7.3 Problem 7.3

We have two semi-infinite slabs of dielectric material with 4 = po and equal indices of
refraction n > 1, with an air gap (n = 1) of thickness d between them. Let the surfaces be
in the z,y plane, with the gap being z € [0, d] and the incident wave coming from z < 0. In
the first material we have an incident wave

but we also have a reflected wave

—

Er(Z) = Ep pikR-E—iwt
Br(Z) = kp x Ex(Z)/w
In the air gap, we may have two waves with oscillatory behavior or exponential behavior in
z. We may write either case as
E(f) = Egle“zgl'f’i“t + Eggeiggz'f — wt
B(#) = kg % Eq(&)/w + kg X Egp(@)/w
but remembering that the 2 components of the wavenumbers may be imaginary.

The second slab has only an outgoing wave
E( 7) = B, k2 T—iwt
B(T) = ky x Ey(Z) Jw
The squares of the wavenumbers are determined by the indices of refraction and w:

k=kgr=ky=nw/c

2 _ 12 _ 242
ky = ky=w/c

but we must keep in mind that (Egl) may be imaginary, in which case k‘gl = kgl T kgl —
z
|k91 Z|2-

As for the single interface discussion, we may chose x so that the incident wave is in the z, 2
plane. As the wave equations and the boundary conditions are invariant under translations
in the z and y directions, we can Fourier transform in those directions and see that the
equations involve only the same values for the k,’s and for the k,’s, so

km:kRm:kglm:ngm:k2x

ky=kry="kg y=koy=Fkyy=0



From the equality of the k,’s and the relations among the k2’2 we have k, = —kp , = ko , =
kcosi, and kg , = —kg . = \/kZ — k2 = kVn=2 =sin®i = kcosr/n, with the angle of

reflection for kp and the angle of o equal to the angle of incidence i, and the angle of
reflection, r given by Snell’s law nsini = sinr. Note kg4 , will be imaginary if nsiné > 1,
and r will then be complex.

Finally, we can divide the problem into a part (E, ) for which Ej is perpendicular to the plane
of incidence (E || £é,) and part (E ) in which it lies in the plane of incidence (Ey , = 0), in
which case B || £é, in the first material.

As the problem is invariant under reflection in the y = 0 plane, in the (£ ) case all fields
are reversed, so all of the E’s are in the 4y direction, and all the Bs are in the x, 2z plane. In
the (Ej) case reflection in the y = 0 plane changes none of the incident fields, and therefore
none of the others, so all the Ey’s vanish, and all the B’s are perpendicular to the plane of
incidence. The boundary conditions are continuity of D,, B,, E,, E,, H,, and H, at each
of the two boundaries.

The EH case:

We will now consider the case where all the E fields lie in the plane of incidence. See below
for a picture with all of the E,’s positive if the corresponding amplitudes E are positive.
This is different from what Jackson did.

U
Il>1 .-'f E 2
B d
d g E.g'E =
o
:';I II‘"" g gz n> ].
f a?/fl{ Ey
Bot—tp %R'

From the continuity of E,,
(Eo + Eg) cosi = (Eg + Ez)cosr
(Egleikd(cosr)/n X EgQGfikd(cosr)/n) cosr = Byehdeosi g
and continuity of H, gives

TL(EO — ER) = Egl — Egg
nEQGikd cosi __ Egleikd(cos r)/n Eﬁefik:d(cos r)/n



To simplify our algebra, let A = e#dcosn)/n and B = ¢*?si g5 the second and fourth
equations become

EsBcost = (EglA + EggA’l) cosT
EyBn = E A — EpA™!

giving
EAcosi— EpnA tcosi=Eq Ancosr — Eq0A 'ncosr
g 9 g g
NCOST — COS1 1—
= FBgp = —AQEgl—, = —AQEgl P
N COST + COS1? 1+p
with:
_ cosi
" ncosr

Plugging back into the first interface forms,

— _ A2 2
(ER+E0)=<—A21 p+1>E91—(1 A it ),

14p np np(1+ p) ot

1—
n (EO - ER) = Egl - Egg == <A2FZ -+ 1) Egl

SO
E0+ER_ 11—A2+p(1—|—A2)
Ey—Er  pl+ A2+ p(1 - A?)

Note as A = e with ¢ = kd(cosr)/n, 145 = HEZ — jcot ¢, we get:

En (1- )1 — 4 iy
Fy 1—A242p(1 4+ A2) 4 p2(1 — A2) 14 2ipcosp + p?

Provided the angle of incidence is less than the angle of total reflection, ¢ and cot ¢ are real,
and the reflection coefficient is

2 (1—p?)?
(14 p2)2 + 1p? cot?
(1+4p p @

Er
Ey

This will have maxima and minima according to the phase ¢, maxima when it is a multiple of

7 and minima halfway between those. On the other hand, if nsini > 1, p = inv/n2sin?si — 1
and cot ¢ is imaginary and goes to i, without oscillations, Of course in either case the
transmission coefficient is 1 the reflection coefficient.

Below is a plot of the transmission coefficient with n = 1.5 and Zi = 1 rad, for kd € [0, 3].
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7.16 Problem 7.16

7.16.1 Part a

Starting with equations 7.1 and assuming that B and E have solutions with harmonic time
dependence:

— é — —
VXE+aa_t:O - VxFE—iwB=0
—V XxXB—-—¢gg—=0 = —V xB+iwD =0
/J,O at ,LLO

Solving the first equation for B and plugging it into the second equation yields:

ikx( . )—l—iw,uoD:O
W

k x (Exﬁ)+w2u05:0




7.16.2 Part b

We start by expanding the result from the previous problem using the BAC-CAB rule:

ninjEj — Ez —+ ’U2 Ho&; Ez =0

1/v?

12
UQEZ'

2
Y;

=0

TLZ‘TL]‘EJ- — EZ‘ +

We now find the three components of both sides of the above equation, remembering that
we're implicitly summing over j in the above equation.

’an (n1E1 + ngEQ + TL3E3) — El- -El/'U%-
o (n1E1 + ngEQ + n3E3) - EQ -+ ’U2 EQ/U% =0

Lng (TLlEl + TLQEQ + n3E3) - Eg_ _Eg/l)g_

(n1n1 — 1) E1 + TLlngEQ + n1n3E3_ _El/U%_
noni oy + (TLQTLQ — 1) Es + nons B3| + v? EQ/U% =0

n3n1E1 + n37’l2E2 + (ngng — 1) Eg_ _Eg/l}g_

n?—1 mnny mnng 1/v3 0 0 E,|
nony mi—1 mong [+ | 0 1/v2 0 Ey| =0

nany  ngng ni—1 0 0 1/v3 FEs |

A B

Hence, solutions to v2 are eigenvalues of A. We can solve for v? using the characteristic
equation, det(A + v?B) = 0. Taking the determinant of A + v?B in Maple yields the
following (where we have rearranged some terms for reasons which will become immediately
apparent), and using the fact that n? +n2 + n2 = 1

7)2

(v* + v3v5 — njuivi — njvsvs 4+ njv*v; — v vl + njvv; — vPs + viv — njviv — njviv;
Cttnd)  ededind) wgio}

2,22 2,2 2,2 2,22 2,2,2 2 2 2 _
~~

TV TV
202 (n24n2 22,2
v2vi(n3+n3) n3vivy 0



U2

[n}(v* + v3v] — v*vs — v*0})
V10203
+n3 (vt + 0?03 + vivi — v*0?)
+n3(v* 4+ v*v; — v’} + 0iv3)] =0
2

— [nf(0? — o) (v = 0) + (0 — o) (0% — 03) + nd(v? — o) (0? — 03)] = 0

V10203

Dividing both sides of this equation by (v? — v})(v? — v3)(v? — v3) yields:

v? [ n? n3 n3 } 0

vivous (V22— v —wd w2 —0?
5 3

2
eI R
2 _ 2
V1U2V3 - v v

=1 i

There are three solutions for v: 0, v, , and v_ (where the last two solutions can be found using
the quadratic equation, which yields two solutions). The two nontrivial solutions satisfy the
Fresnel equation, which is when the term in brackets in the above equation is zero. That is:

7.16.3 Part c

From our solution to part a, we obtain, for a wave in mode a:
o — 5 — w — —
(n : Ea) n—E,=—po—e- B, = —v2D,

where 7 = k/k is a unit vector in the % direction, and v? = pow?/k%, which may be different
for the different modes, as the phase velocity may depend on the polarization.

Dot this into Dy for another mode with the same 7, giving:

By By = Dy - (B, — (- Buit) ) = Dy - By

because 71 - E = 0. Of course, the same applies with a <> b, so:

— — —

Dy- D, (v —v}) =Dy-E, — D-E,

But:



ﬁb : Ea = ZQEZ&E;) = ﬁa : Eb
SO,

ﬁb-ﬁa(vg—vg) =0
and if the two modes have different phase velocities (v, # vp), then:

—

D,-D, =0

8.5 Problem 8.5

8.5.1 Part a

For the simply-connected triangular region the modes will be either TE or TM, with the
longitudinal B, or F, given by a solution ¢ of the Helmholtz equation (VZ +~?)1 = 0 with
boundary conditions 9v/0n|s = 0 or ¥|s = 0 respectively.

Any such solution on the triangle 0 < z < a, y < z < a can be extended to a solution on
the square 0 < z < a, 0 < y < a by defining ¢ (z, y)|y>x = £ (y,x), with the plus sign for
the Neumann (TE) case and the minus sign for the Dirichlet (TM) case. The vanishing on
x = y in the TM case insures continuity, which is automatic with the plus sign in the TE
case. The normal derivative is is zero and continuous due to the plus sign in the TE case,
but is automatic with the minus sign for the TM case.

So the solutions for the triangle must be combinations of solutions for the square, but with
symmetry or antisymmetry under x <> y for TE and TM modes respectively. In terms of
the functions in 8.135 and 8.136, this means

TM:  E, = Eq [Sin (mm) sin (@) — sin (m”y sin (”m))}
a a a a

TE : H,,.. = Hy [cos (mmc) cos (@) — COS (mwy COS (nmc)ﬂ
a a a a

as Ymn = SVm?+mn?  For our purposes we do not need to calculate the normalization
constants Fy and H,.

Thus all the modes are the same as for the square of side a, except that m = n is forbidden
for the TM mode, and for each pair m = n, there is only one mode rather than two. As
for the rectangle, m = n = 0 is forbidden as it leads to zero transverse fields. The cutoff

frequencies are
T [m? 4 n?
Wmn = —
a Ho€o
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8.5.2 Partb

The lowest modes are TM; 5 and TE(;. The attenuation coefficients depend on &, and 7,
which involve the ratio of integrals over the boundary to those over the area.

For the TEq; mode, v = 7/a. Take ¢(x,y) = cos(mz/a) = cos(mz/a) + cos(wy/a)

/f\#?\::cL/fldu/(hﬂ(au,0>F-+|¢wa,au>P-+»x/§|w<au,au>F)
= a/ol du ((1 + cos(mu))? + (cos(mu) — 1)% + V/2[2 Cos(mo)]Q)

= (3+2v2)a
/AW\ = %/0 dx /O dy |(x,y)?| = %/0 dx/oa dy[cos(rz/a) + cos(my/a)]? = @
C=2+v2a
A= %aQ

agr= [/ [ 1o
a’/2  (3+2v2)a  3+2V2 241
T2+ @2 242 V2

/mwifz/
T 0

(x,O)dx+/0 8—w (a,y)d

/”(f )

:—/ sin? du 1+1+2\/_]:\/——|— )—2

a_wQ
oz

ox e

L2
Also, of course, [, ‘Vﬂ/) =7 [, ¥* vy=m/a. So

_ a2 ra2
_ (2+\/§)a(\/§+1) -



M = C — & = 1. Thus,

TE_VE~12+«§ Vool (L)

=/ —+
o pody  a  JT—olfu? \V2 W7

For the full square of side a, the mode is the same, the area = [, [¢*| = a?, both twice as
big, C' = 4a, [.|¢?*| = 6a, and

/mwifzf
T 0
2

2

(a,y)dy

o |2 @

o
dy

a aw a aw 2 )
b v -9
+/0 e (x,a)daH—/O oy (0,y)dy /a
SO
ore A 2m%/a a?2 1

T O /a®)a® T daa 2

2
ore _ 6aa” 3

0L ™ 424q 2

770D1TE =1

DTE:\/E L vw/o (1+2w—§>
o pooxa /1 — w?/w?

The ratio of attenuation of the triangle to the square is not frequency independent, but at
all frequencies it is greater than 1.

TMLQ mode:
We can take ¢ = sin(rz/a)sin(27y/a) — sin(27z/a) sin(ry/a), 112 = /57 /a,

/Az/;Q = %/D (sin*(rz/a)) sin®(2my/a) + sin®(27x/a) sin®(zy/a)

— 2sin(nz/a) sin(2my/a) sin(2nx/a) sin(wy/a)

_a2 1+1—|—0 _a2
2 \4 4 4



Oy

on

J

T /Oladu [(%)2 (au,0) + (%’f)g (¢, au)

1 [0y oy
+\/_ (% - 8_y> (au,au)]
— % 0 du [(2sin(mu) — sin(27u))? + (= sin(27u) — 2sin(ru))?

1 . . 2
+§(2 cos(mu) sin(2mu) — 4 sin(mu) cos(27u)) }

Hr?
" V2a

where it is useful to write the expression to be squared in the last term as 3 sin(mu) sin(37u).
Thus

(14 V2)

™ _ w/wA
12 7 205)\ /1

For the square [, ¢° = a®/2 and

J

4+2\/_\/7 Vwlws
200y \/7

2

| ! 2
L4 4/0 adu (g) (2sin(ru) — sin(27u))” = 10%

on

SO
DTM&lOW 2 a? B

12
4 a a’bm?

orv . [€ 1 4a w/w,\ e 2 yJwlwa
Tz = 106y 202 /4 w>\ ~V waod, f{ <
w? w?

Thus the triangle attenuation is 1 + 1/\/_ = 1.71 times that of the square.
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