Phys. 506 Electricity and Magnetism Winter 2004
Prof. G. Raithel
Problem Set 4
Total 40 Points

1. Problem 9.10 10 Points

a). In the long-wavelength limit, in the source and its immediate vicinity electro- and magnetostatic
equations apply. Thus, with Eq. 5.53 the magnetization density M is, using * X z = —sin 9q7> =

—sinf(—x%xsin ¢ + y cos ¢), and vy = ac
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In the calculation of multipole moments at frequency wg, we may thus replace the current by the given

effective magnetization density and set J = 0. (Note that both M and J carry a time factor exp(—iwgt),

which is not shown.) Since M is of the form

M = ¢f(r,0)
with a function f that doesn’t depend on ¢, it is
V-M=0

In the long-wavelength limit, for the multipole moments Eqs. 9.169 to 9.172 apply. Thus, with J = 0 and
V -M = 0 both M;,;, =0 and Mj,, = 0. There are no magnetic multipoles.

From the orthogonality of the spherical harmonics, the only non-vanishing Q;y, is
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To find the Q)},,, we note
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Since the angular dependence of p is Y19 o cos#, this is
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From Eq. 9.170 and the previous result on @, it is seen that the only non-vanishing @)}, is
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Since the factor on the rhs is of order ﬁﬁ and the radiated power behaves as the square of the multipole

moments, we can safely assume
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b: Using Eq. 9.169, it is ag(1,0) = %x/ﬁ@lo. Also, the radiated power P = 227"2 \aE|2. Inserting the results

of part a), it is
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Zoc?ka2e? ~ 1.02 x 107°W

This can be expressed in the required unit, yielding

8 4
P=(5) me ()
3 [41s)




c: The transition rate is

Numerically,

I'=6.27 x 108s7! = (1.59ns) "

This equals the quantum mechanical decay rate of the hydrogen 2P level.

Note. The only non-zero multipole moment found in the classical calculation conforms with quantum
mechanical selection rules explained in Chapter 9.8. First, in a transition from an upper 2P level into a
lower 1S level the atomic angular momentum changes from 1 to 0 (with spin neglected). Thus, only I = 1
radiation can occur. Further, the transition from the 2P level into 1S reverses the parity of the atomic state,
requiring an emission field mode with odd parity (that is, odd magnetic field). This only leaves electric | = 1
decay modes. Finally, in the given example both the upper and lower states have zero z—angular momentum.
Thus, the emitted field cannot carry any z—angular momentum. In summary, the only multipole field allowed

by selection rules is the ag(l = 1,m = 0), as found above.

d: According to an earlier homework problem, for an elementary charge orbiting in the zy-plane at a radius

2ag, the only radiation multipole moment for dipole radiation is

Qi1 =2Qn

where Qu is a “usual” spherical multipole evaluated in the rotating frame. Here, QH = 2eag4/ 8% exp(—igo)
with a phase ¢ that we may set to zero. Thus,

3
Qu =4/ 3, €0
T

leading to a radiated power of
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The ratio of this classical power and the ”quantum” power of part b) is
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2. Problem 9.16 10 Points

a): In this problem, a calculation in cartesian coordinates is the most straightforward. The current density

is

J(x) = zI6(x)d(y) sin(kz)

for |z| < A/2. The radiation pattern is only relevant in the radiation zone. Thus, we calculate
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In the radiation zone, H = ;—’Zﬁ x A, and with t X z = —sin 0(2)
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The radiation pattern is 45 = TQﬁE E* =r?2H - H*, yielding
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The result is exact in the radiation-zone limit, kr > 1. For the plot, see Problem 9.17.

b): The radiated power P
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Sine the radiation resistance is defined via P = %Rmd|l 12, it is



Z
Ryaq = =2 x 1.55718 = 93.360
2w



3. Problem 9.17 10 Points

a): We use Egs. 9.167 and 9.168 to obtain multipole moments that are NOT in the small-source approxi-

mation. Since Eqs. 9.167f are processed most efficiently in spherical coordinates, we use

J(x) = f.;S:)Z [0(cos@ — 1) + d(cos b + 1))
and
p(x) = ﬁ%(:) [0(cos® — 1) + d(cosf + 1)]

with I(r) = I'sin(kr) for 0 < r < \/2 and zero otherwise. It is easily verified that the continuity equation,
V -J = iwp, holds. Since there is no intrinsic magnetization M and since at all locations r where there is

current flowing it is r xJ = 0, the magnetic moments all vanish. From Eq. 9.167 we find the electric-multipole

amplitudes
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where the antenna half-length L = A/2. We also use the definition d; cyen, = 1 for even ! and 6; eyen, = 0 for
odd [. For the given I(r) = I'sin(kr) it is % +k%I(r) = 0, and
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In the long-wavelength approximation, we use Eq. 9.169-9.172. We already note that the long-wavelength
approximation cannot be expected to be tremendously accurate in the given case, because the antenna length

is not small compared with the wavelength.

As before, all moments vanish except the Qo with even . It is
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With ag(l,m) = HTlle, the electric-multipole amplitudes are, in the long-wavelength limit,

b): The exact lowest non-vanishing amplitude is

ag(2,0) = ijg(ﬂ)ﬁ

Using only this moment, the radiated power is
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The numerical value for the radiation resistance (term in rectangular brackets) is

15Z

Rrad = |: 277(_3 :| =91.12Q2

The radiation pattern follows from Eq. 9.151 and Table 9.1,
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The lowest non-vanishing amplitude in the long-wavelength approximation is

2Ik* [1 M2
ag(2,0) = — 15 g /0 r? cos(kr)dr

E* 1
= — J} COS
\/307r k3 Jo }

B 2wl k Tk /2
vV 3071' 15

Using only this moment, the radiated power is
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The numerical value for the radiation resistance (term in rectangular brackets) is

2Z07T
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Ryqa = { ] = 157.80Q2

The radiation pattern follows from Eq. 9.151 and Table 9.1,
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Discussion of 9.16 and 9.17.

The radiation resistances found are

R, = Rrad,exact = 93.3612
R2 = Rrad,aQO,exact =91.12Q
R3 = Rrad,aQO,approa: = 157.8Q2

It is Ro < R;. This is to be expected, because the total radiated powers of multipoles add incoherently.
Thus, by neglecting higher exact multipoles we will slightly underestimate the radiated power, which is
equivalent to underestimating the radiation resistance. In the given case, from R; and Ry it follows that by

neglecting higher-order exact multipoles we underestimate the radiated power by 2.4% (this is not so bad).

It is R3 >> R;. This is not unexpected, because by making the small-source approximation we essentially
neglect destructive interference of radiation originating from different portions of the source. The destructive
interference reduces the radiation efficiency of sources that are not much smaller than the wavelength. In the
case of large sources, neglecting this destructive interference can lead to gross overestimates of the radiated

power, as in our case.



Exact pattern
—— quadrupole radiation (exact equation)
------ quadrupole radiation (kr << 1 approximation)

90

{dP/dQ}*2/I” (Ohm/sterad)

270

Figure 1: Radiation patterns for the indicated cases. Bold and solid: exact calculation. Solid: Lowest
exact multipole term (this term is due to ag(2,0)). Dashed: Same multipole term in the long-wavelength
approximation.



4. Problem 9.22 10 Points

a): Electric-multipole modes = TM modes. We use Eq. 9.122 as starting point. Since the fields must be

regular at r = 0, we choose j;(kr) for all radial functions. The generic form of the field of a T'Mj,,.-mode,

with amplitude ag(l,m) set to 1, then is

= J(kr)Xim
iz iz
= 20U xH="2°V x ji(kr)Xim
k k
The boundary conditions are that at r = a the electric field must only have a radial component and the mag-
netic field must be transverse. The second condition is automatically satisfied because of the transversality
of the X;,,,. To match the first, we use
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to first write out the H—field components,
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The cavity frequencies follow from the requirement Fy = E4 = 0 at 7 = a. The frequencies can be obtained

from the transcendental equation

i) = |dei@)] =0

r=a
Denoting the n-th root of %(:cjl(x)) with @7, , it is ka = Wimn$ = 27,,. The resonance frequencies thus are

/
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Note that [ = 0 does not exist, and that the frequencies are degenerate in m, i.e. for given [ and n there are

20 + 1 TM-modes with the same frequency.

Magnetic-multipole modes = TE modes. We use Eq. 9.122 as starting point. The generic form of the field

of a T Ej,,.-mode, with amplitude aps (I, m) set to 1, then is

H %v 1 (kr)Xim

E = Zyj(kr)Xpm

Comparison with the analogous equation for TM-modes shows that the fields of the TE-modes are obtained
by replacing the former H with E/Z; and the former E with —ZyH. Thus, for TE-modes it is

E. = 0
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The conditions of vanishing transverse electric and vanishing normal magnetic field at » = a are satisfied via

the transcendental equation



Ji(ka) =0
Denoting the n-th root of j;(x) with y,, it is ka = Wimn s = Tin. The resonance frequencies thus are
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Again, [ = 0-modes don’t exist, and for given [ and n there are 2] + 1 TE-modes with the same frequency.
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b): (required for TE-modes only). From wyy, = we see that

Almn - 2i

a Tin

Numerically we find the lowest roots of spherical Bessel functions to be x1; = 4.493, x97 = 5.763, 231 = 6.988

and x1o = 7.725. The lowest four TE-modes therefore are:
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Figure 2: Lowest spherical Bessel functions and their roots.




The lowest TE-modes are the degenerate T'Ej—1 m=—1n=1, T Ej=1,m=0,n=1 and T Ej—1 y,—1 n—=1-modes. To

obtain their fields, use the above general equations for the TE-fields to obtain:
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