
Physics 506 Winter 2008

Midterm — Solutions

This midterm is a two hour open book, open notes exam. Do all three problems.

[35 pts] 1. Consider the propagation of waves in a rectangular waveguide with sides of lengths a
and b.
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[15] a) Show that (for m > 0 and n > 0) a TEmn and TMmn mode can be superposed
to make the x component of the magnetic field vanish, Hx = 0.

For a right-moving TEmn mode defined by

ψTE = H0 cos
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the x component of the magnetic field is given by
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Likewise, for a right-moving TMmn mode defined by

ψTM = E0 sin
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the x component of the magnetic field is
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We note that in both cases, the modes have identical eigenvalues
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and identical functional behavior for Hx. This allows us to superpose and cancel
the x component of the magnetic field
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The solution is

E0 = − k

εω

m/a

n/b
H0

Of course, even though Hx = 0, the other components of ~E and ~H do not
necessarily vanish. Furthermore, the two modes that are superposed must be
moving in the same direction in order to to have Hx = 0 everywhere along the z
direction.

[15] b) Compute the transmitted power in this superposition mode. (Recall that TE
and TM modes are orthogonal in the sense that 1

2

∫
ẑ · ( ~ETE × ~H∗

TM) da = 0 and
similarly with TE and TM interchanged.)

The power is obtained from the Poynting vector

P =
∫
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However, since the modes are orthogonal, the power simply decomposes into an
incoherent sum P = PTE + PTM where

PTE = 1
2

∫
A
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We use the standard expressions for transmitted power in a waveguide
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where ψTE and ψTM are given in (1) and (3), respectively. Hence
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Finally, noting that k2 = µεω2 − γ2 as well as the definition of γ2 in (4), the
power expression may be rewritten as
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This may alternatively be written in terms of E0 as
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[5] c) Can we still have Hx = 0 when m = 0 or n = 0?

If either m = 0 or n = 0, then the TM mode does not exist. In this case we cannot
superpose the two modes. However, the TE mode itself may have a vanishing
Hx. For HTE

x given in (2), this may occur when m = 0. In particular, the TE0n

mode has Hx = 0, while TEm0 cannot have Hx = 0. So it is possible to have
Hx = 0 when m = 0 but not when n = 0.

[35 pts] 2. A non-conducting sphere (ε = ε0 and µ = µ0) of radius a carries a uniform charge
density ρ0 throughout its volume. The sphere is centered at the origin of the coordinate
system and oscillates back and forth about the z-axis with an angular velocity ~ω =
ẑ φ0ω cosωt.

[5] a) Show that the current density may be expressed as

~J = <[φ̂ ρ0φ0ωr sin θe−iωt]

The velocity of a point ~r within the sphere is given by

~v = ~ω × ~r = ẑ × ~rφ0ω cosωt = φ̂φ0ωr sin θ cosωt

As a result, the current density is

~J = ρ0~v = φ̂ρ0φ0ωr sin θ cosωt = <[φ̂ρ0φ0ωr sin θe−iωt]

This current is only non-vanishing for r < a. For this time-harmonic current
density, we may define the complex current as

~J(~x ) = φ̂ρ0φ0ωr sin θ (5)

[20] b) Compute the multipole radiation coefficients aE(l,m) and aM (l,m). Note that
the integral

∫
xl+2jl(x) dx = xl+2jl+1(x) may be helpful.

We start with the electric multipoles aE(l,m). Note from (5) that both ρ =
(1/iω)~∇ · ~J = 0 and ~r · ~J = 0. Since
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we immediately conclude that all electric multipoles vanish

aE(l,m) = 0

For the magnetic multiples aM (l,m), we first compute

~r × ~J = ~r × φ̂ρ0φ0ωr sin θ = −θ̂ρ0φ0ωr
2 sin θ



and
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This allows us to compute
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where we have used the fact that cos θ = P1(cos θ) =
√

3/4πY10(θ, φ) as well
as the orthonormality of the spherical harmonics. The radial integral may be
performed according to∫ a
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Hence the only non-vanishing magnetic multipole is
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[10] c) Find the time-averaged power radiated per unit solid angle dP/dΩ.

Since the radiation is purely magnetic dipole, the angular power distribution is
given by
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=
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[30 pts] 3. Three small uniform and non-permeable (µ = µ0) dielectric spheres of radii b and
relative dielectric constant εr ≈ 1 are located along the z axis, centered at positions
z = −a, z = 0 and z = a.



[15] a) Using the Born approximation, compute the unpolarized differential scattering
cross section dσ/dΩ. Assume kb� 1, but allow a to be arbitrarily small or large.

The Born approximation is given by

~ε ∗ · ~f =
k2

4π

∫
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where ~q = ~k0 − ~k and where we have used the fact that the dielectric is non-
permeable. Since δε is only non-vanishing in the interior of the dielectric spheres,
the volume integral may be restricted to the three small spheres located at ~x ≈ 0,
~x ≈ aẑ and ~x ≈ −aẑ. Since each sphere has a volume of (4/3)πb3, we obtain

~ε ∗ · ~f ≈ k2

4π
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Here θ0 is the polar angle of the incident wave, and θ is the polar angle of the
scattered wave. The differential scattering cross section is then

dσ
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= |~ε ∗ · ~f |2 ≈ k4b6

(
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For unpolarized scattering, the polarization average is given by

|~ε ∗ · ~ε| → 1
2 (1 + cos2 γ)

where γ is the angle between ~k0 and ~k (ie the incident and scattered wave). Hence
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where cos γ is given in spherical coordinates by

cos γ = cos θ cos θ0 + sin θ sin θ0 cos(φ− φ0)

[5] b) Show that, for ka� 1, the cross section is nine times as large as that for a single
sphere.

For ka� 1, we may approximate

1 + 2 cos(ka(cos θ0 − cos θ)) ≈ 3



Substituting this into (6) gives

dσ

dΩ
≈ 9k4b6

(
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which is nine times as large as the single sphere result

dσ(one sphere)
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= k4b6
(
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Note that for N small spheres, the long wavelength scattering cross section would
be N2 as large. At long wavelengths, the scattering is coherent, and the amplitude
scales as total dielectric volume (so the cross section scales as the square of the
volume).

[10] c) Now suppose the incident plane wave is traveling in the +x direction. For what
values of a does the scattered power vanish along the z axis? Give your answer
in terms of the wavelength λ = 2π/k.

If the incident wave travels along the +x, this corresponds to taking θ0 = π/2
and φ0 = 0. Inserting this into (6) gives

dσ

dΩ
≈ k4b6

(
εr − 1

3

)2 1 + sin2 θ cos2 φ
2

[1 + 2 cos(ka cos θ)]2

In order to examine the scattered power along the z axis, we take θ = 0 or π. In
either case, the result is
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This vanishes when
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2
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Using k = 2π/λ gives
a = (n± 1

3 )λ

This result can also be obtained by simply demanding destructive interference of
the scattered waves from the centers of the three (small) spheres.


