highly
inefficient. The computation time for various search
space is shown in fig.8. The rasterized cost table of the
model (prior) scan is shown in fig.4, while the table for
the current scan being registered is shown in fig.5. Fig.6
is a projection of Fig.5 for a particular search value in
search space over ∆x,∆y, and ∆θ. In this approach
we subsampled the complete dataset and stored each
rigid body constraint returned by the Scan-Matcher. This
injected quantization error into the final map as can be
seen in fig.18.

Later we implemented the Scan-Matcher using four
nested loops. The inner most loop iterated over all the
query points. The psuedo code for the second approach is
shown in Fig.7. In this approach we processed each scan
and added a pose to our map only when a threshold was
crossed. The threshold was set to a Euclidian distance

Fig. 6. Transformed current scan over a search space

• ScanMatch(pointsA,pointsB)
– for theta: all candidate theta value

PointsT = Transform pointsA by theta
For all candidate x and y

Compute logProb for each point in
PointsT translated by x and y

Return T with maximum logProb

Fig. 7. Pseudo-code for the Scan-Matcher

of 80cms or angular difference of 15 deg between poses.
The value for the previous computation was used as a
prior for the next computation. This basically means
that if we processed two scans and got a rigid body
transformation in x y θ which did not cross the threshold,
we use this value as the center of our search space for
the next search. By increasing the threshold, quantiza-
tion noise decreases greatly as can be seen in Fig.19.
Thresholding also reduced the number of poses stored
in the final map. The time required to match scans by
running a fourth loop were orders of magnitude faster
than the previous method, shown in Fig.9. We originally

search space time taken
0.5m, 20 degrees 1.431s
1.0m, 20 degrees 6.232s
1.0m, 40 degrees 22.459s
2.0m, 40 degrees 40.367s

Fig. 8. Time taken to match scan using matrix dot product

search space time taken
0.5m, 20 degrees 0.06 seconds
1.0m, 20 degrees 0.26 seconds
1.0m, 40 degrees 0.55 seconds
2.0m, 40 degrees 1.61 seconds

Fig. 9. Time taken to match scan using 4 nested loops
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Fig. 10. Covariance estimate for less constrained environemnt

Fig. 11. Covariance estimate for highly constrained environemnt

avoided this method as we were under the impression
that four nested loops in Matlab would be slow. However
performing a huge matrix dot product and then summing
the elements of a matrix proved less efficient.

In [2], raster tables of multiple resolutions are built.
The only benefit of this approach is the computational
speed. Our approach consisted of a single resolution
raster table. We recovered uncertainty covariances using
Eqn.3. Fig.10 and Fig.11 show Correlation (3D) Cost
Function for the complete search space. The inten-
sity plot represents the probability distribution across a
search space. The figures contain 21 tiles each represent-
ing a search over θ while each pixel in a tile represents
search over x and y for a given θ.

IV. EXPERIMENTS

We ran our algorithms on two data sets -
Manhattan3500[3]
CMU Newell-Simon Hall, A Level[5]

Manhattan 3500 is a simulated data set of a robot
driving around the streets of Manhattan. It contains
3500 pose constraints and covariances associated with
each constraint. The CMU Newell-Simon Hall dataset

Fig. 12. Manhattan3500

Fig. 13. CMU Newell-Simon Hall, A Level

contains odometry from an IMU and range and bearing
returns for a 180 degree SICK laser.

Manhattan 3500: This dataset was used to verify
the performance of the ESDF before fusing it with the
correlative Scan-Matcher to complete our system. Fig.14
and Fig.15 below show the ESDF performance both with
and without loop closures.

We can observe the natural sparsity of the SLAM
information matrix in Fig.16. Only 0.182 percent of the
elements of the information matrix are non-zero.

Fig. 14. Manhattan open loop



7

Fig. 15. Manhattan close loop

Fig. 16. Information matrix topology

State recovery currently requires us to invert the
information matrix using MATLABs backslash operator.
While this method is efficient in terms of matrix inver-
sion, the algorithm is of quadratic complexity. We pay
for this computationally as can be seen below in Fig.17.
In order to make our system online, we will need to
greatly increase the speed at which we recover the state
of the robot.

CMU Newell-Simon Hall: This dataset was first
used to verify the performance of the correlative Scan-
Matcher in an open loop scenario. Once it was confirmed
that the Scan-Matcher was returning reliable rigid body

Fig. 17. Computational time required to recover state

Fig. 18. CMU map recovered using matrix dot product

Fig. 19. CMU map recovered using 4 nested loops

constraints, we used the rigid body constraints from
the Scan-Matcher in conjunction with the ESDF. Fig.19
below shows the map generated using only the pose
constraints from the correlative Scan-Matcher. Fig.18
is from an older version of the Scan-Matcher. The
improvement is apparent in Fig.19.

Fig.20 displays the closed loop performance of the
ESDF on the pose constraints generated by the Scan-
Matcher. The system runs open loop until the final
thirteen pose constraints, which are loop closing events.

Fig. 20. CMU map recovered after running ESDF on it
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Fig. 21. CMU dataset on iSAM - openloop

Fig. 22. CMU dataset on iSAM - closeloop

Comparison to ISAM: The laser odometry with and
without loop closure was run on the iSAM framework as
shown in Fig.21 and Fig.22. For our final implementation
we would like to use iSAM given its computational
benefits.

V. CONCLUSION

Michigan Autonomous Aerial Vehicles requires a
SLAM implementation for an autonomous quadrotor
UAV designed to fly in an office environment. In this
report we have presented a solution that incorporates
an Exactly Sparse Delayed-State Filter for pose-graph
SLAM with constraints between poses in the map ex-
tracted from a Correlative Scan-Matcher. Most impor-
tantly, we have implemented a system that does not
depend on the inherently unreliable motion model for a
quadrotor and also does not rely on existence of distinct
features in the environment that can be used for loop
closures. The method is theoretically sound but requires
work to improve computational efficiency if we are to
make the system online. Some measures that will be
taken include porting the implementation to a compiled
coding language such as C++ or Java, as well as taking
advantage of existing proven efficient frameworks such
as iSAM.
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