Physics 506 Winter 2008

Midterm — Solutions

This midterm is a two hour open book, open notes exam. Do all three problems.

[35 pts] 1. Consider the propagation of waves in a rectangular waveguide with sides of lengths a

and b.
y
b
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[15] a) Show that (for m > 0 and n > 0) a TE,,,, and TM,,,,, mode can be superposed

to make the x component of the magnetic field vanish, H, = 0.

For a right-moving TE,,,, mode defined by

m
P TE = Hy cos

the x component of the magnetic field is given by
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Likewise, for a right-moving TM,,,,, mode defined by
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the z component of the magnetic field is
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We note that in both cases, the modes have identical eigenvalues
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and identical functional behavior for H,. This allows us to superpose and cancel
the x component of the magnetic field
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The solution is
_ k m/a
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Of course, even though H, = 0, the other components of E and H do not
necessarily vanish. Furthermore, the two modes that are superposed must be
moving in the same direction in order to to have H, = 0 everywhere along the z
direction.

Compute the transmitted power in this superposition mode. (Recall that TE
and TM modes are orthogonal in the sense that 1 [ 2 - (ETE X ITI%M) da = 0 and
similarly with TE and TM interchanged.)

The power is obtained from the Poynting vector
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However, since the modes are orthogonal, the power simply decomposes into an
incoherent sum P = PTE + P™ where
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We use the standard expressions for transmitted power in a waveguide
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where T8 and ™ are given in (1) and (3), respectively. Hence
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Finally, noting that k% = pew? — 42 as well as the definition of 42 in (4), the
power expression may be rewritten as
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This may alternatively be written in terms of Ey as
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Can we still have H, = 0 when m =0 or n = 07

If either m = 0 or n = 0, then the TM mode does not exist. In this case we cannot
superpose the two modes. However, the TE mode itself may have a vanishing
H,. For HIE given in (2), this may occur when m = 0. In particular, the TEo,
mode has H, = 0, while TE,,,o cannot have H, = 0. So it is possible to have
H, = 0 when m = 0 but not when n = 0.

[35 pts] 2. A non-conducting sphere (e = ¢y and p = pg) of radius a carries a uniform charge
density pg throughout its volume. The sphere is centered at the origin of the coordinate
system and oscillates back and forth about the z-axis with an angular velocity & =
Z ow cos wt.
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a)

b)

Show that the current density may be expressed as

J = R[¢ podowr sin fe "]

The velocity of a point ¥ within the sphere is given by

~

U=W X T =2 X Trpow coswt = ¢ppowr sin O cos wt
As a result, the current density is
fiwt]

J = po¥ = dppodowr sin 0 cos wt = R[dpodowr sin fe

This current is only non-vanishing for » < a. For this time-harmonic current
density, we may define the complex current as

J(Z) = dpodowrsin b (5)

Compute the multipole radiation coefficients ag(l,m) and ap(l,m). Note that
the integral [ z!*2j,(x) dz = 2'*2j;11(z) may be helpful.

We start with the electric multipoles ag(l,m). Note from (5) that both p =
(1/iw)V -J =0 and 7- J = 0. Since
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we immediately conclude that all electric multipoles vanish
ag(l,m) =20

For the magnetic multiples as (I, m), we first compute

7xJ=7x ¢3p0¢0wr sinf = —épogbowrz sin 6



and

V-(rxJ) = TSIHO% sin@(r'x J)g = e d aagpogbowr sin® 0 = —2pypowr cos f

This allows us to compute
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where we have used the fact that cosf = Pj(cos) = /3/4nY10(6 as well
as the orthonormality of the spherical harmonics. The radial 1ntegral may be
performed according to

“ 1 [ha w3a(2) | (ka)3jo(ka)
| rintnr = [ atin(yae = TE) - LRG0
0 0 0
Hence the only non-vanishing magnetic multipole is
. /87 3.
apy(1,0) =1 ?poqﬁowka ja(ka)

[10] ¢) Find the time-averaged power radiated per unit solid angle dP/dS2.
Since the radiation is purely magnetic dipole, the angular power distribution is
given by

dP
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[30 pts] 3. Three small uniform and non-permeable (1 = pg) dielectric spheres of radii b and
relative dielectric constant €, ~ 1 are located along the z axis, centered at positions
z=—a,z=0and z = a.
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Using the Born approximation, compute the unpolarized differential scattering
cross section do/d). Assume kb < 1, but allow a to be arbitrarily small or large.

The Born approximation is given by
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where ¢ = Eo — k and where we have used the fact that the dielectric is non-
permeable. Since Je is only non-vanishing in the interior of the dielectric spheres,
the volume integral may be restricted to the three small spheres located at & ~ 0,
T~ a% and T ~ —aZ. Since each sphere has a volume of (4/3)7b3, we obtain

g*fzk_2 éwb?) (E —1)(5*'3)(1+6iaqz—|—e*ian)
47 \ 3 " 0
= k0% (ep — 1)(€" - &) (1 + 2 cos(aqz))

where
q> = ko. — k. = k(cosfy — cos0)

Here 6 is the polar angle of the incident wave, and € is the polar angle of the
scattered wave. The differential scattering cross section is then

~ - =17
zli_?) = |e* - f|* = kN° (6 3 ) €% - &% [1 + 2 cos(ka(cos By — cosh))]?

For unpolarized scattering, the polarization average is given by
ed - Alteosy)

where v is the angle between ko and k (ie the incident and scattered wave). Hence

do 46 (€ —1 > 1+ cos?y 2
m,\,]{;b< 3 ) 5 [1 4+ 2 cos(ka(cos By — cosB))] (6)

where cos~y is given in spherical coordinates by

cosy = cos 6 cos 6y + sin @ sin Oy cos(¢ — ¢o)

Show that, for ka < 1, the cross section is nine times as large as that for a single
sphere.

For ka < 1, we may approximate

1+ 2cos(ka(cosfy — cosh)) ~ 3



c)

Substituting this into (6) gives

do 0430 (er — 1)2 1+ cos? v

dQ? 3 2

which is nine times as large as the single sphere result

do(one sphere) 1.6 [ €r—1 > 14 cos?y
=k"b
ds) 3 2

Note that for N small spheres, the long wavelength scattering cross section would
be N2 as large. At long wavelengths, the scattering is coherent, and the amplitude
scales as total dielectric volume (so the cross section scales as the square of the
volume).

Now suppose the incident plane wave is traveling in the +x direction. For what
values of a does the scattered power vanish along the z axis? Give your answer
in terms of the wavelength A\ = 27 /k.

If the incident wave travels along the 4z, this corresponds to taking 6y = 7/2
and ¢o = 0. Inserting this into (6) gives

do LS <er — 1)2 1 4 sin” 0 cos? ¢

dQ 3 9

1+2 2
70 [1+ 2 cos(ka cos0)]

In order to examine the scattered power along the z axis, we take § =0 or 7. In
either case, the result is

do a6 (€r—1 21 2
mzkb 5 5[1+ 2cos ka

This vanishes when
1 2T
1+2coska=0 = Cosk:a:—§ = l{:a:j:?+2mr

Using k = 27/ gives
a=(n£3)A

This result can also be obtained by simply demanding destructive interference of
the scattered waves from the centers of the three (small) spheres.



