
Physics 506 Winter 2006

Homework Assignment #9 — Solutions

Textbook problems: Ch. 12: 12.2, 12.9, 12.13, 12.14

12.2 a) Show from Hamilton’s principle that Lagrangians that differ only by a total time
derivative of some function of the coordinates and time are equivalent in the sense
that they yield the same Euler-Lagrange equations of motion.

Suppose Lagrangians L1 and L2 differ by a total time derivative of the form

L2 = L1 +
d

dt
f(qi(t), t)

Writing out the time derivative explicitly gives
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∂f

∂qi
q̇i +

∂f

∂t

The Euler-Lagrange equations for L2 are derived from
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∂qi∂t
− d

dt

∂f

∂qi

=
∂L1

∂qi
− d

dt

∂L1

∂q̇i
+

∂
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∂qi
− d

dt

∂L1

∂q̇i

As a result, both L1 and L2 yield the same Euler-Lagrange equations.

Note that it is perhaps more straightforward to consider the change in the action

S2 =
∫ t2

t1

L2 dt =
∫ t2

t1

(L1 +
df

dt
) dt =

∫ t2

t1

L1 dt + f(qi(t2), t2)− f(qi(t1), t1)

In other words, the additional of a total time derivative only changes the action
by a surface term. So long as we do not vary the path at its endpoints (δqi(t1) =
δqi(t2) = 0) we end up with the same equations of motion.



b) Show explicitly that the gauge transformation Aα → Aα + ∂αΛ of the potentials
in the charged-particle Lagrangian (12.12) merely generates another equivalent
Lagrangian.

We start with the Lagrangian

L = −mc2
√

1− u2/c2 +
e

c
~u · ~A− eΦ

In components, the gauge transformation Aµ → Aµ + ∂µΛ reads

Φ → Φ +
1
c

∂

∂t
Λ, ~A→ ~A− ~∇Λ

In this case, the Lagrangian changes by the term

δL = −e

c

(
∂

∂t
+ ~u · ~∇

)
Λ

However, for Λ = Λ(~x(t), t), the above is just the total time derivative

δL = −e

c

dΛ
dt

As a result the Lagrangian changes by a total time derivative. Thus the gauge
transformed Lagrangian is equivalent to the original one in the sense of part a).

12.9 The magnetic field of the earth can be represented approximately by a magnetic dipole
of magnetic moment M = 8.1 × 1025 gauss-cm3. Consider the motion of energetic
electrons in the neighborhood of the earth under the action of this dipole field (Van
Allen electron belts). [Note that ~M points south.]

a) Show that the equation for a line of magnetic force is r = r0 sin2 θ, where θ is the
usual polar angle (colatitude) measured from the axis of the dipole, and find an
expression for the magnitude of B along any line of force as a function of θ.

Taking a spherical coordinate system with the ẑ axis pointing north, the magnetic
dipole moment of the earth can be represented by ~m = −Mẑ. This gives rise to
a magnetic field

~B =
3r̂(r̂ · ~m)− ~m

r3
=

M

r3
(ẑ − 3 cos θr̂)

To obtain the equation for a line of magnetic force, we first resolve the above into
spherical coordinate components using ẑ = r̂ cos θ − θ̂ sin θ. This gives

~B = −M

r3
(2 cos θr̂ + sin θθ̂) (1)

We now note that the equation for a line of magnetic force can be written para-
metrically as r = r(λ), θ = θ(λ). In this case, the tangent to the curve is given
by

∂

∂λ
=

dr

dλ
r̂ + r

dθ

dλ
θ̂ (2)



Since this tangent vector must point in the same direction as ~B, we may take
ratios of r̂ and θ̂ components of (1) and (2) to obtain

2 cos θ

sin θ
=

dr/dλ

rdθ/dλ
=

1
r

dr

dθ

This gives rise to the separable equation dr/r = 2 cot θ dθ which may be integrated
to yield

r(θ) = r0 sin2 θ

From (1), the magnitude of the magnetic field is

B =
M
√

1 + 3 cos2 θ

r3

Along the line R = r0 sin2 θ, this becomes

B(θ) =
M
√

1 + 3 cos2 θ

r3
0 sin6 θ

(3)

b) A positively charged particle circles around a line of force in the equatorial plane
with a gyration radius a and a mean radius R (a � R). Show that the parti-
cle’s azimuthal position (east longitude) changes approximately linearly in time
according to

φ(t) = φ0 −
3
2

( a

R

)2

ωB(t− t0)

where ωB is the frequency of gyration at radius R.

Since the magnetic field is non-uniform, the gyrating particle will pick up a drift
velocity. We may use the general expression for the drift velocity

~vD =
1

ωBRc
(v2
‖ + 1

2v2
⊥)(R̂c × B̂)

where ~Rc is the ‘radius of curvature vector’. So long as the particle mainly
circles around a line of force, we assume the particle’s velocity is almost entirely
perpendicular to the lines of force. Thus

~vD ≈
1

2ωBRc
v2
⊥(r̂ × (−θ̂)) = − ωB

2Rc
a2φ̂ (4)

where we have used the fact that the magnetic field in the equitorial plane points
in the −θ̂ (ẑ) direction and that the radius of curvature vector points along r̂.
The radius of curvature can now be obtained from the equation for the magnetic



force lines r = r0 sin2 θ. However, we take a shortcut given by the relation right
after (12.60) in Jackson

~∇⊥B

B
= − R̂c

R c

for a curl-free field ~B. In the equitorial plane, the magnitude of the magnetic
field is B = M/cr3 and the perpendicular gradient direction is the r̂ direction.
The above relation then gives

Rc =
R

3
where R is the distance from the center of the earth (taken as the mean radius).
Substituting this into (4) gives

~vD = −3a2

2R
ωBφ̂

This drift velocity (in the equitorial plane) is given by ~v = Rφ̇φ̂. As a result, a
simple integration gives

φ− φ0 = −3
2

( a

R

)2

ωB(t− t0) (5)

c) If, in addition to its circular motion of part b), the particle has a small component
of velocity parallel to the lines of force, show that it undergoes small oscillations
in θ around θ = π/2 with a frequency Ω = (3/

√
2)(a/R)ωB . Find the change in

longitude per cycle of oscillation in lattitude.

So long as v‖ � v⊥, we can ignore its effect on the drift velocity. On the other
hand, by conservation of energy and of flux through orbits of the particle, we
have

v2
0 = v2

‖ + v2
⊥,0

B(z)
B0

≈ v2
‖ + ω2

Ba2 B(z)
B0

where z is the coordinate parallel to the field line. Using the geometrical relation
θ ≈ π

2 − (z/R) valid near the equitorial plane, and substituting it into (3), we
obtain

B(z) ≈
M

√
1 + 3 sin2(z/R)

R3 cos6(z/R)

≈ M

R3

(
1 + 3

( z

R

)2

− · · ·
)1/2 (

1− 1
2

( z

R

)2

+ · · ·
)−6

≈ M

R3

(
1 +

9
2

( z

R

)2
)

Hence B(z)/B0 ≈ 1 + 9
2 (z/R)2, and

v2
0 = v2

‖ + (ωBa)2 +
9
2

(ωBa

R

)2

z2



This can be written in terms of an effective conservation of energy equation
E = 1

2mv2
‖ + V (z) where

V (z) =
1
2
m

(
3ωBa√

2R

)2

z2

This is an effective harmonic oscillator potential V = 1
2mΩ2z2 with

Ω =
3√
2

( a

R

)
ωB

A complete period takes a time of

TΩ =
2π

Ω
=

2
√

2π

3ωB

(
R

a

)
(6)

Inserting this into (5) gives a change of longitude of

∆φ = −3
2

( a

R

)2

ωBTΩ = −
√

2π
( a

R

)
over one complete oscillation in lattitude.

d) For an electron of 10MeV kinetic energy at a mean radius R = 3 × 107 m, find
ωB and a, and so determine how long it takes to drift once around the earth and
how long it takes to execute one cycle of oscillation in latitude. Calculate the
same quantities for an electron of 10 keV at the same radius.

Note that ωB = eB/γmc, while to a good approximation the strength of the
magnetic field is B0 = M/R3. As a result

ωB =
eM

γmcR3
=

ecM

ER3

where E is the relativistic energy of the electron, E = γmc2 = mc2 + KE. Here
KE = (γ − 1)mc2 is the kinetic energy of the electron. Solving this for velocity
gives

v = c

√
2KE/mc2 + (KE/mc2)2

1 + KE/mc2

which may be substituted into the relation v ≈ v⊥ = ωBa to get

a =
mc2R3

√
2KE/mc2 + (KE/mc2)2

eM

The time for an electron to drift once around the earth (∆φ = 2π) can be obtained
from (5). The result is

T2π =
4π

3

(
R

a

)2 1
ωB



In addition, the period for a lattitude oscillation is given by (6). Using M =
8.1× 1025 gauss-cm3, R = 3× 109 cm, e = 4.8× 10−10 statcoul, c = 3× 1010 cm/s
and mc2 = 511 keV, 1 eV = 1.6× 10−12 erg, as well as KE = 10MeV gives

10 MeV : ωB = 2.6× 103 s−1, a = 1.2× 107 cm
T2π = 110 s, TΩ = 0.30 s

Although the radius of gyration is rather large (120 km), it is less than half a
percent of the distance from the center of the earth. As a result, the gradient of
the magnetic field is still quite small over the orbit of the electron, and hence the
approximations we have used are still valid. On the other hand, for KE = 10 keV,
we find instead

10 MeV : ωB = 5.2× 104 s−1, a = 1.1× 105 cm

T2π = 5.7× 104 s, TΩ = 1.50 s

12.13 a) Specialize the Darwin Lagrangian (12.82) to the interaction of two charged par-
ticles (m1, q1) and (m2, q2). Introduce reduced particle coordinates, ~r = ~x1 − ~x2,
~v = ~v1−~v2 and also center of mass coordinates. Write out the Lagrangian in the
reference frame in which the velocity of the center of mass vanishes and evaluate
the canonical momentum components, px = ∂L/∂vx, etc.

The two particle Darwin Lagrangian reads

L =
1
2
m1v

2
1+

1
2
m2v

2
2+

1
8c2

(m1v
4
1+m2v

4
2)−q1

q2
r12+

q1q2

2r12c2
[~v1·~v2+(~v1·r̂)(~v2·r̂)] (7)

We take a standard (non-relativistic) transformation to center of mass coordinates

~r = ~x1 − ~x2, ~R =
m1~x1 + m2~x2

M

where M = m1 + m2. Inverting this gives

~x1 = ~R +
m2

M
~r, ~x2 = ~R− m1

M
~r

As a result, the individual terms in the Lagrangian (7) become

1
2
m1v

2
1 +

1
2
m2v

2
2 =

1
2
MV 2 +

1
2
µv2

(m1v
4
1 + m2v

4
2)

8c2
=

1
8c2

(
MV 4+ 6µV 2v2+ 4µ

m2 −m1

M
(~V · ~v)v2+ µ

m3
1 + m3

2

M3
v4

)
~v1 · ~v2 = V 2 +

m2 −m1

M
~V · ~v − µ

M
v2

(~v1 · r̂)(~v2 · r̂) = (~V · r̂)2 +
m2 −m1

M
(~V · r̂)(~v · r̂)− µ

M
(~v · r̂)2



where µ = m1m2/M is the reduced mass. For vanishing center of mass velocity
(~V = 0) the Lagrangian becomes

L =
1
2
µv2 +

1
8c2

µ
m3

1 + m3
2

M3
v4 − q1q2

r
− µq1q2

2Mrc2
[v2 + (~v · r̂)2] (8)

The canonical momentum is

~p = ~∇vL = µ~v +
1

2c2
µ

m3
1 + m3

2

M3
v2~v − µq1q2

2Mrc2
[~v + (~v · r̂)r̂] (9)

b) Calculate the Hamiltonian to first order in 1/c2 and show that it is

H =
p2

2

(
1

m1
+

1
m2

)
+

q1q2

r
− p4

8c2

(
1

m3
1

+
1

m3
2

)
+

q1q2

2m1m2c2

(
p2 + (~p · r̂)2

r

)
[You may disregard the comparison with Bethe and Salpeter.]

The Hamiltonian is obtained from the Lagrangian (8) by the transformation H =
~p ·~v−L. Note, however, that we must invert the relation (9) to write the resulting
H as a function of ~p and ~r. We start with

H = ~p · ~v − 1
2
µv2 − 1

8c2
µ

m3
1 + m3

2

M3
v4 +

q1q2

r
+

µq1q2

2Mrc2
[v2 + (~v · r̂)2]

=
p2

2µ
− 1

2µ
(~p− µ~v)2 − 1

8c2
µ

m3
1 + m3

2

M3
v4 +

q1q2

r
+

µq1q2

2Mrc2
[v2 + (~v · r̂)2]

(10)
Since we only work to first order in 1/c2, we do not need to completely solve (9)
for ~v in terms of ~p. Instead, it is sufficient to note that

~v =
1
µ

~p +O
(

1
c2

)
Inserting this into (10) gives (to order 1/c2)

H =
p2

2µ
− 1

8c2

m3
1 + m3

2

M3µ3
p4 +

q1q2

r
+

q1q2

2Mµrc2
[p2 + (~p · r̂)2]

=
p2

2

(
1

m1
+

1
m2

)
− p4

8c2

(
1

m3
1

+
1

m3
2

)
+

q1q2

r
+

q1q2

2m1m2rc2
[p2 + (~p · r̂)2]

12.14 An alternative Lagrangian density for the electromagnetic field is

L = − 1
8π

∂αAβ∂αAβ − 1
c
JαAα



a) Derive the Euler-Lagrange equations of motion. Are they the Maxwell equations?
Under what assumptions?

The variations of the Lagrangian density are

∂L
∂Aµ

= −1
c
Jν ,

∂L
∂(∂νAµ)

= − 1
4π

∂νAµ

This leads to the Euler-Lagrange equations

−1
c
Jµ +

1
4π

∂ν∂νAµ = 0

or
∂ν∂νAµ =

4π

c
Jν (11)

This can be recognized as the equation of motion for the vector potential Aµ in the
Lorenz gauge ∂µAµ = 0. To see this, recall that if we define Fµν = ∂µAν − ∂νAµ

then the Maxwell equation ∂µFµν = (4π/c)Aν becomes

∂µ∂µAν − ∂ν(∂µAµ) =
4π

c
Jν

which yields (11) provided ∂µAµ = 0.

b) Show explicitly, and with what assumptions, that this Lagrangian density differs
from (12.85) by a 4-divergence. Does this added 4-divergence affect the action or
the equations of motion?

The difference between this alternative Lagrangian density and the standard
Maxwell Lagrangian density

L0 = − 1
16π

FµνFµν − 1
c
JµAmu

can be expressed as

∆L =
1

16π
FµνFµν − 1

8π
∂µAν∂µAν

= − 1
8π

∂µAν∂νAµ

= − 1
8π

∂µ(Aν∂νAµ −Aµ∂νAν)− 1
8π

(∂µAµ)2

where the last line follows by simple manipulation of derivatives. This demon-
strates that the alternative Lagrangian density differs from the ‘correct’ one by a
4-divergence so long as we are restricted to Lorenz gauge, ∂µAµ = 0.

Finally, we recall that the action is the four-dimensional integral of the Lagrangian
density. In this case, since the integral of a 4-divergence gives a surface term, the
action is only affected by a possible surface term. Assuming the vector potential
Aµ falls off sufficiently at infinity, this surface term will in fact vanish, so the action
is actually unchanged. This then demonstrates that the equations of motion are
unaffected by the addition of a 4-divergence to the Lagrangian density.


