Instructor: Jianming Qian

Due date: March 28, 2002
Physics 506: Solutions to Assignment #9

Problem 12.5
(a) For |E| < |B|, we can also find a {rame K’ in which F’ = 0. In this {frame, the particle is moving in a uniform

magnetic field B'. Let E pointing to +z and B pointing to +y direction, the velocity of frame K’ in frame K can be
obtained from Eq. 12.43 to be

Thus,

—
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E'=0, B'=-B=+B>- 2=
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In frame K’ with a Cartesian coordinate system, the motion will be helix, i.e., an uniform motion along B’ and
gyration in the transverse plane. With a properly chosen origin, the position of the particle can be written as

' =acos(wpt'); Yy =wvt’; 2 =asin(wpt’)

where a is the gyration radius determined by particle’s transverse momentum (cp; = eB’a) and v"‘ is the velocity

component along the B’ in frame K’, wg = eB'/(v'mc) and 7' is the Lorentz boost factor of the particle in frame K’.
Translating back to frame K:

= z' = acos(wpt’)
y=y =yt
2= (& +ut’) = p{asinwst’) +ut’y = —E Jasin(wst’) + £(c)}

These are explicit parametric equations for the particle’s trajectory in terms of parameter ¢'. (b) For the case of
|E| > |B|, the magnetic field B’ vanishes in the frame K’ moving with a velocity

ExB
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N

=c

In this frame, the particle moves in a uniform electric field £

= E — /E2 BZE
04 E
Thus
d_];, =q i
dt’

which leads to

d d d
%(7,777’”;;) = qE,v %(7,777’”3,/) =0, %(’y’mv;) =0

The differential equations for the most general case of initial velocities are difficult to integrate. Assuming the particle
is at rest for simplicity, integrating the above equations

, da! at’
= — =

v —_— v, =
z dt! V1 + o2t’?’ Y



Here o = qF' /mec. Integrating the above equations (with a properly chosen origin):
c
z'(t') = E{\/l—b—azt’z—l}; y'(t'h)=0; 2'(t)=0
Translating back to frame K, the parametric equations for the particle’s trajectory are
r=2a' =% {\/1—0—04%’2 - 1}
y=y'=0 B
z= (2 +ut') = yut' = L (ct)

Problem 12.9
(a) Let z—axis points from south to north, in this case, M = —M 2. The vector potential of the earth’s magnetic
dipole moment

- Mx7 Msin@ N
A(f'): = — T2 ¢EA¢¢

Thus the magnetic field B:

2M cos 0 ; Msin0 -

B =VxA=— 0

3 3
Let ds be the small displacement

d3 = fdr + Ord0 + érsin 0de
and let ds point to the direction of the magnetic field, we get
dr  rdf dr _ 2cosf

_ o
B, By 1 =m0

Integrating the above equation yields the equation for a line magnetic force to be:
r=rysin®0

The magnetic field as a function of 6

M M1 20
B=/B}+Bj =— 4c0829+sin29:—3ﬂ
T

T4 sin® 0

(b) The gradient drift velocity is given by Eq. (12.55):

_ a =
VszBa- @BXVLB
where B is the field at the equator:
- M . M -
B = —T—3|T:R9 = —ﬁe

and B is its magnitude. Since the problem is azimuthal symmetric, we have

B M
v.B=28 =3
or

T
Thus




Now note that

To=Réd, = Ro=—12
G — 3 - IR wB
Integrating the above equation of motion,
3a?
8(0) = 60 — ool ~10)
(¢) Let 6 = m/2 4 «, the magnetic field along the line of the force is then given by

M /1+3sin’ o

Bla) = R®  cosba
For small o values,
M +1+3a? M 9 ,
Note that from Eq. (12.72), we have
B(z 9 9
(@) =v2(0) o ()2 = 02(0) 2 0)(1 + 30%) = 1} 0) - 5u2 (0)e?

Note that v, (0) = wpa and vﬁ () = (R&)%. Plugging these into the above equation, we get

) 9w]23a2 az o ’Uﬁ(o)
2R? R

This is the “energy equation” of a harmonic oscillator with the corresponding frequency given by

_3a
= AR B
The change in azimuth in one period of oscillation is
3 a 21v2 R a
A = === 2 —_—) = 2 —
o= 5(g)fws x5 ~(5) = Vg

independent of M.
(d) For R =3 x 10° cm (~ 5Rearth), M = 8.1 x 10%° gauss-cm?, we have

8.1 x 10% 5
B:BQZW:?)XIO gauss
B B 103 . 10*
wp = 2 2 176 %107 s 'gauss ! 3 x 10" 7 gauss = 5.3 > 10 st
yme  me vy vy

and @ = v/wp. The time to drift once around the earth (in azimuth) is

2R?
T¢ =27 &)—Baz

and the time for one oscillation in latitude is

T 21 2m2R _ 27V2R
"7 T 3wga 3 w

For a 10 MeV electron, we have

E  10+0.511

g < 90. s —9 3 -1 _ _ _o
m 0.511 205, wme, wp=25Tx10s"", a=117Tkm, T,=107s, Tp=0.30s

’)/:



For a 10 keV electron, we have

B 0.511 40.010

— = ~ l. ~ U. = J. g1 = 1. = J. 4 = 1.
= —— 1.02, wvm02, wp=52x10"s"', a=12km, T;=55x10's, Ty;=15s

’)/:

Problem 12.11
(a) The Thomas precession formula is

(d§) 1(d§) S X F
7 /Jlab — — {5 Jres W S
P v dr t r
& given by Eq. (11.119):
2 - N
- Y axU
YT v o
From the Lorentz force and Newton’s second law, we have
g e —»
L _Zy«B
at ol x

where P’ is muon momentum and e is the muon charge. Since the magnetic field does not do any work, 7 is a constant
of the motion. Therefore, the above equation can be written as

dv e ~ e =
— =—4UxXxB=9q———B/ xXU=dg x¥
dt  yme

yme
Here &g = —(eé) /(yme) is the orbital gyration frequency. Therefore the acceleration
dv —
G=" =Gpxi=—ixB
dt yme
Therefore
2 1 . 2 2 _1eB
Gr=-"—"t GxByxi=t SV p=0""%
1 +~vc2yme 1+~ yme ¢2 Y me

The precession in the rest frame is given by Eq. (11.101):

ds - ge
res fix B =-—&8x5B
(d ) 1 /’LX 9 CSX
where
9 -~ B
— — ~ v U v¥-B —
B'=~(B - - — — =~B
7 R A B
Then
ds 1, ge _ 7—1e§ . e (v—1 gl 5 - =
Nab = —(=2=—3) x (vB L T Yx§=—({.1— —ZVBx5=Wx
(dt)lb 7(2mcs (vB) = ( ~y mc) s mc{ ~y 2 s s
where the spin precession frequency is
. 1 .
W=1-2_-2°
2 v 'me

The difference between the spin precession and the orbital gyration frequencies is

S 1. eB eB B2-
G=W-op=01-2_-)2 22 22279

= :QE = Q=
2 ~v'me yme me 2 B



(b) Newton’s first law on the centripetal motion,

L dp e _ v?  evB
F=—=-vxB = - =—
dt cv m R c
Thus, the muon momentum
eRB

p=ymv=——=128-10° MeV/c
Cc

The Lorentz boost factor

B sy R—
7:_2:L+27nc:12'1
mc mc

The number of periods of precession per observed laboratory mean lifetime is

yTo 102 eBayro  eBaymg

= = =712
T 27 2me (2m)%me 7
()
B B
Q:Q, ande:e—, = Q:awa:ﬂwB
me yme 27

(i) E=300 MeV, m = m,, = 106 MeV,

E

83
(%)WB = 0.0033w 5
(i) E=300 MeV, m = m, = 0.511 MeV,
_FE oy _
Y= =58, Q= (3w = 0.6820p
(iii) E=5 GeV, m = m. = 0.511 GeV,

E 3 ay
v = 2 =9.78 - 10°, Q= (%)WB =1l.4wp

Problem 12.14
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aap = o
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0 6(6QA,3) =0 (_8_7_[.)(2804‘4,3) = _47_[_8048 Aﬁ

Thus, the Euler-Lagrange equations are
4
0, 0" AP = =T JB
c

These are Maxwell’s equations in the Lorentz gauge:

poLo0

0, A% =0, i.e. V-A—O—Eat—O



(b) From Eq. (12.85), we have

1

L =——\1
16w

1
wpFoP — 2, A%
C
then
1

1 1 1
L — L= ~Ton np P 4 S—WaaAﬁaaAﬁ = —1g=(Oads — OpAa) (0% AP — 8P A%) + S—WaaAﬁaaAﬁ

1 (04 1 (04 (04
= 8—WaaAﬁaﬁA = 8—W{aa(AﬁaﬁA ) — AgD,0° A}

The second term vanishes in the Lorentz gauge, and the 1st term is the divergence of a four-vector:

1
L —L=0,A% with A®= 8—7TA565A“
The two actions differ by
A —A= /(E’ — L)d*z = /aaAo‘d4x = / A*dPx
s

where the surface integral is over the surface in four-dimension. Now note that since A is not varied on the surface,
we have

5(A'— A) = 5/ A*d3 =0
S

Thus the equations of motion are unchanged.



