Physics 506 Winter 2008

Homework Assignment #12 — Solutions

Textbook problems: Ch. 14: 14.4, 14.5, 14.8, 14.11

14.4 Using the Liénard-Wiechert fields, discuss the time-averaged power radiated per unit
solid angle in nonrelativisic motion of a particle with charge e, moving

a) along the z axis with instantaneous position z(t) = a cos wot.

In the non-relativisitic limit, the radiated power is given by
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In the case of harmonic motion along the z axis, we take
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By symmetry, we assume the observer is in the x-z plane tilted with angle 8 from
the vertical. In other words, we take
n==asinf + Zcosf
This provides enough information to simply substitute into the power expression
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Taking a time average (cos? wot — 1/2) gives
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This is a familiar dipole power distribution, which looks like
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Integrating over angles gives the total power
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b) in a circle of radius R in the z-y plane with constant angular frequency wy.

Sketch the angular distribution of the radiation and determine the total power
radiated in each case.

Here we take instead
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Taking a time average gives
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This distribution looks like

The total power is given by integration over angles. The result is
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14.5 A nonrelativistic particle of charge ze, mass m, and kinetic energy E makes a head-on
collision with a fixed central force field of finite range. The interaction is repulsive
and described by a potential V' (r), which becomes greater than E at close distances.

a) Show that the total energy radiated is given by
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where Ty, is the closest distance of approach in the collision.

In the non-relativistic limit, we may use Lamour’s formula written in terms of ﬁ
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where we have used Newton’s second law to write
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The radiated energy is given by integrating power over time
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However, this can be converted to an integral over the trajectory of the particle.
By symmetry, we double the value of the integral from closest approach to infinity
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The velocity dr/dt can be obtained from energy conservation. For a head-on
collision, we have simply
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Substituting P(t) from (2) as well as dr/dt into (3) then yields
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Since the velocity (and hence kinetic energy) vanishes at closest approach, the
total energy E is the same as the potential energy at closest approach, E =
V (7min). Using this finally gives
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If the interaction is a Coulomb potential V(r) = zZe?/r, show that the total
energy radiated is
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where v is the velocity of the charge at infinity.



Substituting
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We may relate ryi, to the velocity vy at infinity using energy conservation
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Substituting this in the above radiated energy expression gives
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14.8 A swiftly moving particle of charge ze and mass m passes a fixed point charge Ze in
an approximately straight-line path at impact parameter b and nearly constant speed
v. Show that the total energy radiated in the encounter is
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This is the relativistic generalization of the result of Problem 14.7.

We start with the Liénard result for the radiated power of a relativistic accelerated
charge
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We may remove the cross-product by rewriting the second term using the identity
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2 a13 4 22(3 . B (5)




We now compute the acceleration B’ for a particle obeying Newton’s second law.
Starting with

F= @ _ i( mv) :mci—g :mc(1_52>5+5(5' ;)
at — dt' dt /1 — 32 (1— 32)3/2
we write
N U
(1=p7)B+8(8-8) = et (6)

In order to solve this expression for ﬁ we may first take the dot product of both
sides with the velocity 3 to obtain
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Note that, physically, this gives the parallel component of the acceleration in
terms of the parallel component of the force. Substituting this back into (6) gives

the desired expression
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We now insert this into the Liénard result, (5), to get

b ™

If desired, we can break this up into force components parallel and perpendicular
to the velocity
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to arrive at
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For the Coulomb potential V' = (ze)(Ze)/r, the force is radially directed

Assuming the particle moves in an approximately straight-line path with impact
parameter b
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Inserting this into (8) gives
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The total radiated energy is given by integrating

s [T pa [T [T

where we have used the relation 72 = 22 +b? = (vt)? + b? to change from time to
radial integration. Substituting in the explicit formula for the power gives
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where we have changed to a dimensionless variable u by letting r = bu. The

integral can now be performed by trig substitution v = secf, vu? —1 = tan6
and du = tan 6 sec 0df

4 24728 (/2
AW — 22 47¢ 2 _ 1) cos® 2
w 3m2046b3/0 [(y ) cos™ 6 + cos” 0]df

4 2172%e8 9 3w
T 3m2ciBb3 ((7 BRATH 16 i 4)

21 7%l 5 4 w24 7%% (, 1
T Am2ABr ((’y -D+ §> " Am2cA 603 <fy + §)

14.11 A particle of charge ze and mass m moves in external electric and magnetic fields E
and B.
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Show that the classical relativistic result for the instantaneous energy radiated
per unit time can be written
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where E and B are evaluated at the position of the particle and + is the particle’s
instantaneous Lorentz factor.

We start with the Liénard result, written in terms of the force, which was obtained
above in (7)
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The Lorentz force for a particle of charge ze is given by

[F2 = (5 F)?

F = ze(E + 3 x B)

so that
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Substituting this into the expression for the radiated power immediately yields
the desired result
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Show that the expression in part a can be put into the manifestly Lorentz-
invariant form
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where rg = e2/mc? is the classical charged particle radius.

We can perform an explicit calculation with
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For p>‘F,\H, we may use antisymmetry of the Maxwell tensor along with a lowering
of the p index to deduce that
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As a result, we see that
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This allows us to rewrite (9) in the manifestly Lorentz-invariant form
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where we have introduced rg = €2 /mc?.

Alternatively, note that the relativistic generalization of Larmor’s formula is given

by
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Using the manifestly Lorentz covariant form of the Lorentz force law
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then directly gives (10).



