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Abstract—The following paper presents computer vision methods 
designed to aid an autonomous quadrotor at the International 
Aerial Robotics  Competition. Pattern recognition methods are 
used in order to allow the quadrotor to recognize security 
compound signs inside the competition environment. Once 
detected and recognized, these security compound signs are then 
used as landmarks within a structure from motion method 
intended to aide a simultaneous localization and mapping 
algorithm. The computer vision methods described are simple 
and time efficient, meant to be processed on a ground station 
unit. Ultimately, this paper demonstrates a novel pattern 
recognition method combining previous recognition and vision 
techniques which provides the necessary data to perform 
structure from motion. 

I.  INTRODUCTION

The Michigan Autonomous Aerial Vehicles (MAAV) 
program is a research group focused around an 
autonomous quadrotor for competition in the 
International Aerial Robotics Competition. The goal of 
the research competition is to navigate autonomously 
through an environment constructed of passageways and 
rooms, locate and retrieve a USB key, and navigate back 
out  of the environment. Each room within the 
environment is labeled with one of the three Arabic 
security compound signs as seen in figure 1. The location 
of the USB key is provided prior to competition. It’s 
location is given as residing in one of the three rooms 
adorned with the security compound. 

Security Compound Signs
   Security Compound مجمع امني 

Ministry of Torture وزارة التعذيب

       Chief of Security رئيس األمن
Figure 1: Arabic labels, alongside their English equivalents, 

which are posted throughout the competition environment. 

One of MAAV’s goals is to be able to use computer 
vision techniques to locate the security compound signs 
within the environment and accurately identify which 
room the located sign corresponds to. The ability to 
locate these signs is pivotal to MAAV’s success, as it 

would reduce the need to investigate every room within 
the environment  in search of the USB key, thus reducing 
the amount  of time the quadrotor operates within the 
environment. Less time spent inside the environment 
corresponds to less errors within the simultaneous 
localization and mapping algorithm. Time in the 
environment is also a metric used in the grading scheme 
for the competition. 

Figure 2: Image of MAAV’s quadrotor design. From [1].

After locating a security compound sign and correctly 
identifying its corresponding room, computer vision 
methods can then aide in the simultaneous localization 
and mapping (SLAM) algorithm which is employed from 
the onset of entering the building. The SLAM algorithm 
employed by MAAV uses laser range finders, inertial 
measurement units, and sonar sensors to accurately map 
the environment while predicting the quadrotor’s location 
and orientation with respect to the map. The SLAM 
position and orientation predictions will be updated by 
comparing multiple images taken of the located security 
sign while the sign is within the perceptual view of the 
quadrotor. Structure from motion with respect to these 
security signs will allow for a more accurate pose 
prediction to be processed by the SLAM algorithm. 

The remainder of this paper will present the previous 
methods in computer vision utilized to accomplish the 
desired recognition and structure from motion for the 
quadrotor, the technical aspects of our methods in detail, 
and lastly, experiments using our methods along with the 
overall results of our research. Figure 3 displays the 
overall concept figure of our desired vision techniques to 
aid MAAV in the International Aerial Robotics 
Competition. 



Figure 3: Concept Figure showing desired vision techniques to 
aid the quadrotor. 

II. PREVIOUS METHODS/KEY CONTRIBUTIONS

A. Review of Previous Work Researched
During the development process, we looked at  many 

papers dealing with recognition methods. Our goal was to 
take an environment  image and determine if there is a 
security sign within the image, and if so, which security 
sign is it. One of the most  popular vision techniques to 
extract  features and their corresponding descriptors from 
an image is David Lowe’s Scale Invariant Feature 
Transform (SIFT). In his paper, “Distinctive Image 
Features from Scale Invariant Keypoints”, Lowe presents 
a method for extracting distinctive features from images 
which are invariant to scale and rotation [2]. SIFT  builds 
upon Lindeberg’s scale spaced image defined as 

L(x, y, σ) = G(x, y, σ) * I(x,y),
where L(x, y, σ) is the image’s scale space, I(x,y) is 

the original input image, and G(x, y, σ) is the gaussian 
kernal which is convolved with the input image [3]. This 
scale space is then used to create a difference-of-
Gaussian function, defined as 

D(x, y, σ) = (G(x, y, kσ) - G(x, y, σ)) * I(x,y)
                         = L(x, y, kσ) - L(x, y, σ), 
where k is a constant multiplicative factor creating the 

separation in scaling [2]. Figure 4 shows the process of 
convolving an image with different scales of Gaussian 
kernals  on different  scales of the image and how these 
scale spaces are used to create their corresponding 
difference-in-Gaussian values for the differing image 
scales. 

 Figure 4: Difference of Gaussian Function. From [2].  
The difference-of-Gaussians function is then used to 

compare each pixel to its neighbors in order to create 
thresholding with which to choose keypoints. Such 
thresholding includes using the minima and maxima of 
the difference-of-Gaussian function, applying a threshold 
on the minimum contrast, and adding an additional 
threshold based upon ratio’s of principal curvatures. 
These keypoints are then assigned descriptors. 
Descriptors are created by computing the gradient 
magnitude and orientation of each sample point in a 
region around the keypoint. A Gaussian window is then 
used to weight  all the gradients which are then assigned 
to orientation histograms with each orientation section 
representing the total of the magnitudes for that 
orientation. Figure 5 shows an example of a keypoint’s 
descriptor, created from an 8x8 set  of sample gradients. 
Note that  Lowe’s SIFT  implementation uses a 4x4 set  of 
descriptors computed from a 16x16 set of samples. 

Figure 5: Example of a keypoint’s descriptor. Sample 
gradients are shown on the left, with the full descriptor shown on 

the right. From [2].

Another paper which aided in our work was from the 
winning team of the 2009 Semantic Robot Vision 
Challenge, a robotic competition designed to push the 
state of the art  in object recognition. This team from the 
United States Naval Academy used SIFT to compare 
images of objects downloaded from the internet  to images 
taken within an environment  containing the same objects 
[4]. In order to determine if the robot had found the 
desired object within the environment, they used Lowe’s 



matching scheme, which matches each keypoint 
descriptor from one image to a descriptor in another 
image by minimizing their Euclidean distance and 
satisfying a given threshold. This creates corresponding 
points between the downloaded images of the objects and 
the environment images. Figure 6 shows this matching 
scheme. 

!
Figure 6: Initial matches between object image on left and 

environment image on right. From [4].

In an effort  to remove outlier matches, initial matches 
were used to scale and rotate the downloaded object 
image to mimic that  of the object  within the environment 
image. Next, the sift keypoint descriptors were again 
matched between the two images. Correct  matches 
between the two images form lines which have extremely 
similar slopes. Those matches forming lines with 
differing slopes from the others are classified as being 
outlier matches and are removed. This allows for more 
accurate matches to be considered when determining 
whether an object has been discovered. Figure 7 shows 
this process of removing outliers. 

 
Figure 7: Example of inlier and outlier matches. Inlier 
matches create lines with similar slopes. From [5].

The last  previous work which aided in our research 
and our structure from motion algorithm was that of the 
AprilTag by Edwin Olson [6]. The AprilTag is a fiducial 
system which uses 2D bar codes, as seen in figure 8, to 
localize a system. As will be shown in Section III, these 
2D bar codes placed in a single known plane and scaled 
to a known size allow a camera to recreate an extrinsic 
matrix. This extrinsic matrix is computed from the 
intrinsic parameters of the camera system as well as the 
homography between a known image of the tag and the 
environment image of the tag. The extrinsic matrix 
ultimately allows for a 6DOF localization to be extracted 

between the location of the camera and the location of the 
tag. 

Figure 8: Image of an AprilTag. From [6].   
B. Contributions of Work

Our work brings together elements from the previous 
described research in order to build robust vision methods 
to aid the quadrotor. Using SIFT descriptors we are able 
to create an object recognition method to detect 
compound security signs. Furthermore, we implemented 
additional vision techniques to improve upon SIFT 
matching schemes, allowing us to decipher outlier 
matches similar to the recognition scheme discussed from 
the Semantic Robot Vision Competition. Lastly, using the 
same techniques behind the AprilTag, we are able to use 
the compound security signs as a landmark from which to 
compose structure from motion. 

III. TECHNICAL DETAILS

The following section discusses in detail the vision 
techniques we applied to aid in the quadrotor’s mission. 
We begin by examining each image in order to segment 
out a compound security sign using thresholding 
techniques. Next, applying SIFT descriptors with a 
random sample consensus algorithm allows us to 
determine a more accurate amount  of SIFT  matches 
between the segmented image of the compound security 
sign and those Arabic words shown in figure 1. Lastly, 
using the homography matrix from the random sample 
consensus algorithm used to determine outlier matches, 
we are able to create an extrinsic matrix from the 
environment image. This matrix allows us to compute the 
6DOF localization of the camera with respect to the 
compound security sign. 
A. Segmentation

In order to segment out  a compound security sign 
from an environment  image, we operate under the 
assumption that  we have some type of access to the 
environment prior to sending in the quadrotor. Access to 
the environment is provided by the competition before 
operation, and thus makes segmentation using 
thresholding extremely simple and efficient  to 
implement. Figure 9 is an environment image from the 
2010 International Aerial Robotics Competition. 



Capturing an image such as this prior to the competition 
allows for a grayscale threshold to be determined. 

 
Figure 9: Image from the 2010 International Aerial Robotics 

Competition of the environment.

Using the image in figure 9, a value of 0.8 was 
obtained from the white section of the sign after the 
image was remapped into a normalized grayscale image. 
Using a slightly lower threshold value, we create a binary 
image by setting all pixel values to binary ‘1’ whose 
values are above the threshold, and all pixel values to 
binary ‘0’ whose values are below the threshold. This 
creates a binary image comprised of true values being 
white, and false values being black. Figure 10 shows the 
original environment  image side by side with the binary 
thresholded image. While in our implementation we use a 
single threshold, it is also possible to set low and high 
thresholds, creating a more robust threshold gate.

 
Figure 10: Segmentation of compound security sign using 

thresholding.

As figure 10 shows, there is a lot  of noise using the 
thresholding method of segmentation. Thus, in order to 
clean up the noise and only return the security sign, our 
algorithm returns the largest  white blob in the image and 
reduces the rest of the pixels carrying a white value but 
not associated with the largest blob to black: 

Figure 11: Segmentation of compound security sign post noise 
reduction by returning maximum white blob. 

Lastly, our segmentation algorithm finds the 
dimensions of the segmented security sign, and crops the 
original environment image according to this dimension. 
The result  of this cropping is the final segmentation of the 

compound security sign, and is then used for comparison 
with the database of possible security signs. Figure 12 
shows the final segmented image created from the 
original environment image shown in figure 9. 

Figure 11: Final segmented image of the compound security 
sign from the environment image in figure 9. 

B. Security Sign Recognition
For image processing, we use the VLFeat MATLAB 

toolbox from [7]. This toolbox includes SIFT  functions 
modeled after David Lowe’s implementation from [2]. 
The toolbox also includes a matching function which 
allows two sets of SIFT descriptors to be compared and 
matched. Matching is done by comparing the Euclidean 
distance between descriptors as explained in Section II 
and seen in [2]. The default  Euclidean distance threshold 
for this matching of descriptors is set to 1.5 within the 
VLFeat toolbox and was not changed during our use. 

This toolbox allowed us to build basic functions to 
determine the SIFT  features and descriptors for two 
images, as well as match the two sets of features to one 
another based on their descriptors. For example, consider 
the segmented image from figure 11. If we compare this 
image to the security compound signs in our database of 
signs from figure 1, we can determine that this security 
sign represents the sign corresponding to the room of the 
Chief of Security. Figure 12 shows the matching SIFT 
features for the segmented environment  image compared 
with each of the database images:

Figure 12: Matching SIFT descriptors of the segmented 
environment image compared with all other database images.



The correct  pairing, the top image in figure 12, has a 
total of 51 matches. The other two incorrect  comparison 
have 28 and 18 matches respectively. Although the 
correct database image returns the most  matches of all the 
database images, outlier matches still occur between itself 
and the environment image. In order to make this process 
more robust, we implemented a random sample 
consensus (RANSAC) algorithm to clean up the outlier 
matches. 

A homography is a projective transformation which 
transforms points xi  from on image to their corresponding 
points x’i from a second image. To solve for the 
homography matrix H between a database image and a 
segmented security compound sign we use four matching 
features between the two images calculated from SIFT. 
These four matching features are applied to a Direct 
Linear Transformation (DLT) algorithm  described in [8] 
having the following notation:

where prime elements correspond to the matching 
feature positions in the second image, non-prime 
elements corresponds to the matching features positions 
in the first  image, and w represents the homogenous 
scaling factor which is 1 for our purposes. The above 
equation as the form Aih = 0, where h is a 9x1 vector 
representing the homography matrix as seen in [8]:

The homography H can then be determined from four 
point correspondences using the Singular Value 
Decomposition, described in [8], to produce A = UDVT. 
So long as the diagonal matrix D has positive diagonal 
entries arrange in descending order down its diagonal, 
then h is found to be the last column of V. 

Using both the SIFT  matches and the above DLT 
formulation for calculating homography transformations, 
we apply a RANSAC algorithm. The RANSAC 
algorithm, as shown in figure 13, provides not  only a 
strong homography transformation matrix between the 
database images and the segmented compound security 
sign, but also the sets of inlier matches and outlier 
matches. 

Figure 13: RANSAC Algorithm. From [8].

The RANSAC algorithm used in our algorithm 
follows that  shown in figure 13 except  we allow 50 
iterations of homography computations to occur. After 50 
homographies have been computed from random point 
correspondences from SIFT, our algorithm returns the 
best  homography along with the inlier matches 
corresponding to the best homography. This is done for 
computational speed, and it will be shown in Section IV 
to be extremely effective. Figure 14 demonstrates the 
before and after effects of using RANSAC to remove 
outlier SIFT matches. 

Figure 14: SIFT Matches between correct database image and 
segmented compound security sign before and after outliers are 

removed using RANSAC. 

C. Localization using Structure from Motion
The homography created from our RANSAC 

algorithm allows for the extrinsic matrix to be calculated . 
From this extrinsic matrix, we can perform the 6DOF 
localization of the camera with respect to the compound 
security sign. Before processing, we normalize the 
images in our library database such that [0 0 1]T is at  the 
center of the sample image and ensure that the image 
extends one unit in length (a factor which depends upon 
the measuring scheme used). Next, the homography 
matrix which projects the homogenous points from the 
sample image to the image coordinate system is 
computed as previously described.

Because the homography matrix is defined only up to 
scale, computation of the Arabic Sign’s position and 
orientation requires additional information. Prior to 
localization, the camera must be calibrated in order to 



determine the intrinsic parameters. Because we know the 
compound security sign is going to be confined in a 
single plane, every position on the compound security 
sign can be defined as having z = 0 with respect to it’s 
own coordinate system. This allows us to truncate the 
extrinsic matrix by removing the third column. Thus, we 
can write the already determine homography matrix as 
shown in [6] as being:

where P is our projection matrix, E is the extrinsic 
matrix, and s  is an unknown scale factor. Due to the 
projection matrix being rank deficient, we are unable to 
directly solve for E. However, we can expand the above 
to create a system of equations for the individual 
homography matrix as also shown:

These equations can be rewritten in terms of their R or 
T values. In order to solve for the scaling factor s, we 
constrain it’s magnitude to being the geometric average 
of the rotation magnitudes as the columns of the rotation 
matrix must all be of unit magnitude. The sign of s is 
determined from requiring that  Tz  is less than zero due to 
the fact that  the image must be in front of the camera. 
Although truncated, the third column of the rotation 
matrix used to determine the magnitude of s is calculated 
from the cross product of the first  two columns of the 
rotation matrix. This satisfies the condition that the 
columns of the rotation matrix are orthonormal to each 
other. 

Before computing s as described above, we ensure 
that the rotation matrix is strictly orthonormal by 
minimizing the Frobenius matrix norm of the error via 
the polar decomposition of R. For the polar 
decomposition, we pull out the 3x3 rotation matrix and 
find its singular value decomposition, producing R = 
UDVT. We then multiple U by VT to recover the 
normalized orthonormal rotation matrix, which is further 
decomposed to recover the Euler angles with respect  to 
our camera axis.   

IV. EXPIRIMENTS

In order to test  our methods, we created three different 
data sets of compound security images using a digital 
camera, calibrated via MATLAB’s camera calibration 
software. This allowed us to retrieve a project matrix with 
zero skew, making our calculations for the 6DOF 
localization simpler and aligning with the method 
described in Section III. Each of the three data sets 
represent  a different  set of images corresponding to a 
specific compound security sign. Figure 15 shows all of 
the images within database 1. 

Figure 15: Database test set images. This dataset represents 
one of the three types of compound security signs. 

Each image within all three testing datasets were 
tested via the image processing and recognition method 
described in Section III. Table 1 shows the results and 
overall accuracy of these tests:

Data Set ID
Number of 

Images 

Number of 
Images 

Correctly 
Identified

Average 
Elapsed 
Time (s)

1 10 10 0.5126066
2 11 11 0.8205818
3 5 4 0.4676871

Table 1: Results of running all testing images in the three 
datasets through our image recognition method. 

As table 1 shows, our method takes approximately 
half a second to process each environment image. While 
this is not  fast enough in order to process realtime video 
feed, it would be more than efficient if the quadrotor only 
took images when it  believed it  was near a door of a 
room. This is a reasonable desire as doorways can easily 
be distinguished using the laser range finder on the 



quadrotor. Furthermore, the timing associated with table 
1 includes the determination of the extrinsic matrix using 
an additional RANSAC method for normalizing the 
known image of the compound security sign. These 
computation can be removed to increase the speed of the 
algorithm if localization using the compound security 
sign is not  desired. Lastly, our method could be further 
sped up by reading in the SIFT features and descriptors of 
the library signs prior to taking images of the 
environment. While these are simple implementations  
which would improve the overall speed of our image 
recognition system, we chose not to implement  them. We 
believe that  the current setup processes images quick 
enough so long as the quadrotor only takes images when 
sensing it is near doorways. 

Figure 16 shows one of the database images after 
segmentation being compared with the library images. 
From this figure, we can determine that  the RANSAC 
method not  only removed outliers, but creates a large gap 
between the number of matches for the correct library 
image and the number of matches for the other images. 

Figure 16: Segmented compound security sign compared with 
library images using object recognition method discussed in 

Section III. 

Note that  in figure 16 the correct library image (the 
bottom comparison) had 18 matches after running the 
RANSAC algorithm on the two images. The other two 
images had 1 and 0 matches after comparison. This 
figure, as well as the data provided in table 1, prove that 
this method is extremely robust. However, in our testing, 
there was one poor data association within dataset 3. This 
mistaken data association is shown in figure 17.

Figure 17: Matches from the only incorrect recognition of all 
images tested. 

As we can see from figure 17, the library image which 
had the most matches was the incorrect library image. 
However, the maximum matches for this environment 
image was 1. Therefore, one measure we can take to 
ensure this doesn’t happen is set a minimum threshold 
value of matches required for a recognition to occur. For 
the environment image in figure 17, the actual compound 
security sign was so small that when it  was compared 
with the true library sign, the RANSAC method was 
unable to come up with a good homography capturing 
any of the initial matches. 

We also tested each database of test  images with our 
localization method. Figure 18 displays the 3D points and 
orientation association with the camera poses from figure 
15. 

Figure 18: 6DOF localization poses from images in figure 15.



Up to this point, we have not been able to test  the 
accuracy of this 6DOF method with the SLAM algorithm 
of the quadrotor as the SLAM algorithm is currently 
being implemented. However, from our experiments, we 
are able to determine that the overall accuracy of this 
method depends on the accuracy within the homography 
matrices created for each image. Furthermore, all of our 
test datasets returned expected 6DOF poses from the 
environment images. Until the system is able to be 
incorporated with the SLAM method, it  is uncertain as to 
how much influence it  will be able to have on the 
operation of the quadrotor within the environment. 

V. CONCLUSION

The Michigan Autonomous Aerial Vehicle program 
requires an autonomous quadrotor UAV designed to fly in 
an office environment  and equipped with cameras in 
order to recognize signs on the wall and aide in 
Simultaneous Localization and Mapping algorithms. This 
report has presented a solution in which pattern 
recognition and structure from motion aid the UAV.

A SIFT  based pattern matching technique enhanced 
by a RANSAC algorithm method provided a robust 
implementation for object recognition. Furthermore, the 
complete 6DOF position of the UAV was recovered using 
a single calibrated camera. We have tested our code on 
real images, and produced expected results which show 
that these methods are capable of providing the desired 
computer vision techniques needed by MAAV. The next 
step with this project  is to begin to run the system in an 
online fashion and incorporate the vision measurements 
into the SLAM solution for motion planning of the 
quadrotor. Some measures that  will be taken include 
porting the implementation to a compiled coding 
language such as Java. This is an ongoing project which 
will continue to be implemented for the next International 
Aerial Robotics Competition. 

Personally, we have both gained invaluable 
experience in utilizing current state of the art  vision 
methods as well as the ability to apply these methods to 
the field of mobile robotics. These tools will aid in our 
future education and work within the robotics society,  
providing methods with which we can employ on robotic 
platforms.  
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