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Abstract— State of the art methods for state estimation and
perception make use of least-squares optimization methods
to perform efficient inference on noisy sensor data. Much of
this efficiency is achieved by using sparse matrix factorization
methods. The sparsity structure of the underlying matrix
factorization which makes these optimization methods tractable
is highly dependent on the choice of variable reordering; but
there has been no systematic evaluation of reordering methods
in the SLAM community.

In this paper we evaluate the performance of various
reordering techniques on benchmark SLAM data sets and
provide definitive recommendations based on our results. We
also compare these state of the art algorithms against our simple
and easy to implement algorithm which achieves comparable
performance. Finally, we provide empirical evidence that few
gains remain with respect to variants of minimum degree
ordering.

I. INTRODUCTION

Graph-based SLAM methods are becoming increasingly
popular for mapping problem in robotics. In these ap-
proaches, each robot pose is represented as a node in the
graph and each constraint as an edge. This approach was first
proposed by Lu and Milios using the classic least squares
formulation [1]. Their approach required the inversion of
the full (dense) covariance matrix which is too expensive
to compute for even modestly sized problems.√

SAM showed that instead of the expensive matrix in-
version, sparse matrix factorization with an efficient variable
reordering could be used to solve the least squares SLAM
formulation in a tractable way even for large problems [2]. It
proposed using a sparse Cholesky or QR decomposition with
column approximate minimum degree (COLAMD) variable
reordering [3].

Variable reordering is equivalent to row and column
exchanges on a matrix. A good variable reordering helps
increase the sparsity structure of the factorized matrix.
Different reordering techniques produce different sparsity
structure, but all of them try to minimize fill-in.

Reordering has a direct impact on the fill-in caused by
matrix factorization, which affects the solve time for SLAM
problems. The fact that affects of variable reordering algo-
rithms have not been investigated despite their critical role
in graph SLAM algorithms motivates this work.

The central contributions of this paper are:
1) We evaluate existing state of the art variable reordering

strategies on standard SLAM benchmarks.
2) We propose an easy to implement reordering strategy

that yields competitive performance
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Fig. 1. Reorder and solve time for different variable reordering methods.
Results shown for simulated grid world data sets containing 2000 to 20000
nodes with an average node degree of 3. AMD and COLAMD J compute
reordering quicker than other algorithms. METIS and NESDIS have the least
solve time. Solve time for COLAMD JT J is worse than all the algorithms.

3) We provide evidence showing that few gains remain
with respect to variants of minimum degree ordering

4) We provide definitive recommendation for choosing a
particular reordering given a SLAM graph.

II. BACKGROUND

This paper investigates the sparsity of the matrices that
result from formulating SLAM as a least-squares problem.
We begin by showing the origin of these matrices.



A. Non linear SLAM using matrix factorization

Each edge (constraint) in a SLAM graph is a set of
simultaneous equations f that relates a set of state variables
x to some observed quantity z. The difference between the
observed and the predicted value of an observation is the
residual ri. These constraints are generally associated with
an uncertainty covariance Σ. Scaling the residual by the
constraint’s confidence Σ−1

i results in the χ2
i error.

χ2
i = (zi − fi(x))Σ

−1
i (zi − fi(x)) (1)

The observation equations are non-linear due to the effect
of rotation. We can linearize fi around the current estimate
x0, as fi(x) ≈ fi(x0)+Ji(x−x0) where Ji is the Jacobian.
Substituting ri = zi − fi(x0) and d = (x− x0), we obtain:

χ2 ≈
∑
i

(Jid− ri)
TΣ−1

i (Jid− ri) (2)

If we stack the Ji and ri matrix, and create a block-
diagonal matrix from the Σ−1

i matrices, we can write:

χ2 ≈ (Jd− r)TΣ−1(Jd− r) (3)

The maximum likelihood solution can be obtained my
minimizing χ2, with Σ−1 = LLT , this over-constrained
system of equations can be written as:

LTJd = LT r (4)

The solution to such a system can be found through a
QR decomposition. Alternatively we can form the normal
equations by multiplying both sides with JTL:

JTΣ−1Jd = JTΣ−1r

Ax = b (5)

The matrix JTΣ−1J is the information matrix, which
we will generally refer to as A in this paper. A is square
and symmetric, with dimensions equal to the number of
unknowns and the solution to the system can be found
through a Cholesky decomposition. In contrast, J is tall and
skinny: the number of rows in J is equal to the number of
equations or edges in the graph and number of columns is
equal to number of variables or nodes.

In both the case of QR and Cholesky factorization, per-
formance is largely dictated by the sparsity of both the input
(J or A) and the sparsity of the resulting factorization. The
sparsity of the factorization depends on the ordering of the
variables. We illustrate the dependence of variable ordering
in the next section.

(a) Simple 5 robot SLAM graph

(b) Matrix structure using default ordering

(c) Matrix structure using a different ordering. The blue boxes show the
sparse structure obtained due to reordering.

Fig. 2. A simple example showing the effects of reordering. Fig. 2(b) shows
the matrix structure using original ordering. Fig. 2(c) shows the matrix
structure after reordering. Reordering helped in the second case reduced fill
in.

B. Variable Reordering

Variable reordering has been an active area of research
in the field of Graph theory and sparse linear algebra. An
efficient variable reordering can help the QR or Cholesky
decomposition by minimizing the fill-in (see Fig. 3).

Consider a simple example as shown in Fig. 2(a). It con-
sists of a SLAM graph with 5 poses and 6 edges. The green
edges are odometry edges while red edges are loop closure
edges. Fig. 2(b) shows the sparsity structure of the Jacobian
matrix J and the matrix representing normal equations A.
Each matrix column is labeled with the corresponding pose
number. L is the result of factorizing A using a Cholesky
decomposition. (This L is distinct form the one in Eqn. 4)
Notice however the L factor is fully dense.

Now lets consider a different ordering of variables shown
in Fig. 2(c). The reordered Jacobian and normal equations
represent exactly the same problem: we have simply changed
the order of the variables and equations. Critically, the
sparsity structure of Lr is better than that of L: reordering
J helped reduced fill-in. The goal of reordering algorithms
is to minimize fill-in for L, speeding up the factorization
process.

We can use permutation matrix P to transform between
A and Ar. Permutation matrix are square binary matrices
with exactly one entry 1 in each column and 0s elsewhere.
Multiplying a matrix by a permutation matrix reorders the
columns and rows. Since permutation matrices are orthog-
onal, their inverse is equal to their transpose. This trivially
allows to recover the solution to the original problem. If Xr

is the solution to P (A)xr = Pb, x = PTxr



Fig. 3. Reordering helps to reduce fill-in. Top row shows the unordered
matrix representing the normal equations (for csw dataset) and the cor-
responding lower triangular Cholesky factorized matrix. The bottom row
shows the reordered matrix and the corresponding Cholesky factorized
matrix. The fill-in for the second case is much smaller due to a good
reordering.

Reordering methods try to find a permutation matrix P
which maximizes the sparsity in L. Different reordering
techniques do not change the solution but generate differ-
ent sparsity patterns. Unfortunately, computing a reordering
which minimizes fill-in is NP-complete1[4]. Exact Minimum
Degree (EMD) is widely used as a heuristic to minimize
fill-in [5]. Various variants of EMD have been developed
which are much faster than EMD itself, but achieve this due
to approximations. In the next section we describe some of
these variants including EMD itself.

III. VARIABLE ORDERING METHODS

A. Exact Minimum degree ordering

EMD is based on the observation that, when a variable is
eliminated, a clique is formed between its neighbors. Each
of the edges in this clique contributes to fill-in. Thus, the
exact minimum degree ordering aims to minimize fill in by
forming the smallest possible clique at each step.

EMD greedily picks the best degree node at each step;
it does not “plan ahead” and thus does not generally pro-
duce the optimal fill-in for reducing ordering. Empirically
however, it performs well.

Algorithm 1 Exact Minimum Degree
1: while variable nodes remain do
2: Choose a node y with minimum node degree
3: remove node y from the graph
4: add edges between all of y’s neighbors
5: end while

The order in which the nodes are eliminated is used for
reordering the matrix. Approximate minimum degree algo-

1It is somewhat entertaining that matrix inversion is roughly O(n3), and
the purpose of variable ordering is to reduce the run-time. However, we
discover an NP-hard problem, which is harder than the original problem we
set out to solve! Fortunately, an optimal variable ordering is not required;
great gains can be obtained even with an imperfect ordering.

rithms described later are modifications of the Alg. 1 in lines
2 and 4 for faster computation, either using approximations
or intelligent data-structures.

The following reordering algorithms are variants of the
exact minimum degree algorithm.

• Approximate minimum degree ordering (AMD) [6]
• Column approximate minimum degree algorithm (CO-

LAMD) [3]
• Serial Graph Partitioning and Fill-reducing Matrix Or-

dering (METIS) [7]
• Nested Dissection (NESDIS) [8]
• Bucket Heap AMD (BHAMD)
The first four methods are state of the art sparse reordering

algorithms available as a sparse matrix library – SuiteSparse
[8]. We additionally propose BHAMD as a simple alternative
to these methods with comparable performance.

BHAMD is a simple reordering method implemented by
us. We first summarise the reordering techniques provided by
SuiteSparse and then go on to describe our implementation.

B. Approximate minimum degree ordering

AMD approximates EMD in line 4 of Alg. 1. EMD
updates the node degree values of uneliminated node exactly
after each elimination. AMD on the other hand computes an
upper bound on this value. It uses a heuristic to determine if
the node degree of a node needs to be updated even though its
neighbor was eliminated. The heuristics are based on active
submatrix and worst case fill-in.

C. Column approximate minimum degree ordering

COLAMD is an approximate reordering algorithm opti-
mized for non-symmetrical matrices. While AMD operates
only on symmetric matrices, COLAMD generates the col-
umn permutations without explicitly computing the normal
equations. This is especially helpful for QR factorization
where the normal equations are never created. Though CO-
LAMD was developed for non-symmetric matrices, it can
also be used to order symmetric matrices. It is one of
the reordering algorithms available to CHOLMOD, which
is SuiteSparse’s sparse Cholesky solver [9]. The use of
COLAMD was first suggested by

√
SAM and was later also

used in used in iSAM1.0 [10].

D. Reordering methods based on Graph partitioning

METIS and NESDIS are both graph partitioning based
reordering schemes [7]. They use the same graph parti-
tioner but different minimum degree reordering on each sub-
partition.

METIS includes a reordering routine called
METIS NodeND. It first recursively partitions the graph
and then computes a minimum degree ordering on each
partition. METIS uses its own variant of minimum degree
to reorder each partitioned subgraph.

NESDIS is the reordering strategy based on graph parti-
tioners provided by SuiteSparse. It computes the partitions
using METIS and then uses Constrained Column Approx-
imate Min Degree ordering (CCOLAMD) to compute the



Fig. 4. Elimination pattern for w10000 data set using BHAMD. The x axis
represents the number of heap queries. At each query a list is eliminated.
y axis shows the statistics of each list in the heap. The total number of
elements at any point in the heap does not cross 45 even though we begin
with 10000 nodes. It also shows the maximum node degree for the last node
eliminated is little less 160.

ordering of individual partitions. In CCOLAMD, constraints
can be added to specify specific elimination order. Certain
nodes can be constrained to be eliminated before or after
others. NESDIS uses CCOLAMD to specify that the partition
nodes are to be eliminated only after all nodes in the
subgraph partitioned by it are eliminated. CCOLAMD has
been used in iSAM2.0 to specify that recent variables are to
be eliminated last [11].

E. BHAMD

BHAMD, our variant of EMD, allows eliminating multiple
nodes in a single iteration using heaps. A simple implemen-
tation using heaps, initializes the heap with all the nodes
ordered by node degree. At each step, we extract the node
with minimum node degree, eliminate it, and update its
neighbors. This would be inefficient for a graph with a
large number of nodes. Updates and reinsertion would scale
logarithmically with the number of nodes.

Instead, we initialize the heap with lists where each list
is a bucket of nodes. Each bucket contains nodes with the
same node degree. At each iteration, we extract the list form
the heap, with minimum node degree. This list contains
putative nodes whose node degree may have changed since
last insertion due to other nodes getting eliminated. Hence
we evaluate each node in that bucket. Nodes whose true node
degrees are equal to or less than the current minimum are
eliminated as shown in Alg. 2. If not, the node is inserted
back into a list containing nodes if similar node degree into
the heap. The advantage of BHAMD over EMD is being
able to eliminate multiple nodes in a single search step.

IV. EXPERIMENTAL EVALUATION

A. Experiments and Datasets

We evaluated 6 reordering techniques discussed previously
on standard SLAM datasets. In all of our evaluations, we
have shown the results of using COLAMD both with J and
with JTJ . We compare the time required to reorder, factor

Algorithm 2 BHAMD
1: create a set of lists where each list contains nodes with

equal number of neighbors
2: add all lists into a min heap - MH
3: while MH is not empty do
4: bestList = getMinList from MH
5: min = MH.getMinKey
6: for each node nd in bestList do
7: if nd.nodeDegree ≤ min then
8: remove nd
9: add pairwise edges between neighbors of nd

10: else
11: update nd.nodeDegree and push it back into the

correct list
12: end if
13: end for
14: end while

and solve the graph. For all of these methods, a symbolic
matrix was created to exploit the block structure of the
constraints. A symbolic matrix encodes the sparsity pattern
of a matrix without encoding the literal values. In short, each
value in the symbolic matrix is a boolean encoding whether
the value is zero or non-zero. In the SLAM domain, we
additionally collapse variable nodes that are closely related,
such as the x, y, and theta variables associated with a 2D
robot pose [2]. By collapsing these nodes, we reduce the
storage requirements and computational costs of computing
an ordering.

Reorder time corresponds to time spent computing the
variable reordering while solve time is the time to compute
the sparse Cholesky decomposition. Total time includes
reorder, solve and other miscellaneous operations such as
code instrumentation, creating the symbolic matrix and un-
permuting the solution. These require similar time across all
methods. The values shown are averaged over 10 runs.

All our tests were run on Intel core i7 computer using the
sparse Cholesky solver in April Robotics Toolkit (ART) [12].
The SuiteSparse libraries were interfaced with ART using
Java Native Interface bindings.

B. Datasets

For our evaluation, we have used standard simulated
datasets such as the Manhattan3500 (also known as
the csw dataset) [13], world10000 [14], City10000 and
CityTree10000 [10]. We created new simulated grid world
datasets with varying numbers of nodes. Real-world datasets
include Victoria park, Intel [15] and Killian Court [16]. These
real world data sets are preprocessed by a front end to
generate loop closures. We have also included graphs from
our MAGIC datasets, including large multi-robot graphs [17].

C. Variable ordering optimization

Given a variable ordering, it is interesting to ask whether
that ordering can be incrementally improved. In other words,
are the variable orderings computed by minimum-degree



Fig. 5. Reorder, solve and total time on the MAGIC multi robot datasets. Note: Scales are different across figures.

Fig. 6. Reorder, solve and total time on benchmark datasets. The y axis shows time in seconds. The same results are tabulated on the next page. Some
bars are truncated to show details. All numerical results are available in Fig. 7

algorithms approximately locally optimal? Or, conversely,
could small additional changes result in significantly better
variable orderings?

In some cases, a variable ordering algorithm makes fairly
arbitrary choices: there may be several variables that have the
same degree. Different variants might select amongst these
differently, with different long-term consequences to fill-in.
Are some tie-breaking strategies better than others?

To explore this question, we generated minimum-degree
orderings using AMD, then iteratively attempted to improve
the orderings. In a framework resembling a genetic search,
we randomly permuted pairs of variables and solved the

resulting system, computing a fitness score as a function of
the fill-in.

The results of our experiments showed that only very small
reductions in fill-in resulted from this optimization process.
Of course, many permutations resulted in worse fill-in, but
even the best fill-in was reduced by at most 0.5% as shown
in Fig. 8.

This experiment provides evidence that small modifica-
tions to minimum-degree type variable ordering algorithms
may not be able to achieve significant improvements. An
experiment like this cannot be conclusive, but it does suggest
that different ideas may be required to improve performance.



(a) csw (b) Intel (c) w10000 (d) City10000 (e) Killian Court (f) Victoria Park (g) CityTree10000

Algorithm csw Intel w10000 City10000 Killian Court Victoria Park CityTrees10000

P, E, N 3500,5598,3.2 875,15605,35.7 10000,64311,12.86 10000,20687,4.14 1462,6571,8.98 7120,10608,2.98 10100,14442,2.86

EMD 68, 84, 178 31, 398, 524 477, 940, 1757 663, 1277, 2052 9, 40, 80 267, 68, 389 360, 132, 562
BHAMD 8, 109, 148 30, 439, 564 91, 1195, 1645 81, 1253, 1439 4, 54, 92 10, 76, 138 16, 133, 219

AMD 7, 79, 114 11, 344, 455 36, 855, 1269 27, 838, 967 4, 44, 81 16, 75, 143 21, 135, 225
METIS 18, 89, 132 16, 827, 1087 31, 985, 1366 63, 706, 876 6, 43, 83 24, 78, 154 37, 191, 294
NESDIS 22, 173, 247 16, 258, 362 42, 930, 1334 76, 872, 1078 7, 42, 82 38, 89, 181 45, 146, 250

COLAMDJ 3, 82, 113 7, 314, 417 43, 1440, 2019 15, 1042, 1167 3, 49, 86 7, 70, 129 10, 129, 209
COLAMDJT J 7, 214, 250 12, 701, 811 40, 4285, 4718 24, 2746, 2883 4, 53, 90 13, 495, 561 39, 4168, 4353

NZ fill-in

EMD 183493 303679 1306555 1147945 93195 202252 290428
BHAMD 194769 314444 1386612 1183202 105408 207378 290587

AMD 178151 275713 1202455 1026152 96928 207321 303743
METIS 204128 281152 1412363 1028779 97895 228574 369146
NESDIS 193519 260179 1307333 1007935 94302 226262 333494

COLAMDJ 181161 268261 1304646 1083914 100437 203441 290435
COLAMDJT J 299219 412798 2567700 1957268 107729 510184 808918

Reorder/solve

EMD 0.82 0.08 0.51 0.52 0.24 3.88 2.73
BHAMD 0.08 0.07 0.08 0.06 0.09 0.14 0.12

AMD 0.10 0.03 0.04 0.03 0.10 0.21 0.16
METIS 0.20 0.02 0.03 0.09 0.14 0.31 0.20
NESDIS 0.13 0.06 0.05 0.09 0.17 0.44 0.31

COLAMDJ 0.04 0.03 0.03 0.02 0.06 0.11 0.08
COLAMDJT J 0.03 0.02 0.01 0.01 0.08 0.03 0.01

Fig. 7. Comparison of various reordering algorithms on standard SLAM datasets (P:number of poses, E:number of edges, N:average node degree). The top
section shows the reorder, solve, total time in ms, taken by each algorithm for each data set. The middle section shows the fill-in in L after decomposition
and the bottom section shows the ratio between reorder and solve time. COLAMDJT J has maximum fill-in and worst solve time.

Dataset csw Intel KillianCourt
Best nz improvement % 0.5 0.01 0.3

Fig. 8. Datasets where fill-in could be reduced using genetic search.

V. CONCLUSIONS

Timing runs of all reordering algorithms on standard data
sets as well as our new grid world datasets are shown in
Fig. 1, Fig. 5, Fig. 6 and Fig. 7. We summarize the broad
trends observed:

1) With the exception of COLAMD applied to JTJ and
EMD, the performance of the methods are comparable:
They produce similar-quality variable reordering, and the
variation in the computational time required to compute those
orderings is generally very small in comparison to the solve
time.

2) COLAMD with JTJ produces a poor variable reorder-
ing, leading to significant fill-in and slow solve time: The
second section in Fig. 7 shows that fill-in for COLAMD
JTJ is higher than that of other algorithms. It produces on
an average more than 2 times the fill-in compared to other
algorithms. Fig. 1(b) shows that the solve time for COLAMD
JTJ is much slower. COLAMD must be used only on the
Jacobian and not on the normal matrix JTJ .

3) BHAMD, despite its simplicity, is generally competi-
tively in terms of computational time and the quality of the

reordering: It is a viable option, particularly if the more
complex packages are not available.

4) Further development of minimum-degree algorithm
variants may not produce significant reductions in fill-in:
Our attempts to search for better orderings than those com-
puted by AMD consistently resulted in best-case reductions
in fill-in of less than 0.5%

VI. FINAL WORDS

In this paper, we compared reordering and solve times
for various sparse matrix reordering algorithms on standard
SLAM data sets, including simulated, real and multi robot
graphs. We showed a simple algorithm like BHAMD, having
comparative performance to state of the art methods. We
provided empirical results which proved that small varia-
tions in minimum degree algorithms do not decrease fill-in
drastically.
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