
1

RoboCup SSL Team Description, IRL RC
B. Sujith Kumar1, Pratik Agarwal2, P. Abhimanyu3, Prem Bhargav4

and Dr. K. Madhava Krishna5

Robotics Research Lab, International Institute of Information Technology
1
sujithkumar@students.iiit.ac.in

2
ag.pratik@gmail.com

3
abhimanyu p@students.iiit.ac.in

4
bvvp bhargav@students.iiit.ac.in

5
mkrishna@iiit.ac.in

Abstract—This paper describes the robotic system of IRL
RC (IIIT-H Robotics Lab RoboCup) team participated in
RoboCup,09 India. The whole system is divided into three
main parts: Mechanical, Electrical and Software systems. A
summary of all these systems is given in different sections.
Path planning for mobile robotics has always been of inter-
est to researchers. Rapidly Exploring Random Tree (RRT)
has been used in the past decade extensively for path plan-
ning. Its advantage is obviously generating a path in the
most randomly distributed environment. This paper also
gives an algorithm for generating a smooth path using RRT
in an environment containing rapidly moving obstacles.

Index Terms—AI, RRT, Path Planning, Robot Soccer.

I. Introduction

ROBOTICS is an area where many technologies and
fields can be merged. It also develops the ability to

solve real time problems. In this paper we explain about
our robotic system that was developed for RoboCup SSL.
RoboCup Small Size League is a competition where a team
of five autonomous soccer playing robots compete with the
other team and it was introduced for the first time in India
as a national wide competition in 2009 by IIT-Kharagpur.
This paper focuses on our SSL robotic system (past and
present) touching upon many relevant aspects.

This paper is organized as follows: Section II describes
the mechanical system of the robot. Section III describes
the electrical and electronic elements involved. Section IV
describes the software system focusing on two important
parts namely the vision system and the decision system.
Section V discusses our path planning algorithm. Section
VI deals with our current work.

II. Mechanical System

The robot is omnidirectional with four custom made
Swedish wheels. Any two wheels are separated by an angle
of 120O or 60O. Each wheel contains sixteen symmetrically
aligned similar rollers and each roller is parallel to the axis
of rotation of the wheel to give an extra degree of freedom.
These wheels are attached to stepper motors of the type
16PU-M301-G1. The robot’s CAD is given in Fig. 2 and
the original robot’s picture is given in Fig. 1. The robots
well fit into the restrictions of SSL rules. Each robot has
a diameter of 179 mm and a height of 150 mm.

Fig. 1. CAD model of the Robot

Fig. 2. Omni direction robot

III. Electrical System

The central controller consists of one ATMega16 and
one ATMega8 microcontrollers. ATMega16 communicates
with the Maxstream XBee Seies 2 modules at a baud rate
of 9600 bps. These modules are low power RF devices
which work on Zigbee protocol. Each of the RF devices
is embedded in each bot and they communicate with the
XBee module connected to the Decision System. The com-
mand from the Decision system to the bot contains the
information about the speed of each wheel, dibbling on/off
and kicking on/off. ATMega8 generates required signals
for the dribbling and kicking. It acts a slave to the main



2

controller ATMega16. The stepper motors are driven by
L298-L297 pairs. The driver circuit for the stepper motor
consists of four L298-L297 pairs connected to ATMega16.
The servo motor and the dribbler roller motor are driven
by one L293D connected to ATMega8.

Fig. 3. Central controller

Our custom made double layered PCBs for the central
controller and the driver circuits are given in Fig. 3. The
whole electrical system is driven by a 11.1 V, 2200 mAh
Li-Po battery. To cool the electrical system we use a CPU
fan which consists of 12V DC brushless motor.

IV. Software System

Our software system is divided into two different entities;
one is Vision System and the other one is Decision System.
They communicate with each other using UDP through
socket programming. Their descriptions are given below.

A. Vision System

We are using Unibrain Fire-I firewire digital camera
(IEEE 1394) which supports 30 fps in the mode YUV 4:1:1
with a resolution of 640 X 480. We are using openCV open
source library for all the vision process. Our algorithm first
finds the centers of the robots and the ball in a frame us-
ing thresholds in YUV space discarding the Y channel to
compensate the effects caused by the illumination changes.
Our algorithm is based on the algorithm described in [1]
which can determine the ids of the robots and their ori-
entations robustly. After finding the centers of each robot
the vision system has to differentiate the bots using to the
extra coloured markers around the center markers. These
center markers of are used to detect the robots. Example
of different robot tops are shown in Fig. 4. It also has to
determine the orientations. We’ve implemented an algo-
rithm which can do both these jobs at a shot. It involves
the following steps:

1. Taking circular data around the center markers and
converting them into 1-dimensional signals

2. Identifying the bots using Minimum of Minimum
Mean Squares

3. Determining the orientation of each robot using Min-
imum Mean Squares obtained in Step2.

Fig. 4. Markers on top of each robot

This system sends the bots’ positions, their orientations
and the ball’s position to the Decision System in a UDP
using socket programming in Linux. We’ve chosen UDP
because it is connectionless and it does not do error correc-
tion and flow control as in TCP which is slower compared
to UDP.

B. Decision System

The decision system receives the information, described
above, from the vision system and sends appropriate com-
mands to the robots wirelessly. Our decision system along
with the controlling of the on filed bots is divided into
four layers. The bottom layer, layer 1, consists of sending
particular control commands, like frequency of the stepper
motor steps, to the bots using serial communication and
the XBee devices. Next level layer, layer 2, uses the layer
1 and sends particular control commands like setting the
wheel velocities independently. Layer 3 consists of com-
mands which are used to move the robot at a particular
speed in a particular direction with particular angular ve-
locity about its centre. The strategic part is in Layer 4.
The advantage of doing this is that even if we change the
robot’s type (differential drive or omni directional) we have
to change only the Layer 1 while the remaining layers will
remain intact.

V. RRT

Path planning for mobile robotics has always been of
interest to researchers. Rapidly Exploring Random Tree
(RRT) [2] has been used in the past decade extensively
for path planning. Its advantage is obviously generating a
path in the most randomly distributed environment. Be-
low we have explained the RRT algorithm and modified it
for generating a smooth path using RRT in an environment
containing rapidly moving obstacles.

We have generated this algorithm for mainly assisting us
in path planning for our non holonomic robot for RoboSoc-
cer. RRT [2] gives a path plan according to the present sit-
uation of obstacles. So for a dynamic environment such as



: 3

roboSoccer where robots can move with a velocity higher
than 5 m/s in a confined region of 6m by 4m the best way
to have an obstacle free path is to generate the path again
and again for a fixed interval of time.

There are techniques such as using goal bias [3] and a
way point bias [6] to reduce the computation but still the
need to generate the path each time is some times redun-
dant. [6] had addressed the problem of path planning in
dynamic environment using RRT by introducing a way-
point cache and by implementing a beta search but it by no
means reduces the burden of generating the paths repeat-
edly. Our algorithm improves the planning significantly
for robots in a rapidly changing dynamic environment sig-
nificantly. RRT inherently gives us a path which is based
on random points and hence the path achieved will always
be very crooked and jagged. We present here an algorithm
which minimizes the generation of new paths and it also
smoothens the path followed by the robot.

Our algorithm computes the path using a way point
cache but only when the current path is not feasible. It
then tells the robot to go furthest point on the computed
path till which it can go in a straight line without hitting
any obstacles according to current situation. After each
time interval it computes the next furthest point which is
possible to reach. Once it reaches this point it recomputes
the path similar to way point cache method as described
by [6].

A. RRT Goal Bias

In a naive RRT path generation we find a random point
on the map and find the nearest node on our tree to this
point. Initially the tree contains only the start point as
the root node. We attach a new node to this closest node
of the tree if it is possible to move by a fixed distance
(METRIC) in the direction of this random point from our
closest node. This is the most general RRT algorithm.
Next a goal bias was introduced to bias the path generated
to the destination. Here we generate the path with random
points with a probability p and with the goal as probability
1− p. The algorithm for this is mentioned beside.

B. RRT Waypoint Bias

This algorithm was further improved by [6] by imple-
menting a waypoint cache. They added a third probability
and hence for replanning the tree extended by a probabil-
ity p towards a random point, a probability q towards the
goal and a probability of 1-p-q towards a randomly chosen
waypoint which is a point on the previous path generated.
They recompute the path after each time interval.

C. Modified Smooth RRT

We use the same algorithm as described by [6] for gen-
erating the path for the first time or if the destination
changes. We introduce a point call the current destina-
tion. Current destination is a furthest point on the gen-
erated path till which the robot can go in a straight line
without a collision. We will move the robot with a velocity
so that it can reach this point. The advantage of this is

Fig. 5. Algorithm for Goalbiased RRT

that too many turns are avoided. At each time interval we
just need to update the current destination and assign the
required velocities to the robot.

Here the path in red shows the actual path generated by
the RRT algorithm. The black circle is the furthest point
where the robot can reach by travelling in a straight line
without hitting any obstacle in the current situation. We
give this point as the current destination. As the situa-
tion changes the current destination will also change. At
each time cycle we find the furthest current destination
which can be achieved according to the current configu-
ration. We use this generated path repeatedly till using
the same path we can reach the required destination. The
velocities required to reach this current destination(black
circle) is calculated and achieved by the bot.

The first obvious advantage of this method is that
smoothens the path traversed by the robot. The robot
tries to travel in a straight line as much as possible. The
second advantage is that regeneration of path is minimized
as much as possible. It is possible that some time in future
it may be feasible to go from a certain location to another
which currently is obstructed. By using this method we
maybe able to direct a shortcut from one way point to an-
other though the path generated on the rrt does not have
it.



4

Fig. 6. Algorithm for WayPoint biased RRT

[5] uses a similar technique to smoothen the path gener-
ated from RRT by putting the waypoints on a stack. He
converts this path into line segments which reduces the
jaggedness into few straight lines. But his algorithm is for
static obstacles. We do not need to convert the whole path
into few straight lines because we never end up travelling
the generated path to the end as the environment changes
dynamically.

Fig. 7. RRT on Simulator

VI. Simulator

The simulator in another very important piece of code
written in QT. It helps us simulate a game. The wireless
module which in a real situation would communicate with
the robots thinks it is still communication with the robot
but instead it communicates with the simulator. The sim-
ulator has a physics engine which finds out if the robot
undergoes a collision with the ball or with the wall or with
other robots. It simulates a real environment as close as
possible.

The results were tested on a simulator designed in QT.
The simulator was written to test AI and strategy module
and all the other codes without actually causing any harm
to the hardware. The simulator incorporates a physics en-
gine to simulate the collisions of robots with robots and the
robots with the ball. When a ball collides with robot the
simulator predicts the new velocities of the ball depending

upon the parameters of the collision. The simulator was
also used to test the path planning algorithm as shown in
Fig. 7. The simulator receives the commands sent by the
controller for the actual robots and simulates the environ-
ment. We send the velocities of the various robots and
the simulator predicts the next position or performs col-
lision restitution. In a real situation the strategy module
would only interact with the vision module for data but
for testing purposes we use the simulator.

VII. Current Work

Currently we are working on improving the hardware.
On the software side we are working towards coming up on
an intelligent strategy to play soccer. We will be using a
Play and skill based strategy. Play represent the high level
strategy. It can be compared to the formations we have in
a normal game of soccer. In our method each robot will
be assigned a role, where a role can be defender, attacker
goalie etc. Since each of our robots are equally capable
of performing each role the roles are dynamically assigned
to each robot. Each robot can perform a group of skill.
Each robot is assigned skills to be performed for the role
assigned to it. For example the goalie may be assigned to
keep tracking the ball and minimizing the open area for the
goal. The attackers may be assigned to shoot if they are
open or move to an open position. We can have various
plays and various skills which we are still experimenting
with. This technique is based on the technique used by
the Cornell team [7].

References

[1] Shichi Shimizu, Tomoyuki Nagahashi, and Hironobu Fujiyoshi,
“Robust and Accurate Detection of Object Orientation and ID
without Color Segmentation”.

[2] S. M. LaValle, Planning Algorithms. Cambridge University
Press,2006.

[3] S. LaValle, “Rapidly-exploring random trees A new tool for path
planning,” Iowa State University, Dept. of Computer Science,
Tech.Rep. 9811, 1998.

[4] S. M. LaValle, J. J. Kuffner, and Jr., “Randomized kinody-
namic planning,” The International Journal of Robotics Re-
search, vol.20,no. 5, pp. 378400, 2001.

[5] Zoltan Deak Jnr., Professor Ray Jarvis, “Robotic Path Planning
using Rapidly exploring Random Trees” Intelligent Robotics Re-
search Centre Monash University

[6] Bruce, J., Veloso, M.: Real-time randomized path planning for
robot navigation. In: Proceedings of IROS-2002, Computer Sci-
ence Department (2002)

[7] Raffaello D’Andrea., Tamas Kalmar-Nagy., Pritam Ganguly.,
Michael Babish, “The Cornell RoboCup Team”.

[8] Veloso, M., Bowling, M., Achim, S., Han, K., Stone, P.: The
CMUnited-98 cham- pion small robot team. In: RoboCup-98:
Robot Soccer World Cup II, Springer Verlag (1999)

[9] Browning, B., Bruce, J.R., Bowling, M., Veloso, M.: STP: Skills
tactics and plans for multi-robot control in adversarial environ-
ments. In: Journal of System and Control Engineering. (2005)

[10] Extended Team Description for RoboCup 2009, B-Smart.
Deutsches Forschungszentrum fur Kunstliche Intelligenz GmbH,
Germany.

[11] CMDragons 2009 Extended Team Description, Carnegie Mellon
University, USA.

[12] Plasma-Z Extended Team Description, Chulalongkorn Univer-
sity, Thailand.

[13] Michael Bowling, Brett Browning, Allen Chang and Manuela
Veloso: “Plays as Team Plans for Coordination and Adaptation”


