
Physics 506 Winter 2008

Homework Assignment #12 — Solutions

Textbook problems: Ch. 14: 14.4, 14.5, 14.8, 14.11

14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit
solid angle in nonrelativisic motion of a particle with charge e, moving

a) along the z axis with instantaneous position z(t) = a cosω0t.

In the non-relativisitic limit, the radiated power is given by

dP (t)
dΩ

=
e2

4πc
|n̂× ~̇β|2 (1)

In the case of harmonic motion along the z axis, we take

~r = ẑa cosω0t, ~β = −ẑ aω0

c
sinω0t, ~̇β = −ẑ aω

2
0

c
cosω0t

By symmetry, we assume the observer is in the x-z plane tilted with angle θ from
the vertical. In other words, we take

n̂ = x̂ sin θ + ẑ cos θ

This provides enough information to simply substitute into the power expression
(1)

n̂× ~̇β = ŷ
aω2

0

c
sin θ cosω0t ⇒ dP (t)

dΩ
=
e2a2ω4

0

4πc3
sin2 θ cos2 ω0t

Taking a time average (cos2 ω0t→ 1/2) gives

dP

dΩ
=
e2a2ω4

0

8πc3
sin2 θ

This is a familiar dipole power distribution, which looks like
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Integrating over angles gives the total power

P =
e2a2ω4

0

3c3



b) in a circle of radius R in the x-y plane with constant angular frequency ω0.

Sketch the angular distribution of the radiation and determine the total power
radiated in each case.

Here we take instead

~r = R(x̂ cosω0t+ ŷ sinω0t) → ~β =
Rω0

c
(−x̂ sinω0t+ ŷ cosω0t)

~̇β = −Rω
2
0

c
(x̂ cosω0t+ ŷ sinω0t)

Then

n̂× ~̇β = −Rω
2
0

c
[ŷ cos θ cosω0t+ (ẑ sin θ − x̂ cos θ) sinω0t]

which gives
dP (t)
dΩ

=
e2R2ω4

0

4πc3
(cos2 θ cos2 ω0t+ sin2 ω0t)

Taking a time average gives

dP

dΩ
=
e2R2ω4

0

8πc3
(1 + cos2 θ)

This distribution looks like
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The total power is given by integration over angles. The result is

P =
2e2R2ω4

0

3c3

14.5 A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a head-on
collision with a fixed central force field of finite range. The interaction is repulsive
and described by a potential V (r), which becomes greater than E at close distances.

a) Show that the total energy radiated is given by

∆W =
4
3
z2e2

m2c3

√
m

2

∫ ∞
rmin

∣∣∣∣dVdr
∣∣∣∣2 dr√

V (rmin)− V (r)



where rmin is the closest distance of approach in the collision.

In the non-relativistic limit, we may use Lamour’s formula written in terms of ~̇p

P (t) =
2(ze)2

3m2c3

∣∣∣∣d~pdt
∣∣∣∣2 =

2(ze)2

3m2c3

(
dV (r)
dr

)2

(2)

where we have used Newton’s second law to write

d~p

dt
= ~F = −r̂ dV (r)

dr

The radiated energy is given by integrating power over time

∆W =
∫ ∞
−∞

P (t) dt

However, this can be converted to an integral over the trajectory of the particle.
By symmetry, we double the value of the integral from closest approach to infinity

∆W = 2
∫ ∞
rmin

P

dr/dt
dr (3)

The velocity dr/dt can be obtained from energy conservation. For a head-on
collision, we have simply

E =
1
2
mṙ2 + V (r) ⇒ dr

dt
=

√
2(E − V (r))

m

Substituting P (t) from (2) as well as dr/dt into (3) then yields

∆W =
4z2e2

3m2c3

√
m

2

∫ ∞
rmin

(
dV

dr

)2
dr√

E − V (r)

Since the velocity (and hence kinetic energy) vanishes at closest approach, the
total energy E is the same as the potential energy at closest approach, E =
V (rmin). Using this finally gives

∆W =
4z2e2

3m2c3

√
m

2

∫ ∞
rmin

(
dV

dr

)2
dr√

V (rmin)− V (r)
(4)

b) If the interaction is a Coulomb potential V (r) = zZe2/r, show that the total
energy radiated is

∆W =
8
45
zmv5

0

Zc3

where v0 is the velocity of the charge at infinity.



Substituting

V (r) =
zZe2

r
,

dV

dr
= −zZe

2

r2

into (4) gives

∆W =
4z3Ze5

3m2c3

√
zZmrmin

2

∫ ∞
rmin

1
r7/2

dr√
r − rmin

=
4z3Ze5

3m2c3r3min

√
zZmrmin

2

∫ ∞
1

1
r7/2

dr√
r − 1

=
4z3Ze5

3m2c3r3min

√
zZmrmin

2
× 16

15

=
32z3Ze5

45m2c3r3min

√
2zZmrmin

We may relate rmin to the velocity v0 at infinity using energy conservation

zZe2

rmin
=

1
2
mv2

0 ⇒ rmin =
2zZe2

mv2
0

Substituting this in the above radiated energy expression gives

∆W =
8zmv5

0

45Zc3

14.8 A swiftly moving particle of charge ze and mass m passes a fixed point charge Ze in
an approximately straight-line path at impact parameter b and nearly constant speed
v. Show that the total energy radiated in the encounter is

∆W =
πz4Z2e6

4m2c4β

(
γ2 +

1
3

)
1
b3

This is the relativistic generalization of the result of Problem 14.7.

We start with the Liénard result for the radiated power of a relativistic accelerated
charge

P =
2
3

(ze)2

c
γ6[(~̇β)2 − (~β × ~̇β)2]

We may remove the cross-product by rewriting the second term using the identity
(~β × ~̇β)2 = β2(~̇β)2 − (~β · ~̇β)2. The result is

P =
2
3

(ze)2

c
γ4[(~̇β)2 + γ2(~β · ~̇β)2] (5)



We now compute the acceleration ~̇β for a particle obeying Newton’s second law.
Starting with

~F =
d~p

dt
=

d

dt
(γm~v) = mc

d

dt

~β√
1− β2

= mc
(1− β2)~̇β + ~β(~β · ~̇β)

(1− β2)3/2

we write

(1− β2)~̇β + ~β(~β · ~̇β) =
1

mcγ3
~F (6)

In order to solve this expression for ~̇β we may first take the dot product of both
sides with the velocity ~β to obtain

~β · ~̇β =
1

mcγ3
~β · ~F

Note that, physically, this gives the parallel component of the acceleration in
terms of the parallel component of the force. Substituting this back into (6) gives
the desired expression

~̇β =
1

mcγ
[~F − ~β(~β · ~F )]

We now insert this into the Liénard result, (5), to get

P =
2
3

(ze)2γ2

m2c3
[(~F − ~β(~β · ~F ))2 + γ−2(~β · ~F )2]

=
2
3

(ze)2γ2

m2c3
[F 2 − (~β · ~F )2]

(7)

If desired, we can break this up into force components parallel and perpendicular
to the velocity

F 2 = F 2
⊥ + F 2

‖ ,
~β · ~F = βF‖

to arrive at

P =
2
3

(ze)2

m2c3
[γ2F 2

⊥ + F 2
‖ ] (8)

For the Coulomb potential V = (ze)(Ze)/r, the force is radially directed

~F = −r̂ dF
dr

= r̂
zZe2

r2

Assuming the particle moves in an approximately straight-line path with impact
parameter b



r

x

y

b

x=vt v

θ

the parallel and perpendicular components of the force are

F⊥ =
zZe2

r2
b

r
, F‖ =

zZe2

r2

√
r2 − b2
r

Inserting this into (8) gives

P =
2
3
z4Z2e6

m2c3
b2γ2 + (r2 − b2)

r6
=

2
3
z4Z2e6

m2c3

(
b2(γ2 − 1)

r6
+

1
r4

)
The total radiated energy is given by integrating

∆W =
∫ ∞
−∞

P dt = 2
∫ ∞
b

P

dr/dt
dr = 2

∫ ∞
b

P
r

v

dr√
r2 − b2

where we have used the relation r2 = x2 + b2 = (vt)2 + b2 to change from time to
radial integration. Substituting in the explicit formula for the power gives

∆W =
4
3
z4Z2e6

m2c3v

∫ ∞
b

(
b2(γ2 − 1)

r5
+

1
r3

)
dr√
r2 − b2

=
4
3
z4Z2e6

m2c4βb3

∫ ∞
1

(
(γ2 − 1)
u5

+
1
u3

)
du√
u2 − 1

where we have changed to a dimensionless variable u by letting r = bu. The
integral can now be performed by trig substitution u = sec θ,

√
u2 − 1 = tan θ

and du = tan θ sec θdθ

∆W =
4
3
z4Z2e6

m2c4βb3

∫ π/2

0

[(γ2 − 1) cos4 θ + cos2 θ]dθ

=
4
3
z4Z2e6

m2c4βb3

(
(γ2 − 1)

3π
16

+
π

4

)
=

πz4Z2e6

4m2c4βb3

(
(γ2 − 1) +

4
3

)
=

πz4Z2e6

4m2c4βb3

(
γ2 +

1
3

)

14.11 A particle of charge ze and mass m moves in external electric and magnetic fields ~E
and ~B.



a) Show that the classical relativistic result for the instantaneous energy radiated
per unit time can be written

P =
2
3
z4e4

m2c3
γ2[( ~E + ~β × ~B)2 − (~β · ~E)2]

where ~E and ~B are evaluated at the position of the particle and γ is the particle’s
instantaneous Lorentz factor.

We start with the Liénard result, written in terms of the force, which was obtained
above in (7)

P =
2
3

(ze)2γ2

m2c3
[F 2 − (~β · ~F )2]

The Lorentz force for a particle of charge ze is given by

~F = ze( ~E + ~β × ~B)

so that
F 2 = (ze)2( ~E + ~β × ~B)2, (~β · ~F )2 = (ze)2(~β · ~E)2

Substituting this into the expression for the radiated power immediately yields
the desired result

P =
2
3

(ze)4γ2

m2c3
[( ~E + ~β × ~B)2 − (~β · ~E)2] (9)

b) Show that the expression in part a can be put into the manifestly Lorentz-
invariant form

P =
2z4r20
3m2c

Fµνpνp
λFλµ

where r0 = e2/mc2 is the classical charged particle radius.

We can perform an explicit calculation with

Fµν =


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 , pµ = γmc(1, βx, βy, βz)

to obtain

Fµνpν = γmc


0 −Ex −Ey −Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0




1
−βx
−βy
−βz

 = γmc


−~β · ~E

[ ~E + ~β × ~B]x
[ ~E + ~β × ~B]y
[ ~E + ~β × ~B]z





For pλFλµ, we may use antisymmetry of the Maxwell tensor along with a lowering
of the µ index to deduce that

pλFλµ = γmc


~β · ~E

[ ~E + ~β × ~B]x
[ ~E + ~β × ~B]y
[ ~E + ~β × ~B]z


As a result, we see that

Fµνpνp
λFλµ = γ2m2c2[( ~E + ~β × ~B)2 − (~β · ~E)2]

This allows us to rewrite (9) in the manifestly Lorentz-invariant form

P =
2
3

(ze)4

m4c5
Fµνpνp

λFλµ =
2
3
z4r20
m2c

Fµνpνp
λFλµ (10)

where we have introduced r0 = e2/mc2.

Alternatively, note that the relativistic generalization of Larmor’s formula is given
by

P = −2
3

(ze)2

m2c3

(
dpµ
dτ

dpµ

dτ

)
Using the manifestly Lorentz covariant form of the Lorentz force law

dpµ

dτ
=
ze

c
FµνUν =

ze

mc
Fµνpν

then directly gives (10).


