Physics 506 Winter 2006

Homework Assignment #10 — Solutions

Textbook problems: Ch. 12: 12.15, 12.16, 12.19, 12.20

12.15 Consider the Proca equations for a localized steady-state distribution of current that
has’ only a static magnetic moment. This model can be used to study the observ-
able effects of a finite photon mass on the earths magnetic field. Note that if the
magnetization is M(Z) the current density can be written as J = ¢(V x M).

a) Show that if M = m.f(Z), where 1 is a fixed vector and f(Z) is a localized scalar
function, the vector potential is
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In the static limit, the Proca equation
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This admits a time independent Greens’ function solution
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where

Taking J = ¢(V x M) with M = m.f(Z) gives

Then
A': —1m X /6'f(f’)e|a_c,—_,,|d3x’

Integration by parts (assuming the surface term vanishes since the source is lo-
calized) gives



where we made use of the fact that V'G(z,2') = —VG(z, ).

If the magnetic dipole is a point dipole at the origin [f(Z) = §(Z)], show that
the magnetic field away from the origin is
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For f(Z) = 6(&) the resulting vector potential is
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The magnetic field is then
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The result of part b) shows that at fixed r = R (on the surface of the earth), the
earth’s magnetic field will appear as a dipole angular distribution, plus an added
constant magnetic field (an apparently external field) antiparallel to m. Satellite
and surface observations lead to the conclusion that this “external” field is less
than 4 x 1073 times the dipole field at the magnetic equator. Estimate a lower
limit on 1! in earth radii and an upper limit on the photon mass in grams from
this datum.

At the magnetic equator we have 7 - m = 0. Hence
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Setting ]Edipole| / ]éextemaﬂ <4 x 1073 gives

2(uR)? <4 x 107%(1 + pR + L(uR)?)
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or uR < 0.08. The lower limit on p~" is then

p ! >125R =8.0 x 10° cm



12.16

where we have used the radius of the earth R = 6.38 x 10® cm. This corresponds
to an upper limit on the photon mass

wh 1.05 x 10~ 27 ergs _48
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Starting with the Proca Lagrangian density (12.91) and following the same pro-
cedure as for the electromagnetic fields, show that the symmetric stress-energy-
momentum tensor for the Proca fields is
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The Proca Lagrangian density is
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where we have used a shorthand notation F? = F,, F* and A? = A AR In
order to convert this canonical stress tensor to the symmetric stress tensor, we
write 9V Ay = F¥ + 0,AY. Then
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Using the Proca equation of motion 9y F** + 2 A* = 0 then gives
TH = OM 4 9,5

where .
O = = [FIFYy — " F? = pP(AMAY — v A%)) (1)
is the symmetric stress tensor and SV = (1/47)F* A" is antisymmetric on the

first two indices.

For these fields in interaction with the external source J”, as in (12.91), show that
the differential conservation laws take the same form as for the electromagnetic
fields, namely

JNF

c

9,08 =




Taking a 4-divergence of the symmetric stress tensor (1) gives
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Note that in the second line we have used the fact that 9,A4* = 0, which is

automatic for the Proca equation. To obtain the last line, we used the Bianchi
identity 30lP F¥A = 0 as well as the Proca equation of motion.

c¢) Show explicitly that the time-time and space-time components of %% are
1
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Given the explicit form of the Maxwell tensor, it is straightforward to show that
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The time-time component of this is
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Similarly, the time-space components are
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12.19 Source-free electromagnetic fields exist in a localized region of space. Consider the
various conservation laws that are contained in the integral of 9, M%7 = 0 over all
space, where M*97 is defined by (12.117).

a)

Show that when (8 and « are both space indices conservation of the total field
angular momentum follows.

Note that
Mozﬂ'y — @aﬂx*y . @avlﬂ
Hence
M = %) — 0%z = e(g'a! — g'a') = ceVF (G x T)F = —ceH(F x §)"

where ¢ is the linear momentum density of the electromagnetic field. Since ¥ x ¢
is the angular momentum density, integrating M° over 3-space gives the field
angular momentum

MY = /MOijdg'a: = —cetk /(a_:’ x §)Fd3x = —ceIRLF

The conservation law 9, M** = 0 then corresponds to the conservation of angular
momentum in the electromagnetic field.

Show that when 3 = 0 the conservation law is

where X is the coordinate of the center of mass of the electromagnetic fields,
defined by
X/ud?’m:/fudgx

where u is the electromagnetic energy density and FE., and P, are the total
energy and momentum of the fields.

In this case, we have
MO = /MOOide _ /(@ooxi _ @ofixo) B
= /(uacz — cgixo) dPr = /(uazz — Cthi) Az

Making use of the definition [uz'd®x = EX" where E = [ud>z is the total field
energy, we have simply ' ' '
M = EX' — ¢*tP'



where P = [§d3z is the (linear) field momentum. Since M% is a conserved
charge, its time derivative must vanish. This gives
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(where we used the fact that energy and momentum are conserved, namely
dE/dt = 0 and dP/dt = 0). The result dX /dt = ¢?P/E then follows.

12.20 A uniform superconductor with London penetration depth Ay, fills the half-space = > 0.
The vector potential is tangential and for z < 0 is given by

Ay — (aeikx + be—z’kx)e—iwt

Find the vector potential inside the superconductor. Determine expressions for the
electric and magnetic fields at the surface. Evaluate the surface impedance Zs (in
Gaussian units, 47 /c times the ratio of tangential electric field to tangential magnetic
field). Show that in the appropriate limit your result for Z, reduces to that given in
Section 12.9.

The behavior of the vector potential inside the superconductor may be described
by the massive Proca equation

Working with a harmonic time behavior e~*?, the Proca equation may be rewrit-
ten as

[V? + @/ = p?)]JA =0
This has a generic solution of the form
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where
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The second form of the square root is appropriate for sufficiently low frequencies.
Since the vector potential outside the superconductor (x < 0) only points in the
y direction, and since the wave is normally incident (ie only a function of x), it
is natural to expect the solution inside the superconductor to be of the form

Ay _ (ae_\/MQ_WQ/CQI _i_ﬁew/,lﬂ—wQ/CziE)e—th

for appropriate constants o and 3. To avoid an exponentially growing behavior,
we take 3 = 0. Then it is straightforward to see that matching at x = 0 gives

(aez’kx + be—ikm)e—iwt <0
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In the absence of a scalar potential, the electric and magnetic fields are
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The surface impedance is given by
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Setting = 1/A\r, and w = 27¢/ A finally yields
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This reduces in the long wavelength limit (A > Ap) to the expected result
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