
Physics 505 Fall 2007

Homework Assignment #7 — Solutions

Textbook problems: Ch. 5: 5.4, 5.7, 5.8, 5.9

5.4 A magnetic induction ~B in a current-free region in a uniform medium is cylindrically
symmetric with components Bz(ρ, z) and Bρ(ρ, z) and with a known Bz(0, z) on the
axis of symmetry. The magnitude of the axial field varies slowly in z.

a) Show that near the axis the axial and radial components of magnetic induction
are approximately

Bz(ρ, z) ≈ Bz(0, z)−
(
ρ2

4

)[
∂2Bz(0, z)

∂z2

]
+ · · ·

Bρ(ρ, z) ≈ −
(ρ

2

)[∂Bz(0, z)
∂z

]
+
(
ρ3

16

)[
∂3Bz(0, z)

∂z3

]
+ · · ·

Near the axis (ρ ≈ 0), we may perform a series expansion of the magnetic induc-
tion

Bz(ρ, z) = b0(z) + ρb1(z) + 1
2ρ

2b2(z) + · · · =
∞∑
n=0

ρn

n!
bn(z)

Bρ(ρ, z) = c0(z) + ρc1(z) + 1
2ρ

2c2(z) + · · · =
∞∑
n=0

ρn

n!
cn(z)

Bφ(ρ, z) = 0

(1)

Since the region is current free, the magnetic induction must satisfy the mag-
netostatic equations ~∇ · ~B = 0 and ~∇ × ~B = 0. In cylindrical coordinates, the
divergence equation gives

0 = ~∇ · ~B =
1
ρ

∂

∂ρ
ρBρ +

∂

∂z
Bz =

∞∑
n=0

(
(n+ 1)ρn−1

n!
cn(z) +

ρn

n!
b′n(z)

)
We shift n→ n+ 1 in the first term in the sum to obtain

0 =
1
ρ
c0(z) +

∞∑
n=0

ρn

n!

(
n+ 2
n+ 1

cn+1(z) + b′n(z)
)

Since this vanishes for any value of ρ, each term in the sum must vanish individ-
ually. This gives us

c0(z) = 0, cn+1 = −n+ 1
n+ 2

b′n(z) (2)



We now continue with the curl equation. The only non-trivial component is

0 = [~∇× ~B]φ =
∂

∂z
Bρ −

∂

∂ρ
Bz =

∞∑
n=0

(
ρn

n!
c′n(z)− ρn−1

(n− 1)!
bn(z)

)
Shifting n→ n+ 1 in the second term in the sum gives

0 =
∞∑
n=0

ρn

n!
(c′n(z)− bn+1(z))

so that
bn+1(z) = c′n(z)

Combining this with (2) gives us the recursion relation

bn+1(z) = c′n(z) = − n

n+ 1
b′′n−1(z)

Taking into account the fact that c0(z) = 0, we see that b1(z) = 0. On the other
hand, b0(z) is undetermined. The recursion relation can then be used to relate
bn(z) to b0(z) where n is an even integer. The result is

bn(z) = (−1)n/2
(n− 1)(n− 3) · · · 3 · 1
n(n− 2) · · · 4 · 2

b
(n)
0 (z)

=
(−1)n/2

2n
n!

[(n/2)!]2
b
(n)
0 (z) (n even)

(3)

where b(n)
0 (z) indicates the n-th derivative of b0(z). Using (2), we then see that

the odd cn(z) terms are non-vanishing, and are given by

cn+1(z) =
(−1)n/2+1

2n
(n+ 1)!

(n+ 2)[(n/2)!]2
b
(n+1)
0 (z) (n odd)

Inserting these expressions into the Taylor expansion (1) finally gives

Bz(ρ, z) =
∞∑
k=0

(−1)k

4k
ρ2k

(k!)2

[
∂2kBz(0, z)

∂z2k

]

Bρ(ρ, z) =
∞∑
k=0

(−1)k+1

4k
ρ(2k+1)

(2k + 2)(k!)2

[
∂2k+1Bz(0, z)

∂z2k+1

] (4)

where we have made the identification b0(z) = Bz(0, z). The first few terms in
the expansion gives the desired result

Bz(ρ, z) = Bz(0, z)−
ρ2

4

[
∂2Bz(0, z)

∂z2

]
+ · · ·

Bρ(ρ, z) = −ρ
2

[
∂Bz(0, z)

∂z

]
+
ρ3

16

[
∂3Bz(0, z)

∂z3

]
+ · · ·

(5)



Incidentally, another approach to this problem is to note that, for a current-
free region, the magnetic induction may be given in terms of a magnetic scalar
potential

~B = −~∇ΦM , ∇2ΦM = 0

Solving Laplace’s equation in cylindrical coordinates gives an expansion in terms
of Bessel functions. Choosing the modes to be oscillating in ρ and exponential in
z allows us to write

ΦM (ρ, φ, z) =
∑
m

∫
dk Am(k)Jm(kρ)eimφekz

where Am(k) are a set of expansion coefficients. Since the problem is cylindrically
symmetric, only the m = 0 component contributes

ΦM (ρ, z) =
∫
dk A0(k)J0(kρ)ekz

As long as we are only interested in the field near the axis, we may Taylor expand
the Bessel function J0(kρ) for small ρ. Using

Jn(x) =
∞∑
s=0

(−1)s

s!(n+ s)!

(x
2

)n+2s

(6)

we find

ΦM (ρ, z) =
∞∑
s=0

(−1)s

4s(s!)2
ρ2s

∫
dk A0(k)k2sekz

Since the exponential ekz blows up as z → ∞ (for positive k) or z → ∞ (for
negative k), this expression is not be well defined in all of space. However, we
may consider either working in a finite range of z or treating this as a formal
expression. In any case, we note that powers of k inside the integral corresponds
to taking z derivatives of the exponential

k ↔ ∂

∂z
(7)

Hence

ΦM (ρ, z) =
∞∑
s=0

(−1)s

4s(s!)2
ρ2s ∂

2s

∂z2s

∫
dk A0(k)ekz

Setting ρ = 0 in this expression gives

ΦM (0, z) =
∫
dk A0(k)ekz



Substituting this back in allows us to write

ΦM (0, z) =
∞∑
s=0

(−1)s

4s(s!)2
ρ2s ∂

2s

∂z2s
ΦM (0, z)

Finally, using ~B = −~∇ΦM allows us to reproduce the series expansion of the
magnetic induction given in (4). Incidentally, we note that the coefficients in the
solution to the bn(z) recursion relation given in (3) matches the Taylor coefficients
of the J0 Bessel function, (6). In fact, if desired, we may use (7) to write the
formal expression

ΦM (ρ, z) = J0

(
ρ
∂

∂z

)
ΦM (0, z)

Then

Bz(ρ, z) = J0

(
ρ
∂

∂z

)
Bz(0, z)

Bρ(ρ, z) = J ′0

(
ρ
∂

∂z

)
Bz(0, z) = −J1

(
ρ
∂

∂z

)
Bz(0, z)

b) What are the magnitudes of the neglected terms, or equivalently what is the
criterion defining “near” the axis?

We see from (4) that the n-th term in the series expansion of ~B(ρ, z) is of the
form

∼ ρn

2n[(n/2)!]2

[
∂nBz(0, z)

∂zn

]
Ignoring constant factors, this indicates that the ratio of adjacent terms in the
series is roughly

an+2

an
∼ ρ2 [∂n+2Bz(0, z)/∂zn+2]

[∂nBz(0, z)/∂zn]

In general, this ratio needs to be less than one for the series to converge. Hence,
this provides a criterion for being “near” the axis

ρ�

√
[∂nBz(0, z)/∂zn]

[∂n+2Bz(0, z)/∂zn+2]

For a smooth function Bz(0, z), the n-th derivative behaves roughly as 1/Ln

where L is the scale of variation of the field. As a result, we demand ρ � L
where L is a typical length for the variation of the magnetic induction Bz along
the z direction.

5.7 A compact circular coil of radius a, carrying a current I (perhaps N turns, each with
current I/N), lies in the x-y plane with its center at the origin.



a) By elementary means [Eq. (5.4)] find the magnetic induction at any point on the
z axis

As long as we restrict ourselves to the z axis, the magnetic induction is given by
an elementary application of the Biot-Savart law.

dl

α
B

R

z

a

By symmetry, only the z component contributes

Bz =
µ0I

4π

∫
[d~̀× ~R ]z

R3
=
µ0I

4π

∫
d`R sinα

R3
=
µ0I

4π
2πa

a

R3
=
µ0Ia

2

2R3

Substituting in R2 = a2 + z2 yields

Bz =
µ0Ia

2

2(a2 + z2)3/2

b) An identical coil with the same magnitude and sense of the current is located
on the same axis, parallel to, and a distance b above, the first coil. With the
coordinate origin relocated at the point midway between the centers of the two
coils, determine the magnetic induction on the axis near the origin as an expansion
in powers of z, up to z4 inclusive:

Bz =
(
µ0Ia

2

d3

)[
1 +

3(b2 − a2)z2

2d4
+

15(b4 − 6b2a2 + 2a4)z4

16d8
+ · · ·

]
where d2 = a2 + b2/4.

By shifting the origin around, it should be obvious that the magnetic induction
is given exactly by

Bz =
µ0Ia

2

2

(
(a2 + (z − 1

2b)
2)−3/2 + (a2 + (z + 1

2b)
2)−3/2

)
(8)

All we must do now is to Taylor expand the terms to order z4. Noting that we
are seeking an expansion in powers of z/d2, we may write

Bz =
µ0Ia

2

2

(
(d2 − bz + z2)−3/2 + (d2 + bz + z2)−3/2

)
=
µ0Ia

2

2d3

(
(1− bζ + d2ζ2)−3/2 + (1 + bζ + d2ζ2)−3/2

)
=
µ0Ia

2

2d3

(
(1− bζ + (a2 + 1

4b
2)ζ2)−3/2 + (1 + bζ + (a2 + 1

4b
2)ζ2)−3/2

) (9)



where we have introduced ζ = z/d2. Expanding this in powers of ζ yields

Bz =
µ0Ia

2

2d3

[
1 + 3

2 (b2 − a2)ζ2 + 15
16 (b4 − 6b2a2 + 2a4)ζ4 + · · ·

]
(10)

which is the desired result.

c) Show that, off-axis near the origin, the axial and radial components, correct to
second order in the coordinates, take the form

Bz = σ0 + σ2

(
z2 − ρ2

2

)
; Bρ = −σ2zρ

In principle, we may compute the vector potential or magnetic induction off-
axis through the Biot-Savart law. However, near the axis, it is more convenient
to perform a series expansion of the magnetic induction and use the results of
problem 5.4 above. The result of part b indicates that

Bz(0, z) = σ0 + σ2z
2 + · · ·

where

σ0 =
µ0Ia

2

d3
, σ1 =

3(b2 − a2)
2d4

σ0

Inserting this expansion into (5) gives

Bz(ρ, z) = [σ0 + σ2z
2 + · · ·]− 1

4ρ
2[σ0 + σ2z

2 + · · ·]′′ + · · ·
= σ0 + σ2(z2 − 1

2ρ
2) + · · ·

Bρ(ρ, z) = − 1
2ρ[σ0 + σ2z

2 + · · ·]′ + · · ·
= −σ2ρz + · · ·

d) For the two coils in part b show that the magnetic induction on the z axis for
large |z| is given by the expansion in inverse odd powers of |z| obtained from the
small z expansion of part b by the formal substitution d→ |z|.

For large |z| we Taylor expand (8) in inverse powers of z

Bz =
µ0Ia

2

2|z|3
(

(1− bz−1 + (a2 + 1
4b

2)z−2)−3/2 + (1 + bz−1 + (a2 + 1
4b

2)z−2)−3/2
)

Comparing this with the last line of (9) shows that the Taylor series is formally
equivalent under the substitution ζ → z−1, which may be accomplished by taking
d→ |z|.

e) If b = a, the two coils are known as a pair of Helmholtz coils. For this choice of
geometry the second terms in the expansions of parts b and d are absent (σ2 = 0



in part c). The field near the origin is then very uniform. What is the maximum
permitted value of |z|/a if the axial field is to be uniform to one part in 104, one
part in 102?

For b = a the axial field is of the form

Bz =
µ0Ia

2

2d3

(
1− 45

16
a4z4

d8
+ · · ·

)
=

4µ0Ia
2

53/2a3

(
1− 144

125

(z
a

)4

+ · · ·
)

Taking the (|z|/a)4 term as a small correction, the field non-uniformity is

δB

B
≈ 144

125

(z
a

)4

For uniformity to one part in 104, we find |z|/a < 0.097, while for uniformity to
one part in 102, we instead obtain |z|/a < 0.305. These numbers are actually
pretty good because of the fourth power. For example, the first value indicates
we can move ≈ ±10% of the distance between the coils while maintaining field
uniformity at the level of 0.01%. Helmholtz coils are very useful in the lab for
canceling out the Earth’s magnetic field.

5.8 A localized cylindrically symmetric current distribution is such that the current flows
only in the azimuthal direction; the current density is a function only of r and θ (or
ρ and z): ~J = φ̂J(r, θ). The distribution is “hollow” in the sense that there is a
current-free region near the origin, as well as outside.

a) Show that the magnetic field can be derived from the azimuthal component of
the vector potential, with a multipole expansion

Aφ(r, θ) = −µ0

4π

∑
L

mLr
LP 1

L(cos θ)

in the interior and

Aφ(r, θ) = −µ0

4π

∑
L

µLr
−L−1P 1

L(cos θ)

outside the current distribution.

b) Show that the internal and external multipole moments are

mL = − 1
L(L+ 1)

∫
d3x r−L−1P 1

L(cos θ)J(r, θ)

and
µL = − 1

L(L+ 1)

∫
d3x rLP 1

L(cos θ)J(r, θ)



We work out both parts a and b simultaneously. For a current density ~J , the
vector potential in Coulomb gauge has the expression

~A(~x ) =
µ0

4π

∫ ~J(~x ′)
|~x− ~x ′|

d3x′

=
µ0

4π

∑
l,m

4π
2l + 1

∫
rl<
rl+1
>

~J(r′, θ′, φ′)Y ml (θ, φ)Y m ∗l (θ′, φ′) r′2dr′dφ′d(cos θ′)

where r< = min(r, r′) and r> = max(r, r′). For the cylindrically symmetric
current distribution ~J = φ̂J(r, θ), the vector potential becomes

~A(~x ) =
µ0

4π

∑
l,m

4π
2l + 1

∫
rl<
rl+1
>

φ̂′J(r′, θ′)

× Y ml (θ, 0)Y m ∗l (θ′, 0)eim(φ−φ′) r′2dr′dφ′d(cos θ′)

where we have also explicitly written out the azimuthal dependence of the spher-
ical harmonics. Noting that Y m ∗l (θ, φ) = (−1)mY −ml (θ, φ) and that Y ml (θ, 0) =
Y m ∗l (θ, 0), the sum over m may be put into the form

~A(~x ) =
µ0

4π

∑
l,m

4π
2l + 1

∫
rl<
rl+1
>

φ̂′J(r′, θ′)

× Y ml (θ, 0)Y m ∗l (θ′, 0) cos[m(φ− φ′)] r′2dr′dφ′d(cos θ′)
(11)

We now focus on the azimuthal part of this integral

Im ≡
∫ 2π

0

φ̂′ cos[m(φ− φ′)]dφ′ (12)

paying attention to the fact that the primed φ̂′ direction may not be the same
as the unprimed φ̂ direction for the observer. In particular, we note that the
cartesian components of the spherical coordinate basis vectors are

r̂ = (sin θ cosφ, sin θ sinφ, cos θ)

θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ)

φ̂ = (− sinφ, cosφ, 0)

Thus an arbitrary vector ~V may be decomposed as

~V = (r̂ · ~V )r̂ + (θ̂ · ~V )θ̂ + (φ̂ · ~V )φ̂

In particular, for the φ̂′ unit vector, this decomposition becomes

φ̂′ = sin(φ− φ′)(r̂ sin θ + θ̂ cos θ) + cos(φ− φ′)φ̂



Substituting this into (12) yields

Im =
∫ 2π

0

[
sin(φ− φ′)(r̂ sin θ + θ̂ cos θ) + cos(φ− φ′)φ̂

]
cos[m(φ− φ′)]dφ′

= π[δm,1 + δm,−1]φ̂

As a result, the expression for the vector potential, (11), becomes

~A(~x ) =
µ0

4π

∑
l

4π
2l + 1

2πφ̂
∫

rl<
rl+1
>

J(r′, θ′)Y ml (θ, 0)Y m ∗l (θ′, 0) r′2dr′d(cos θ′)

This demonstrates that only the azimuthal component of the vector potential is
non-vanishing (in Coulomb gauge). Writing out the spherical harmonics in terms
of associated Legendre polynomials gives

Aφ(r, θ) =
µ0

4π

∑
l

P 1
l (cos θ)
l(l + 1)

2π
∫

rl<
rl+1
>

J(r′, θ′)P 1
l (cos θ′) r′2dr′d(cos θ′)

=
µ0

4π

∑
l

P 1
l (cos θ)
l(l + 1)

∫
rl<
rl+1
>

J(r′, θ′)P 1
l (cos θ′) d3x′

For the interior region, we take r < r′, since the observer at r is closer to the
origin than then region containing the current J(r′, θ′). This gives

Ain
φ (r, θ) =

µ0

4π

∑
l

rl

l(l + 1)
P 1
l (cos θ)

∫
J(r′, θ′)
r′l+1

P 1
l (cos θ′) d3x′

On the other hand, r< and r> are flipped for the exterior region (r > r′), so that

Aout
φ (r, θ) =

µ0

4π

∑
l

1
l(l + 1)rl+1

P 1
l (cos θ)

∫
r′lJ(r′, θ′)P 1

l (cos θ′) d3x′

Finally, defining

ml = − 1
l(l + 1)

∫
P 1
l (cos θ)
rl+1

J(r, θ) d3x

µl = − 1
l(l + 1)

∫
rlP 1

l (cos θ)J(r, θ) d3x

(13)

gives the desired vector potential multipole expansion

Ain
φ = −µ0

4π

∑
l

mlr
lP 1
l (cos θ)

Aout
φ = −µ0

4π

∑
l

µl
rl+1

P 1
l (cos θ)

(14)



Note that an alternate method of solving part a is to the vector potential in a
current-free region satisfies the homogeneous equation

∇2 ~A = 0 (in Coulomb gauge where ~∇ · ~A = 0)

Taking ~A = Aφ(r, θ)φ̂ and using the expression for the Laplacian in spherical
coordinates gives

0 =
[

1
r2

∂

∂r
r2
∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2

]
(Aφ(r, θ)φ̂)

Note that the Laplacian must also act on the unit vector φ̂, as it rotates along
with the azimuthal angle φ. In particular, it is easy to see that

∂2

∂φ2
φ̂ = −φ̂

This results in the Laplace’s equation

0 =
[

1
r2

∂

∂r
r2
∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
− 1
r2 sin2 θ

]
Aφ(r, θ)

which may be compared with the ordinary separation of variables solution to the
scalar Laplacian in spherical coordinates. Since this corresponds to an azimuthal
quantum number m = ±1, the solution is then of the form

Aφ(r, θ) =
∑
l

[Alrl +Blr−l−1]P 1
l (cos θ)

(where we have used the fact that P 1
l and P−1

l are linearly dependent, so we are
free to restrict to m = 1). Taking the appropriate inside and outside solutions,
then immediately gives (14).

5.9 The two circular coils of radius a and separation b of Problem 5.7 can be described in
cylindrical coordinates by the curent density

~J = φ̂Iδ(ρ− a)[δ(z − b/2) + δ(z + b/2)]

a) Using the formalism of Problem 5.8, calculate the internal and external multipole
moments for L = 1, . . . , 5.

In principle, all we are asked to do here is to compute the moments (13) using the
current density given above. However, there may be a bit of a subtlety in whether
we choose to use cylindrical or spherical coordinates. Although (13) was worked
out in spherical coordinates, the integral can be performed in any coordinate
system, so long as we use the appropriate expressions for r and cos θ. Since ~J is



given in cylindrical coordinates, we take this to be the natural coordinate system
to use. In this case, (13) may be reexpressed as

ml = − 1
l(l + 1)

∫
P 1
l (z/

√
ρ2 + z2)

(ρ2 + z2)(l+1)/2
J(ρ, z) ρdρdφdz

µ = − 1
l(l + 1)

∫
(ρ2 + z2)l/2P 1

l (z/
√
ρ2 + z2)J(ρ, z) ρdρdφdz

where we have made use of the transformation

r =
√
ρ2 + z2, tan θ =

ρ

z

Using
J = Iδ(ρ− a)[δ(z − b/2) + δ(z + b/2)]

immediately gives us

ml = − 2πIa
l(l + 1)

d−l−1[P 1
l (b/2d) + P 1

l (−b/2d)]

µl = − 2πIa
l(l + 1)

dl[P 1
l (b/2d) + P 1

l (−b/2d)]

where we have defined
d =

√
a2 + b2/4

Since the associated Legendre polynomials have definite parity

Pml (−x) = (−1)l+mPml (x)

we see that only the odd l moments survive

ml = − 4πIa
l(l + 1)

d−l−1P 1
l (b/2d)

µl = − 4πIa
l(l + 1)

dlP 1
l (b/2d)

Since
P 1

1 (x) = −
√

1− x2

P 1
3 (x) = − 3

2 (5x2 − 1)
√

1− x2

P 1
5 (x) = − 15

8 (21x4 − 14x2 + 1)
√

1− x2

(15)

the first few internal moments are

m1 =
2πIa2

d3

m3 =
2πIa2

d5

b2 − a2

4d2

m5 =
2πIa2

d7

b4 − 6a2b2 + 2a4

16d4

(16)



and the first few external moments are

µ1 = 2πIa2

µ3 = 2πIa2 b
2 − a2

4

µ5 = 2πIa2 b
4 − 6a2b2 + 2a4

16

b) Using the internal multipole expansion of Problem 5.8, write down explicitly an
expression for Bz on the z axis and relate it to the answer of Problem 5.7b.

We begin with the internal multipole expansion of the vector potential, which
was given in (14)

Aφ = −µ0

4π
[
m1rP

1
1 (cos θ) +m3r

3P 1
3 (cos θ) +m5r

5P 1
5 (cos θ) + · · ·

]
=
µ0

4π
sin θ

[
m1r +m3r

3 3
2 (5 cos2 θ − 1)

+m5r
5 15

8 (21 cos4 θ − 14 cos2 θ + 1) + · · ·
] (17)

Note that we have used the explicit forms of the associated Legendre polynomials
given in (15). Since Aφ is the only non-vanishing component of ~A, the magnetic
induction is given by

~B = ~∇× (Aφφ̂) = r̂
1

r sin θ
∂

∂θ
(sin θAφ)− θ̂1

r

∂

∂r
(rAφ)

Substituting in (17) gives

~B =
µ0

2π

[
r̂ cos θ

(
m1 + 3m3r

2(5 cos2 θ − 3)

+ 15
8 m5r

4(63 cos4 θ − 70 cos2 θ + 15) + · · ·
)

− θ̂ sin θ
(
m1 + 3m3r

2(5 cos2 θ − 1)

+ 45
8 m5r

4(21 cos4 θ − 14 cos2 θ + 1) + · · ·
)]

To obtain the magnetic induction on the z axis, we let θ = 0 in the above and
find

Bz =
µ0

2π
(
m1 + 6m3z

2 + 15m5z
4 + · · ·

)
(where we have taken r = z along the axis). Finally, substituting in the internal
moments, (16), gives

Bz =
µ0Ia

2

d3

[
1 +

3
2
b2 − a2

d2

(z
d

)2

+
15
16
b4 − 6a2b2 + 2a4

d4

(z
d

)4

+ · · ·
]

which agrees with the answer to Problem 5.7b, given by (10).


