
Physics 506 Winter 2008

Homework Assignment #3 — Due Thursday, January 24

Textbook problems: Ch. 8: 8.18, 8.20
Ch. 9: 9.1, 9.3

8.18 a) From the use of Green’s theorem in two dimensions show that the TM and TE
modes in a waveguide defined by the boundary-value problems (8.34) and (8.36)
are orthogonal in the sense that∫

A

Ez λEz µda = 0 for λ 6= µ

for TM modes, and a corresponding relation for Hz for TE modes.

b) Prove that the relations (8.131)–(8.134) form a consistent set of normalization
conditions for the fields, including the circumstances when λ is a TM mode and
µ is a TE mode.

8.20 An infinitely long rectangular waveguide has a coaxial line terminating in the short
side of the guide with the thin central conductor forming a semicircular loop of radius
R whose center is a height h above the floor of the guide, as shown in the accompanying
cross-sectional view. The half-loop is in the plane z = 0 and its radius R is sufficiently
small that the current can be taken as having a constant value I0 everywhere on the
loop.

a) Prove that to the extent that the current is constant around the half-loop, the
TM modes are not excited. Give a physical explanation of this lack of excitation.

b) Determine the amplitude for the lowest TE mode in the guide and show that its
value is independent of the height h.

c) Show that the power radiated in either direction in the lowest TE mode is
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where Z is the wave impedance of the TE10 mode. Here assume R� a, b.

9.1 A common textbook example of a radiating system (see Problem 9.2) is a configuration
of charges fixed relative to each other but in rotation. The charge density is obviously
a function of time, but it is not in the form of (9.1).

a) Show that for rotating charges one alternative is to calculate real time-dependent
multipole moments using ρ(~x, t) directly and then compute the multipole mo-
ments for a given harmonic frequency with the convention of (9.1) by inspection
or Fourier decomposition of the time-dependent moments. Note that care must



be taken when calculating qlm(t) to form linear combinations that are real before
making the connection.

b) Consider a charge density ρ(~x, t) that is periodic in time with period T = 2π/ω0.
By making a Fourier series expansion, show that it can be written as

ρ(~x, t) = ρ0(~x ) +
∞∑
n=1

<[2ρn(~x )e−inω0t]

where

ρn(~x ) =
1
T

∫ T

0

ρ(~x, t)einω0tdt

This shows explicitly how to establish connection with (9.1).

c) For a single charge q rotating about the origin in the x-y plane in a circle of
radius R at constant angular speed ω0, calculate the l = 0 and l = 1 multipole
moments by the methods of parts a and b and compare. In method b express the
charge density ρn(~x ) in cylindrical coordinates. Are there higher multipoles, for
example, quadrupole? At what frequencies?

9.3 Two halves of a spherical metallic shell of radius R and infinite conductivity are sepa-
rated by a very small insulating gap. An alternating potential is applied between the
two halves of the sphere so that the potentials are ±V cosωt. In the long-wavelength
limit, find the radiation fields, the angular distribution of radiated power, and the
total radiated power from the sphere.


