Instructor: Jianming Qian

Due date: January 24, 2002
Physics 506: Solutions to Assignment #2

Problem 8.3

(a) Choose a rectangular coordinate system with z parallel to the strip along the side b, y perpendicular to the strip
and z along the line. Let K(z,t) = Koe*2=wt) 2 he the surface current density of the top strip. Thus, the magnetic

field in between the two strips is given by
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Therefore, Ky = Hy. The electric field can be derived from the Maxwell’s equation:
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In terms of the power P,
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The potential difference between the two strips
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The series resistance per unit length
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The inductance per unit length
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where the integration of the second term taking into account the magnetic energy stored inside the conductors. Note

that inside the conductors

Thus
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Alternative as suggested by Mr. Ben
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Taking the results of Prob. 8.2 and making the following substitutions:

where ay,b; and ay,by are a,b’s of Prob. 8.2 and Prob. 8.3 respectively.
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(b) For the case b >> h, the electric and magnetic fields are mostly confined in the region between the strip and the
ground plane and are uniform within the region. Therefore, this case is very similar to part (a) with the slab and its
mirror image. However the case b < I is very different from (a). This case can be approximated by a wire above
a grounding plane. The dielectric substrate should have little effect on the quantities calculated in (a) since both
electric and magnetic fields extend mostly in the region without the substrate.



Problem 8.4
(a) The wave equation is

(VZI+~4%)¢ =0 with % = pew?® — k?
Explicitly in polar coordinates, the equation has the form:
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This is the Bessel’s equation and has the following solutions:
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For TM modes,
U= =0, = Jn(yR)=0

Let n be the n" root of J,,(x) = 0, then
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Here v = 1/, /pz€e. The four lowest cutoff frequencies are
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Thus the lowest four cutoff frequencies are
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Combining TM and TE modes, the mode with the lowest cutoff frequency is TE:

Wo = 1.841%

The other four modes with the lowest frequencies are TMgy, TE21, TEg; and TMy; with the ratios of frequencies
given by
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Note that the modes TEy; and TMy; are degenerate.
(b) The lowest mode is TFy;. The longitudinal magnetic field of the mode has the form
v

Y(p,P) = AJl(yu%)ews with the cutoff frequency wiy = g



Here A is a constant describing the strength of the field and y;; = 1.841 is the first root of J'(y) = 0. The average
power
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To calculate the power loss, we note
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The second lowest mode is TMg;. In this case, the longitudinal component of the electric field is given by

Y(p,¢) = Ado (3(:01%) with the cutofl frequency wp; = 3(:01%

where A is a constant and xg; = 2.405 is the first root of Jo(x). The average power and the power loss per unit length
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Applying the following identity equations for Bessel’s functions
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Note that for TM modes, 3 is always minimum at w = /3wy, where wq is the cutoff frequency. To facilitate the
comparision, we rewrite the two constants as
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The two constants in the unit of (1/R)+/(ew11)/(20) are plotted in the figure below as functions of w/wyy.
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Problem 8.16(a)
The eigenangle 0, of the p' mode is the solution of Eq. (8.123):
. pT 2A
tan(kasinf, — —) = -1
an(kasin 6, 5 ) oz 0



Note that
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Differentiating the above equation with respect to k:
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After some algebra, the above equation can be written as
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Note that k = njw/c, therefore the axial group velocity
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where 8, = k4/2A — sin? 8,. The group velocity is greater than the expected ccos#,/nq. This is consistent with
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the Goos-Hanchen effect that the right ray is shifted forward after total internal reflection, resulting a greater group
velocity.

Problem 8.20
(a) The field in the waveguide can be written as

B =3 AW B
A

where the coefficients Ag\i) are given by FEq. (8.146):
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Choose the bottom-left corner of the guide as the coordinate origin with the z—axis along the edge a and the y—axis
along the edge b.

I = Iy(— sin ¢& + cos ¢f)
Here ¢ is the polar angle with respect to the center-of-the loop. Thus
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where {ESF)}J; and {ESF)}y are z— and y— components of the eigen-field along the loop.
For TM waves, the electric field components are given by Eq. (8.135):
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Therefore, no TM modes are excited. This is because that a circular current in the transverse plane will always result
in a non-vanishing longitudinal component of H, i.e., H, # 0.
(b) For TE waves,
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with the normalization reduced by a factor of V2ifm=0o0rn=0. Thus
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The lowest modes (m = 1,n =0):
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where 41 g = m/a. Here we have used the integral representation of Bessel functions:
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The amplitude is independent of the height h. For R < a,

3 ZIZ
L IS a7V

a 2a’ ' ¥1.0V8a5b

(¢) The average power radiated in either direction
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